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Spannungen in oxidierten Rohren: Eine analytische 
Lösung der Spannungs-Dehnungsgleichungen. 

Zusammenfassung 
Wenn metallische Komponenten in korrosiven Medien betrieben werden, wird ihre 
Lebensdauer im Allgemeinen durch das Vorhandensein von Schutzschichten bestimmt, da 
sie als Barrieren wirken. Durch die Volumenänderung aufgrund der Oxidation können sich im 
Material beträchtliche Spannungen aufbauen, die so genannten Wachstumsspannungen. 
Diese mechanischen Spannungen können zur Rissbildung in der Oxidschicht und sogar zu 
Abplatzungen derselben führen. 

Zur Berechnung der Wachstumsspannungen in oxidierenden Rohren wurde ein visko-
elastisches analytisches Spannungsmodell entwickelt. Es können dabei sowohl ein-axiale 
als auch mehr-axiale Spannungstensoren behandelt werden, desgleichen verschiedene 
Ausprägungen der Oxidation wie Oberflächen- und Grenzflächen-Oxidation sowie Bildung 
von Doppelschichten. Es ergibt sich, dass sogar relativ kleine Werte für die lateralen 
Komponenten des Oxidations-Tensors zu großen Spannungseffekten führen können. 

Eine vereinfachte Version des Models wurde zur Berechnung der bei Hüllrohren aus Zry 
auftretenden Dehnungen angewandt, die unter Luft oxidiert wurden. Das Auftreten von 
lateralen Oxidations-Dehnungen war hierbei der entscheidende Effekt. 
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Abstract 
When metallic components operate in aggressive environments their service life is, in 
general, determined by the presence of a protective surface film which acts as a barrier to 
the reactants. Large residual stresses can result from the volume changes due to oxidation, 
the so-called growth stresses. These stresses may lead to film cracking or spalling or both.  

A visco-elastic model for the calculation of growth stresses in oxidizing tubes has been 
developed. It can deal with uniaxial and multi-axial oxidation strain tensors. Different 
oxidation modes like surface and interface oxidation as well as duplex scale formation are 
treated. It appears that even relatively small lateral oxidation strain components could have a 
considerable effect on the stress level in the tube. 

A simplified version of the model has been applied to simulate the geometrical changes of 
Zry tube sections exposed to air having reached the break-away regime. We think that lateral 
oxidation strains were mainly responsible for the observed diameter increase. 
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Nomenclature 

 Subscripts and Superscripts 

 

E  Young’s modulus 

Φ  Pilling-Bedworth ratio 

ν  Poisson ratio 

e  oxidation strain 

ε  total strain 

σ  stress 

δ  scale thickness 

cr  creep 

h  thickness 

r  radius 

u  displacement 

 

 

av  average 

cl  cladding 

d  displaced 

el  elastic 

eq  equivalent 

f  oxide film 

i  inner 

inel  inelastic 

int  interface 

intr  intrinsic 

lat  lateral 

me  metal 

o  outer 

ox  oxide 

par  parabolic 

r  radial 

s  metallic substrate 

tot  total 

z  axial 

Θ  azimuthal 
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1. Introduction 

When metallic components operate in aggressive environments their service life is, in 
general, determined by the presence of a protective surface film which acts as a barrier to 
reactants, as, for example, in Lead-Bismuth Eutectic (LBE), which gained interest in 
accelerator driven systems as a coolant and target. Without a protective oxide scale on 
metallic components, the dissolution rate will become unacceptably high. 

The formation of an oxide scale leads to a local volume change, to a volume increase if the 
Pilling-Bedworth-Ratio is greater than one and to a decrease if it is smaller than one. Thus, 
large residual stresses can result from these volume changes, especially when the oxide 
scale forms on surfaces with large curvatures. Film cracking and/or spalling may be the 
consequence of these residual stresses. But even in case where they do not impair the 
mechanical integrity of the scale during steady-state operation, they may combine with 
stresses due to thermal cycling and lead then to detrimental effects. 

There is still a considerable uncertainty about the stress distributions generated by oxidation, 
despite decades of study and debate. The oxidation stresses depend on the geometry of the 
metallic components and on the oxidation strain tensor. In case of a flat plate and under 
uniaxial oxidation normal to the surface of the plate, no oxidation stresses should develop, if 
the lateral surfaces of the plate are prevented from oxidizing. This is true for interface and 
surface oxidation conditions as well. If the oxidation strain tensor has lateral components, 
growth stresses will develop, which lead to a bending of the plate. This then constitutes a 
possibility to determine the lateral oxidation strain components. Dankov and Churaev [1] 
found that the oxidation of thin metallic layers produced stresses, which lead to the bending 
of the specimens. Rhines and Wolf [2] found evidence of lateral compressive growth stresses 
in oxide scales on Ni rods and axial length changes of up to 0.2%. 

In tubes, the radius of curvature is not infinite as for flat plates and we obtain  stresses due to 
geometrical effects also under uniaxial oxidation strain. The smaller the radius of curvature, 
the higher are the geometrical stress effects of oxidation. 

There are a number of reviews on the modeling of stress generation due to oxide growth 
(e.g.[3-5]). But one can recognize that the problem of eventual lateral oxidation strain 
components has not received much attention, whereas more and more experimental results 
on residual stresses and their effects appear in the literature (e.g.[6-15]). 

The consequences of geometrical effects on oxide scale integrity were extensively discussed 
by Manning [16]. He has defined a scale displacement vector, which mainly depends on the 
radius of curvature, the Pilling-Bedworth ratio, and the mode of oxidation (interface or surface 
oxidation). The displacement vector was derived more on intuitive arguments than on the 
principles of mechanics. Thus, it was concluded, that there is no growth stress in a duplex 
scale by simply adding the displacement vectors due to interface and surface oxidation. This 
procedure is at least doubtful. Also, the role of eventual lateral components in the oxidation 
strain tensor was not recognized. 
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Hsueh and Evans [17] developed a model for the residual stresses under cylindrical 
geometry based on the principles of mechanics considering also creep effects. They treated 
the cases of uniaxial and dilatational oxidation strain that means all three components of the 
oxidation strain tensor being equal. But this latter case seems rather unrealistic, as no oxide 
scale is known, which would behave in this manner. Also these authors didn’t investigate the 
stress distributions in duplex scales, a case most relevant for steel components. 

There are observations on length increases of austenitic steel tubes of about 2% caused by 
oxidation reported in the literature [10]. This gives us a clue on the magnitude of the axial 
oxidation strain component. Axial elongations were also reported in [11] for samples of Fe-
Cr-Al-Y alloys with Al2O3 scales. Lateral oxide growth on 18Cr steel was also determined 
in [6] with values increasing with time up to about 3%. The formation of wrinkles on oxide 
scales on steels, for example, is attributed to lateral growth [18]. Hence, an effort to include 
lateral components of the oxidation strain tensor into the model is certainly warranted. It 
should also be noted that exact solutions of the stress-strain equations are of great value for 
the validation of numerical codes. 

 

2. Development of the stress-strain model 

The model is to be meant for the calculation of stress distributions in tubes. Therefore we 
take a cylindrical geometry as a basis. For other geometries like flat plates or spheres, the 
modifications which have to be applied, can easily be deduced. We assume that the oxide 
scales are formed at the outside of the tube. For oxide scales at the inside of the tube the 
part of the hoop stress which is due to the curvature of the tube would only change its sign. 
This would, of course, also affect the radial and axial stress components. It should be noted 
that we do not consider creep effects, neither in the metallic substrate nor in the oxide film. 
We assume that we have, in general, a multi-axial oxidation strain tensor in the oxide film, 
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with, in principle, different components in all three directions of space. Special cases like 
uniaxial oxidation strain with 
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and dilatational oxidation strain with 
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were treated in [17]. But most interesting from a practical point of view seems to be an 
oxidation strain tensor with the main component being in radial direction and minor 
components in azimuthal and axial directions. The radial component of the oxidation strain 
tensor acts orthogonal to the interface between the oxide film and the metallic substrate and 
the other two components in parallel to the interface. Therefore we denote these as lateral 
components. Models for the calculation of growth strains in oxide scales on rods and tubes 
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have also been reported in refs. [19,20]. But it seems that these authors didn’t recognize the 
importance of the oxidation mode (surface/interface oxidation).  
There are indications from the literature [6], that the oxidation strain components may 
depend on the distance from the interface. But for this work we make the simplifying 
assumption that they are constant. The more general case can be treated with the help of a 
slight modification of some parameters. It should be noted, that we are using the non-
displaced radii for the derivation of the solution and all locations in the oxide film are referred 
to the consumed metal layer. 

Application of the generalized Hooke’s law for the metallic substrate and the oxide film leads 
to the following stress-strain equations: 
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In each case three equations are established by cyclic permutation of i, j and k. 
Symmetry about the z axis requires that the shear stress σrΘ be zero and that we have the 
following relations for equilibrium and compatibility: 
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r
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where u denotes the radial displacement. 
 
In general, we have to do with long cylinders. Hence, we can impose plane strain conditions 
for the metallic substrate and the oxide film. The treatment of end effects is outside the scope 
of this work.  
The plane strain condition is applied in its generalized form: 

.constz =ε  (7) 
as we foresee a non-zero axial component in the oxidation strain tensor. In case of uniaxial 
oxidation strain (eox

z = 0) we have found that the solutions lead to εz ≅ 0 and we automatically 
fall back to the plane strain condition in its usual form. It should also be noted that axial 
strains upon oxidation of ferritic steel specimens are reported in the literature [18]. 
Using the compatibility relations (6), the stress-strain equations (4) and the condition of 
equilibrium (5), we can deduce the following differential equations for the radial stress in the 
oxide film: 
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and using again the equilibrium condition and the stress-strain equations: 
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We have assumed, that the components of the oxidation strain tensor do not depend on the 
radius r and we have made use of the plane strain condition. Otherwise we would have 
obtained derivatives of the lateral oxidation strain components and of the total axial strain of 
the oxide film. 
The sum of the radial and hoop stress in the oxide film has the following dependence on the 
radius r: 
 

Crr
eeE

rr f
i

f

oxox
r

f
ff

r +⋅
−

−⋅
=+ )/(ln

1

)(
)()(

2ν
σσ Θ

Θ  (10) 

where C being an integration constant. 
 
Using again the condition of equilibrium in a cylinder (5) we obtain the following differential 
equation for the radial stress in the oxide film: 
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Finally, we obtain the following solutions for the radial and hoop stresses in the oxide film: 
 

.2/.4/)/(ln.2/)(
2

CDrrD
r
Br f

i
ff

r +−⋅+=σ  (12) 

.2/.4/)/(ln.2/)(
2

CDrrD
r
Br f

i
ff ++⋅+−=Θσ  (13) 

 
The parameter D depends on the radial and azimuthal components of the oxidation strain 
tensor: 
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The parameters Bf and C can be determined with the help of the following boundary 
conditions: 
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In this way, we have neglected an eventual coolant pressure at the outside of the tube, as 
this would have only a minor effect on the stress distributions. 
 

)/ln(.2/( int,22

22

f
i

f
or

f
i

f
o

f
i

f
of rrD

rr

rr
B ⋅+⋅

−

⋅
= σ  (16) 



Development of the stress-strain model 

5 

 

)/ln(
2

1(.2/
2

22

2

22

2

int,
f
i

f
o

f
o

f
i

f
o

r
f
o

f
i

f
i rr

rr

r
D

rr

r
C ⋅

−
+⋅+⋅

−

⋅
= σ  (17) 

 
Thus, we have succeeded to express the radial and hoop stresses in the oxide film in terms 
of only two parameters, namely σr,int and D. 
From the condition of plane strain we can deduce that the axial stress in the oxide film must 
have the following form: 
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with S1 being a constant. It should be noted that the axial stress in the oxide scale depends 
on the radius r. 
 
For the metallic substrate we can make use of the Lame stress solutions for a cylinder: 
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The parameters As and Bs can be determined with the help of the boundary conditions: 
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As 

ss
r Θσσ +  is independent of r, the plane strain condition is fulfilled in the metallic substrate 

for:     

.consts
z =σ  (24) 

 
The Lame solutions for the cylinder are derived under the assumption that the axial strain εz 
does not depend on the radius r, that is just the condition of generalized plane strain. 

For a simple oxide scale we have now three unknowns, namely 1int, , Srσ  and s
zσ , that 

means we need also three conditions for  their determination. One condition is provided by: 
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Using Hooke’s law and the stress solutions, which we have derived, we obtain the following 
equation: 
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A further condition is provided by the axial force balance: 
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The last condition depends on the oxidation modus, that means whether the oxidation occurs 
at the interface due to anion transport or at the surface due to cation transport or at both 
locations like in a duplex scale. 
 
 
 

2.1. Interface oxidation 

In this case the third condition is given by: 
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which leads to the following equation: 
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2.2. Surface oxidation 

As in this case the cations are moving to the surface the consumed metal layer experiences 
a radial displacement. It is given by: 
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This leads to an equation similar to (29) but with some modification on the right hand side. 
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2.3. Duplex scale formation 

We consider the case that we have interface oxidation in the inner subscale and surface 
oxidation in the outer subscale. Hence, we have a combination of both boundary conditions. 
In each subscale we have a stress distribution like in (12) and (13), with, in general, different 
oxidation strain tensors in each subscale. We have in this case five unknowns, namely the 
radial interface stresses (metallic substrate/inner subscale and inner/outer subscale), which 
determine the distributions of the radial and hoop stresses, and the axial stresses in the three 
layers. We can establish five conditions in order to determine the five unknowns, namely the 
axial force balance, two conditions for the axial strain, and two conditions for the radial 
displacement at the two interfaces in each case. 
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With the displaced inner radius of the outer subscale and the radial displacement given as: 
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Thus, we have established a system of linear equations for the determination of the 
unknowns (three unknowns for a simple scale and five unknowns for a duplex scale) of the 
form: 

→→
=⋅ bxA  (38) 

 
The components of the matrix A and of the vector 

→
b depend on the dimensions of the 

metallic substrate and of the oxide film, on the mechanical properties of both phases, and on 
the oxidation strain tensor. 
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3. Creep in the metallic substrate 
As the temperatures in the liquid metal loop of an ADS facility are foreseen to be distinctly 
below Tm/2 (with Tm being the melting temperature of the different materials) we do not 
expect creep effects in oxide scales, but there can be creep effects in the metallic substrate. 
In this case, the generalized Hooke’s law in the metallic substrate is given as: 
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εi cr,s : total creep strains in the metallic substrate 
 
As the creep strains depend generally on the radial position, we can no longer apply the 
Lame solutions for the radial and hoop stresses, but we have now the following differential 
equation for the radial stress: 
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 as integration constant. 
 
The integral in eq. (40) can, in general, not be solved analytically but only numerically.  
The eq. (40) has the following solutions: 
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With the help of the condition of generalized plain strain we can deduce, that the axial stress 
in the metallic substrate must have the following form: 
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The parameters S0, Bs, and  Ĉs can be determined with the help of the boundary conditions 
in the same way as demonstrated in the previous section. 
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As the stresses in general change with time the total creep strains are calculated via the 
accumulation of creep strain increments: 
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The creep increments within a time interval ∆t are calculated with the help of the Prandl-
Reuss flow rules: 
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The equivalent stress σeq is given by von Mises as: 
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The secondary creep rates of metals are generally given in the following form: 
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The equivalent creep increment in a time interval ∆t is then given as: 
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The length of the time interval ∆t is to be chosen in such a way, that the stresses are fairly 
constant during that time interval. 
 
 
 

4. Thermal cycling 
If one wants to calculate the combined effect of oxidation and temperature changes, one has 
to use the generalized Hooke’s in the following form: 
 

)()( f
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f
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f
i

fox
i

f
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f TeE σσνσ∆αε +⋅−=⋅−−⋅  (49) 
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s
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(50) 
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We do only consider situations, where the temperature is uniform over the tube. We also 
assume that the thermal expansion in the metallic substrate and in the oxide film is isotropic. 
Under these premises we can apply the procedure of section , as we have no logarithmic 
term in the stress distributions of the metallic substrate and can therefore use the Lame 
solutions. We have only to do the following transformations in the coefficients for the 
determination of the unknowns: 
 

Tee sfox
i

ox
i ∆αα ⋅−+→ )(  (51) 

 
The stresses arising from temperature changes can also be estimated with the help of the 
following formula: 
 

dT
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⋅

⋅

⋅
⋅
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+

⋅
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⋅== ∫ δ
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νν

α∆σσΘ

1
1

1

1
1

.,.,  
(52) 

∆α = αf - αme 
Ti : initial temperature    Te : end temperature of the ramp 
 
The importance of the thermal expansion coefficients αf and αm in the oxide scale and in the 
metallic substrate is obvious from eq. (52). If ∆α is negative we will obtain tensile stresses in 
a downwards temperature ramp, if it is positive we will obtain compressive stresses. 

If we have a duplex scale the thermal stresses in each subscale can also be calculated with 
the help of eq. (52), one has to use in this case for each subscale the appropriate thermal 
expansion coefficient for the oxide material. 

 
 
 

5. Results of the sensivity studies on the 
consequences of lateral oxidation strains 

For the parametric studies we have deliberately omitted relaxation mechanisms, as our main 
aim was to discern the effect of lateral oxidation strains. Including creep or other relaxation 
mechanisms may eventually partially obscure the results.  

We are mainly interested in the case of oxide scales on stainless steel tubes under the 
conditions of e.g. an accelerator driven system. Depending on the temperature and the 
oxygen content in the liquid metal Fe/Cr spinel scales or magnetite/spinel duplex scales can 
be formed. The sensitivity studies were mainly meant for this situation. For the sake of 
completeness we have also considered the case of a single scale with surface oxidation. The 
data, which were used for the calculations are listed in Tab. 1.  
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Table 1 : Input data for the sensitivity studies 

Outer tube diameter 8 mm Young’s modulus Eme 1.6 105 MPa 
Inner tube diameter 6 mm Young’s modulus Eox 1.8 105 MPa 
Pilling Bedworth ratio Φ 2.0 Poisson ratio νme 0.3 
Consumed metal layer 
(standard case) 10 µm Poisson ratio νox 0.29 

 
The same value for the radius of curvature of the tubes has been used in all the calculations. 
For the oxidation strain tensor we made the assumption, that the axial and azimuthal 
components are equal and as the lateral components are rather small compared to the radial 
one, we can use the following approximation: 
 

∑=−
i

ox
ie1Φ  (53) 

 
It should be noted that we assume, that the oxide films are formed on the outer (convex) 
surface of the tubes. If the oxidation would occur at the inner (concave) side of the tube, we 
would obtain a reversal of the stress state in case of uniaxial oxidation strain. In case of 
multi-axial oxidation strain only that part of the stress, which is due to curvature of the 
metallic substrate would reverse its sign. 
The mechanical data (taken from [21-22]) are for austenitic steels at 550°C, a typical 
temperature in LBE loops. 

For uniaxial oxidation strain one has tensile hoop and axial stresses in the oxide scale in 
case of interface oxidation and compressive stresses of about the same absolute value in 
case of surface oxidation (see Figs. 1-2). This is in accordance with results in  [16,17]. 
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Fig. 1 : Stress distribution in the tube under 
uniaxial oxidation strain (interface 
oxidation). 

 

Fig. 2 : Stress distribution in the tube under 
uniaxial oxidation strain (surface 
oxidation). 
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Based on the work of Manning [16] we have derived the following formula for the maximum 
hoop stress in the oxide film under interface oxidation [23]: 
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f
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E
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⋅⋅+

⋅⋅−=
Φ

ΦσΘ
1

)1(
0

max,  

 

(54) 

where h is the consumed metal layer and sme the remaining metal layer in the tube (e.g. clad) 
wall. 

For the hoop stress at the interface we obtain with the data given in Tab. 1 a value of 
440 MPa and assuming surface oxidation a value of -440 MPa. The values of our analytical 
solution differ about 10%. 

In case of a duplex scale, we have tensile stresses in the inner subscale, where interface 
oxidation occurs, and correspondingly compressive stresses in the outer subscale (see 
Fig.3). The mean hoop stress in the symmetric duplex scale is roughly zero, and only in this 
sense the simple model of Manning [16] would give a correct prediction. But, of course, the 
knowledge of the mean hoop stress in a duplex scale is certainly not sufficient for an 
assessment of the stress situation. For an asymmetric duplex scale we have a non-zero 
mean hoop stress (see Fig.4) showing again the limitations of the Manning’s model. The 
strain in the oxide film is in this model determined by a displacement vector and this vector 
was defined as zero in case of a duplex scale (see Table 2 in ref. [16]). But this can at best 
be correct in case of a symmetric duplex scale. For an asymmetric duplex scale a weighed 
average procedure should be applied. 

There is a discontinuity in the hoop and axial stresses at the interface of the two sublayers. 
This is a consequence of the mixed mode of the oxidation. In the inner sublayer we have 
tensile hoop and axial stresses due to the interface oxidation mode and in the outer sublayer 
compressive stresses due to the surface oxidation mode.  

A discontinuity in the hoop and axial stresses is not an unusual feature. For a hollow cylinder 
there is, for example, in any case a discontinuity at the interface of the oxide scale and the 
metallic substrate. Only the radial stress must under all circumstances be continuous. This is 
a consequence of the equilibrium condition. It can be taken from Figs. 1-4 that our solutions 
fulfill the requirement of a continuous radial stress. 
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Fig. 3 : Stress distribution in the tube under 
uniaxial oxidation strain (symmetric 
duplex scale). 

Fig. 4 : Stress distribution in the tube under 
uniaxial oxidation strain 
(asymmetric duplex scale) 

 
 

For a consumed metal layer of 10 µm, that 
means an oxide scale thickness of 20 µm, 
we have maximum absolute hoop stress 
values of about 500 MPa for the simple 
scale and about 250 MPa for the symmetric 
duplex scale. It should also be noted that as 
a general rule the oldest oxide is in the 
highest stress state. The maximum hoop 
stress increases linearly with the thickness 
of the consumed metal layer (see Fig.5). 
This feature confirms also the simple model 
of Manning [16]. 
All the results presented so far were for 
uniaxial oxidation strain. In the following we 
are going to investigate the consequences 
of lateral components of the oxidation strain 
tensor. For the sake of simplicity we 
assume that the azimuthal and axial 
components are equal. It is also assumed 

that these lateral components (azimuthal/axial) are small compared to the radial one, as this 
seems most relevant for practical applications of the model. But the model is, of course, apt 
to treat also other conditions. We also assume that the oxidation strain tensor is the same in 
both subscales of the duplex scale. In the following we are going to discuss the results of 
sensitivity studies concerning the effects of eventual lateral components in the oxidation 
strain tensor. 

Lateral components of the oxidation strain may have a considerable effect, as can be taken 
from Figs. 6-8. Even for lateral components as small as 0.005 the hoop stress becomes 
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Fig. 5 : Hoop stress versus consumed metal 
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strain. 
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distinctly compressive in case of surface oxidation and the axial stress is in all cases 
comparable to the hoop stress. This is a consequence of our assumption that the axial and 
azimuthal components of the oxidation strain tensor are equal. The whole duplex scale is 
now clearly in a compressive stress state. In any case the simple model of Manning is in this 
case inadequate as it considers only the geometrically induced growth stresses. The 
difference between inner and outer hoop stress in the oxide film is due to the radial oxidation 
strain component. It is comparable in magnitude to that for the uniaxial case, as the radial 
component does not change very much. 
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Fig. 6 : Stress distribution in the tube under 

multi-axial oxidation strain (surface 
oxidation). 

 
Fig. 7 : Stress distribution in the tube under 

multi-axial oxidation strain (interface 
oxidation). 

 
 

 
It should be noted that the stress is now 
roughly the same in all three cases of the 
oxidation mode (surface, interface oxidation, 
and duplex scale formation), although there 
are still some differences in the stress 
distributions. The stress situation is largely 
determined by the lateral components, the 
absolute stress level being roughly an order 
of magnitude higher than for uniaxial 
oxidation strain for a value of 0.02 for the 
lateral oxidation strain components. This is 
rather astonishing as the lateral fraction of 
the volume increase comprises only 4%. 
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Fig. 8 : Stress distribution in the tube under 

multi-axial oxidation strain (symmetric 
duplex scale). 
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The hoop stresses at the outer (interface oxidation) and inner (surface oxidation) scale radius 
respectively at the interface of the two subscales (duplex scale formation) are plotted in Fig.9 
versus the lateral oxidation strain. 
 

 
 The hoop stresses vary linearly with the 
lateral oxidation strain. For interface 
oxidation the change from a tensile to a 
compressive stress situation occurs at a 
lateral oxidation strain of only 0.002. For 
thicker oxide scales or thinner tubes 
correspondingly higher lateral oxidation 
strains would be needed to achieve the 
same effect. The stress values under 
three-dimensional oxidation strain 
converge to that for the uniaxial case for 
eΘ

ox = ez
ox → 0. This gives us confidence, 

that the solutions for the multi-dimensional 
case are correct. 

In the literature on growth stresses it is often distinguished between geometrically induced 
growth stresses and intrinsic growth stresses (see for example ref. [6]). In the light of our 
model we can state, that the geometrically induced contribution is caused by the oxidation 
strain component which acts orthogonal to the surface and the intrinsic contribution is caused 
by the lateral strain components. To the knowledge of the authors this viewpoint has never 
been expressed in such a clear way. It should also be mentioned that the growth stresses in 
ref. [16] refer only the geometrically induced part. Geometrically induced growth stresses do 
only appear in specimens with a finite radius of curvature, as is evident from eq. (54). 

We consider a dilatational volume increase upon oxidation as rather unrealistic. Neverthe- 
less, it is of some interest to estimate the stresses in the oxide film, which we would obtain in 
this case. We have derived the following approximate formula for the case of dilatational  
oxidation strain: 
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(55) 

 
With the data in Tab. 1 we obtain the following estimation of stress values in the oxide film: 
 

MPaE ff
z

f 4106.637.0 ⋅−=⋅−== σσ Θ  (56) 

 
That is one order of magnitude greater than the stress values for a lateral oxidation strain of 
0.02. As under dilatational volume increase the linear oxidation strain is about 0.26, the 
stresses for both cases have roughly the same ratio as the oxidation strains. These stress 
values for the case of isotropic expansion are of course very high and rather unrealistic. The 
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main aim for the sensitivity studies was to demonstrate the effect of lateral components in the 
oxidation strain tensor. But one should not forget that there is a volume increase of 100% 
upon oxidation. For a comparison one may also note that in metal alloys the elastic limit is 
reached at a tensile strain of less than 0.2%. Also, our model is purely elastic. With inelastic 
processes like creep, plastic flow, or micro-cracking the stresses in the oxide film could be 
reduced considerably. 
In case of a short annular cylinder we can apply the plane stress condition (σz

 = 0) and obtain 
the following formula for the hoop stress in the oxide scale under isotropic expansion: 
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Hence, the difference in hoop stresses between the two limiting approximations of plane 
strain and plane stress is determined by the factors 1/(1-ν) and 1. We have essentially a bi-
axial stress state in case of plane strain and in case of plane stress essentially a uniaxial 
stress state. The radial stress is in both cases small compared to the hoop stress. The 
formulas (55) and (57) can be extrapolated to the non-isotropic expansion in case that both 
lateral strain components (azimuthal and axial) are equal. Replacing (Φ1/3 – 1) by eΘ

ox in (55) 
and (57) we obtain approximate expressions for the intrinsic hoop stresses in the oxide 
scale: 
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Fig.10 shows the total axial elongation versus the oxide scale thickness for two values of the 
lateral oxidation strain. We recognize that the total axial strain increases linearly with the 
oxide scale thickness and with the lateral oxidation strain. By using the condition of 
generalized plane strain we may have a chance to reproduce measured axial expansions 
upon oxidation. In order to achieve this aim, some improvement of the model is needed with 
the implementation of stress relief mechanisms. 
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Fig. 10: Total axial strain versus oxide scale 

thickness with the lateral oxidation 
strain as a parameter. 
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6. Results of calculations for stresses in duplex 
scales on stainless steel tubes due to oxidation 
and thermal cycling 

The stresses due to thermal cycling in single layer scales are generally calculated with the 
help of relatively simple formula (see for example ref. [24]. This procedure has been 
generalized to duplex scales in ref. [25]. In this reference also the superposition of stresses 
due to oxidation and thermal cycling was treated in a similar way. The newly developed 
model offers now the possibility to deal with this problem in a more rigorous manner. The 
data for the calculations, whose results are to be discussed in the following, were taken from 
refs. [26-30]. For further information on these data the reader is referred to ref. [25]. The 
mechanical data for magnetite and Fe/Cr spinel used for the calculations are listed in Tab. 2 
also taken from ref. [25].  
 

Table 2 : Summary of mechanical properties used for the calculations of 
temperature ramps. 

 Fe3O4 FeCr2O4 

Young’s modulus Eox in MPa 2.1 105 2.33 105 

Poisson ratio ν 0.29 0.31 
Surface fracture energy γs in J/m2 4.5 5.0 
Fracture toughness KIc in MPa*m1/2 1.4 1.5 
γs  · Eox   in  MPa2 · mm 945 1165 
Pilling-Bedworth ratio Φ 2.07 2.07 

 

The calculations discussed in ref. [25] were for austenitic, martensitic and ferritic steels as 
there is an interesting difference in the thermal expansion coefficient among them. In this 
report we consider only austenitic steels, as the aim of this chapter is to demonstrate the 
capabilities of the model. Three cases have been studied, namely the stress distribution in 
the duplex scale due to oxidation alone (Fig.11, 0=ox

late           ) and the combined effect of growth 
stresses and thermal cycling stresses (Fig.12 and 13, ∆T = -600 K) with and without lateral 
oxidation strains ( 0=ox

late  ; 005.0=ox
late ). We have taken the same value of the lateral 

oxidation strain in both subscales. 

With the simple formula for geometrically induced growth stresses we would obtain for the 
maximum hoop stress in the Fe/Cr spinel subscale a value of 599 MPa and in the magnetite 
subscale a value of -543 MPa. The values of the analytical model are about 10 % higher in 
absolute value. This is probably due to the fact that the effect of axial stress is disregarded in 
the approximate formula. 

For a temperature ramp of -600 K one would obtain with the approximate formula of ref. [25] 
for the change of the mean hoop stress in the Fe/Cr subscale a value of about -840 MPa and 
in the magnetite subscale a value of about -480 MPa. Doing the superposition of both stress 
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effects with the help of the approximate formula one would arrive for the mean hoop stress in 
the inner subscale at about -540 MPa and in the outer scale at about -750 MPa. As can be 
taken from Fig.12, the analytical model yields mean values of about -400 MPa and of about 
-680 MPa. Thus, there is a difference of 10 - 25 %. 
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Fig. 11: Distribution of growth stresses in a 
duplex scale on austenitic steels 
(scale thickness 40 µm, eox

lat =0.) 
 

Fig. 12: Distribution of stresses in a duplex 
scale on austenitic steels after 
growth and a temperature ramp of -
600 K (scale thickness 40 µm) 
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Fig. 13: Distribution of stresses in a duplex 

scale on austenitic steels after 
growth and a temperature ramp of -
600 K (scale thickness 40 µm, 
eox

lat =0.005) 
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With a lateral oxidation strain of 0.005 we would obtain with the data in Tab. 2 and using 
formula (58) the following values for the mean intrinsic growth stresses: 

=σ Θ
spintr , -1688 MPa      =σ Θ

maintr ,     -1479 MPa  
 
Superposition with the stresses due to the downwards temperature ramp would yield at the 
end of the temperature ramp mean hoop stress values of -2520 MPa and -1959 MPa in the 
inner and outer subscale. These values are to be compared to that of the analytical model 
with a mean hoop stress in the inner subscale of about -2000 MPa and of about -2100 MPa 
in the outer subscale. Taking into account the geometrically induced growth stresses would 
improve the situation for the approximate formulas considerably as this effect gives a tensile 
contribution (300 MPa) in the inner subscale and a compressive one (-271 MPa) in the outer 
subscale. 

 
 
 

7. Dimensional changes during Zry oxidation in air 
atmosphere 

The most intriguing feature observed during the scaling of Zr in air is its dimensional 
instability [31]. The increase in lateral dimensions is permanent and of large magnitude due 
to the joint presence of oxygen and nitrogen. It was remarked in [31] that this effect is due to 
growth stresses, but the importance of lateral oxidation strains was not recognized. It should 
be noted that the results of ref. [31]  indicate that there is symmetry in the two lateral 
directions. 

Isothermal oxidation tests in air atmosphere with tube sections of Zry (outer diameter 
10.75 mm, wall thickness 0.725 mm) have also been done at FZK/IMF [32]  with 
temperatures between 800 and 1100ºC. The measured values of outer diameter increase 
were used as a basis for comparison with a simplified version of our model. Unfortunately, no 
values of the axial extensions of the test specimens were given in ref. [32]. 

In the temperature range investigated in refs. [31,32] occurs break-away oxidation after some 
incubation period due to cracking in the oxide scale. Thus, to a first approximation the growth 
of the scale can be described with the help of the following time law: 
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alin : linear rate parameter 
kpar : parabolic rate constant 

(60) 

 



Dimensional changes during Zry oxidation in air atmosphere 

20 

In this way we have neglected the transition phase ranging between that of parabolic growth 
and the regime of linear growth. 
The failure parameter f is determined with the help of a life fraction rule: 
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tf
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Δ
 

tf = time to reach beak-away regime 

(61) 

 
The summation in eq. (61) goes over all Δti up to a certain time t. With this formulation of the 
model we can also treat transient conditions. 

In a first step we have done scoping calculations with our novel solution technique for the 
creep problem during the parabolic oxidation phase assuming only outside tube oxidation. 
(The simulation of outside and inside tube oxidation is not yet possible with our new model.) 
A lateral oxidation strain of 0.005 was assumed. Correlations for creep of β-Zry and of 
α-Zr(O) have been taken from refs. [33,34]. The action of creep of the metallic substrate is at 
best exemplified by the evolution of the mean hoop stress in the scale. This is shown in 
Fig.14 for the temperatures of 800 and 1000ºC. As the metallic substrate creeps against the 
scale it exerts a tensile stress on it, relieving the compressive stress in the scale to some 
extent. At 800ºC the stress relaxation effect is only moderate over a test duration of more 
than 7000 s (about 20%), but at 1000ºC there is a considerable relaxation effect (about 90% 
in 900 s). 

The mechanical behavior is characterized 
by a series of cracking processes and we 
hold that the sound scale oscillates 
around a time averaged value given by: 
 

lin

parsav
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Due to the experience gained in ref. [31] 
we can assume a bi-axial stress state in 
the sound oxide scale and in the metallic 
substrate. We can surmise that the 
intrinsic growth stresses in the oxide scale 
are largely dominating the geometrically 
induced growth stresses. As the new 
oxide grows at the interface with the 
metallic substrate, as oxygen and nitrogen 
are diffusing through the scale, we have 
tensile geometrically induced growth 
stresses. For an oxide scale of 5 µm, for 
example, the maximum value for the 
geometrically induced hoop stress would 
be 40 MPa. Thus, geometrically induced 
growth stresses can not explain the 
observed dimensional changes of the tube 
sections. 
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Fig. 14: Evolution of the mean hoop stress in 

the scale on Zry tube sections and 
scale thickness (parabolic regime, 
eox

lat = 0.005). 
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Due to the rather large uncertainties of the scale formation in the break-away regime 
(cracking is essentially a stochastic process) and due to some deficiencies of the standard 
model it deemed us necessary to develop a simplified model. In this model the following 
expression for the intrinsic growth stress in the scale is used: 
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 (63) 

 
The main assumption is that the growth stresses in the scale do not change with time. 
The hoop stress in the metallic substrate can be calculated with the help of the force balance 
(there is inside and outside oxidation of the tube sections): 
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For the calculation of creep in the metallic substrate we use the correlation given by 
Burton [33] for the secondary creep rate of Zircaloy-4: 
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where the shear modulus G is given by: 
 

23710 )273(10161.2)273(10244.210326.3 −⋅⋅+−⋅⋅−⋅= TTG  

G, σ in N/m2  and  
•
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(66) 

 
Using the flow rules of Prandl-Reuss and the equivalent stress according to von Mises we 
obtain for the creep increment in azimuthal direction in a time interval ∆t: 
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The increase of the outer radius in a time interval ∆t is the given by: 
 

)/11(,
,, Φδ∆ε∆∆ Θ −+⋅= ox

crme
avmeocl rr  

ZrO2: Φ= 1.56;   ZrN: Φ= 1.06 
(68) 

 
and the change of the metallic substrate thickness: 
 

Φδ∆∆ /2 oxmes ⋅−=  (69) 
 
We have calculated with this simple model as described above the outer diameter increase 
of the tube sections during the break-away phase for three temperatures (800, 900 and 
1000ºC) and made the comparison with the values measured at FZK/IMF. The results are to 
be seen in Fig.15.  At 800 and 900ºC the evolution of the measured diameter increase is 
relatively well matched by the calculation. There is a problem with the transition phase and 
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the beginning of the proper break-away regime, and we have also not understood why in the 
parabolic phase the measured diameter increase is considerably higher than expected by the 
volume increase due to oxidation. 
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Fig. 15: Outer diameter increase of Zry tube sections in air: comparison of calculated 

and measured values. 
 

 
The agreement is not so good at 1000ºC. We think that this is presumably due to the 
assumption of constant growth stresses in the scale, which is not fulfilled in this case. Values 
of some characteristic input and output data of the calculations are to be found in Tab. 3. 
Values for the lateral oxidation strain, for example, range between 0.00075 and 0.0025 and 
the hoop stress in the sound oxide scales between -248 and -704 MPa. Thus, our 
assumption on the importance of geometrically induced growth stresses seems well justified. 
It should be noted, that the mechanical behavior of the metal oxide system during Zr alloy 
oxidation was also modeled in ref. [35] assuming lateral oxidation strains of 0.005 for each 
lateral direction. 
 

Table 3 : Input and output data for Zry oxidation under air atmosphere. 

T (ºC) alin (cm/s) ox
late

 sav
ox

,δ  (µm) av
Θσ  (MPa) 

800 1. 10-7 0.002 6.9 -704 
900 1.39 10-6 0.0025 4.5 -853 
1000 6. 10-6 0.00075 6.7 -248 
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8. Discussion of experimental data found in the 
literature 

The newly developed model allows the calculation of growth stresses in oxidizing tubes 
under uniaxial and multi-axial oxidation strain tensors. The occurrence of lateral components 
may have a marked effect on the stress situation in the composite. The consequences of the 
stresses can eventually be studied by the mechanical effects on the oxide film itself or by the 
dimensional changes of the composite or both. Tensile stresses can lead to tensile cracks 
and compressive stresses to shear cracks and eventually to spalling and decohesion effects. 
The oxidation of Zircaloy, for example, is determined by oxygen transport and the oxidation is 
therefore clearly of the interface type. If the oxidation strain tensor of this material is uniaxial, 
we would expect the formation of tensile cracks beginning at the surface of the scale and 
propagating further into it in the course of time. But the actual crack configuration is clearly 
different [36]. In the so-called break-away regime, numerous shear cracks are observed in 
the interior of the oxide scale. This indicates that there is a compressive stress state in the 
scale. By a precise dimensional control of oxidizing Zircaloy tubes we could obtain 
information on the lateral components of the oxidation strain tensor, which seems 
indispensable for a mechanistic modeling of the break-away regime in this alloy. We think 
that the large tensile cracks which appear in the outer part of the oxide scales in a later stage 
are a consequence of the volume increase caused by the shear crack formation. 
Ferritic/martensitic (f/m) steels are candidates as materials for structural components in e.g. 
accelerator driven systems. The oxide scales on f/m steels consist in general of two 
sublayers namely a magnetite (outer part) and a Fe/Cr spinel (inner part) [37,38]. The 
magnetite is known to grow by outside oxidation, as the oxygen diffusivity in the bulk is much 
lower than the iron diffusivity [39]. The spinel sublayer is viewed to grow by interface 
oxidation. This means, that our model for a duplex scale can be applied to oxidizing tubes of 
f/m steels. Observations on decohesion effects at the interface between the two sublayers 
and on spalling of whole parts of the oxide layer are reported in refs. [37,38]. It could be that 
all these mechanical effects are mainly due to thermal cycling, especially due to the 
temperature change occurring upon unloading of the samples. Decohesion at the interface of 
the two sublayers could, for example, be due to the difference in the thermal expansion 
coefficients of magnetite and Fe/Cr spinel. But it could also be that some mechanical effects 
have occurred at steady-state conditions. It is difficult to conclude on this, as in the majority 
of the tests no detailed information on the temperature history is given. Only a few results of 
post test examinations are included in these reports. Therefore we do not know, whether all 
aspects of mechanical effects in the oxide scale were really documented. If the oxidation 
strain tensor is uniaxial, the stress state in the duplex scale at temperature would be 
relatively low with tensile stresses in the Fe/Cr spinel and compressive stresses in the 
magnetite sublayer and it is doubtful whether spalling effects could occur at steady-state 
conditions for oxide scale thickness values of less than about 30 µm. 
In ref. [40] observations on mechanical effects on duplex scales on 9% Cr steels and AISI 
316 are reported. Only the magnetite subscale was found to spall, whereas the Fe/Cr spinel 
remained attached to the metallic substrate. 
The situation of experimentally determined growth stresses in NiO, Cr2O3 and Al2O3 scales 
was reviewed in ref. [6] Huntz and Schütze distinguished between geometrically induced 
stresses and intrinsic growth stresses. In the light of our model geometrically induced 



Discussion of experimental data found in the literature 

24 

stresses would be caused by the oxidation strain component acting orthogonal to the surface 
of the specimens and intrinsic growth stresses by the lateral components in the oxidation 
strain tensor. The authors concluded that that the growth stresses in these oxide scales are 
of small amplitude compared to thermal stresses probably on account of stress relaxation at 
high temperature. The values of the growth stresses range from up to 1365 MPa for NiO 
scales to about -400 MPa for Al2O3 scales. In [41] were also included measurements of 
lateral strains of ferritic steel specimens oxidized at 800°C, which had been taken from [18].  
In ref. [6] are also reported values of residual stresses at room temperature. Especially, in 
alumina scales very high compressive stresses have been measured (-2500 to -5700 MPa). 
This shows that oxide scales can bear eventually very high compressive stresses. 
The results of deflection tests on samples with a Ni-20Cr alloy are reported in ref. [42]. For 
the calculation of growth stresses a finite-element code was used assuming an anisotropic 
oxidation strain. For the lateral components a value of 0.005 was taken. Visco-plastic 
behavior was permitted for both the NiO film and the metal substrate [42]. The calculated 
stresses in the oxide film were mainly compressive with the highest absolute values 
occurring at the beginning of an oxidation cycle. These maximum values range between -600 
and -300 MPa. With the help of our simplified formula (58) and the data given in ref. [42] we 
have calculated a value of -1020 MPa for the elastic hoop stress in the NiO film. 
Length increases of up to 1% for non-deformed specimens and of up to about 3.5% for 
mechanically deformed specimens are reported in ref. [18]. The authors concluded that the 
elastic intrinsic growth stress level in the chromia scale would have been at -2800 MPa for 
the non-deformed samples and at -9800 MPa for the mechanically deformed samples. These 
stress levels have not been reached as there occurred scale detachment. It is not possible to 
deduce directly the lateral oxidation strains from the measurements of ref. [18]. It was the 
total lateral strain, what has indeed been measured and this total strain is a superposition of 
different strain contributions from oxidation, elastic, and inelastic behavior of the scale: 
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The elastic strain is determined by the growth stress in the scale but the inelastic contribution 
is also a function of this stress. As cylindrical test specimens had been used, the growth 
stress in the scale consisted of a geometrical and an intrinsic contribution. Assuming that 
there is no inelastic strain, we have done studies with our model and we have found that the 
total axial strain increases linearly with the scale thickness. 

Residual stresses in NiO bi-layers at room temperature were measured in [43]. It was found 
that a complex stress state can exist in such a duplex scale with a compressive stress in the 
inner sublayer of about -950 MPa and a tensile stress in the outer sublayer. The fact that the 
measured residual stress does not depend on the oxidation temperature is rather 
astonishing. The calculation of the growth stresses from the residual stresses needs the 
thermal expansion coefficients of the two different modifications of NiO. Assuming that both 
modifications have the same thermal expansion coefficients and using data on the difference 
(∆α = αNi - αNiO ) known from the literature [41] we have estimated the thermal stress to range 
between about -600 and -850 MPa, as the oxidation temperatures were between 900 and 
1200°C. That means the intrinsic growth stress in the inner layer should range between 
about -100 and -350 MPa. The geometrical growth stress in thin foils should be rather small. 
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Thus, we have a strong hint on the existence of lateral components in the oxidation strain 
tensor of NiO. 

Very high intrinsic tensile growth stresses (1365 MPa) in NiO scales on thin foils have been 
reported in ref. [41].The measurements have been done with the help of an X-ray diffraction 
method following the whole temperature history of the tests. We have made sensitivity 
studies with our model and found that tensile intrinsic growth stresses can (only) be 
explained with the help of negative lateral oxidation strain components. 

In order to estimate the magnitude of the lateral oxidation strain components we have 
derived the following simplified formula for the intrinsic growth stresses in the scale on a thin 
foil under the assumption that both lateral components are equal: 
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(71) 

 
With the help of this formula we could estimate that the lateral oxidation strain components 
should range between about -0.004 and -0.005, if the intrinsic growth stress in the NiO scale 
is at about 1360 MPa as reported in ref. [41]. For the growth stresses of ref. [43] we would 
estimate the lateral strain components to be in the order of 0.001. 

There are more data on growth and residual stresses in NiO scales and corresponding 
references given in [6]. The growth stresses, for example, range between -90 and 1365 MPa. 
The reasons for this big scatter are not clear. It could be due to the fact that different types of 
mono- or bi-layered scales of NiO can be formed or due to problems of the methods of 
measurement or to incorrect values of the thermal stresses.  

Rhines and Wolf [2] proposed as an explanation for their observations on the oxidation of Ni 
specimens a model based on the deposition of new oxide upon the internal boundaries of 
pre-existing columnar oxide grains leading to the production of compressive scale stresses. 
Such a mechanism can certainly be described with the help of lateral components in the 
oxidation strain tensor as the action of the new oxide goes into azimuthal and into the axial 
direction. The model of Rhines and Wolf would, of course, suggest positive values for the 
lateral oxidation strain components.  

In ref. [44] are reported evolutions of growth stresses in Al2O3 scales obtained from the 
measurement of bending of thin strips. The tests were done at 1000°C. As in thin strips the 
geometric growth stresses should be small, we think that essentially the intrinsic growth 
stresses have been measured. The growth stresses were always compressive. At the 
beginning of the oxidation process the growth stresses rose quickly up to a maximum value 
of up to -700 MPa, afterwards stress relaxation effects could be seen. The steady-state 
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values ranged between -50 and -400 MPa. With the help of (71) we can again estimate the 
magnitude of the lateral oxidation strain components and obtained in this way values of up to 
0.0017. 

More recent measurements of growth stresses in Al2O3 scales at temperature on FeCrAl 
based alloys and on NiAl specimens done with different in situ X-ray diffraction methods are 
reported in refs. [45-47]. The obtained results are very disparate, ranging from rather high 
compressive stresses in ref. [47] (-1 GPa) to rather high tensile stresses in [45] with values of 
up to 1 - 1.2 GPa in the early stage of the oxidation with a subsequent decrease for oxidation 
temperatures above about 1100°C. But also very low growth stresses have been 
measured [46]. The values of lateral oxidation strain components would accordingly range 
between about -0.005 and 0.0045. 

The decrease of the growth stresses after the initial maximum can be due either to stress 
relaxation mechanisms or due to relief of epitaxial constraints or both [44]. The lattices of 
metal alloys and surface oxides are usually dissimilar. Hence, the nucleation and growth of 
oxides may be accompanied by the development of epitaxial stresses [48]. The epitaxial 
constraint can be modeled with the help of lateral oxidation strain components. Once an 
oxide scale grows, the epitaxial constraints are reduced. This would then mean that the 
lateral oxidation strain components would diminish with increasing oxide scale thickness. 
This situation could be described with the help of some simple modification of our model. 
Epitaxial constraints can eventually lead to tensile growth stresses, a possibility which should 
not be dismissed. 

All our estimates of lateral oxidation strain components are based on relation (71). But this 
relation relates the elastic stresses to the strain, whereas the experimental values of growth 
stresses are suspected to include some stress relief. Hence, the true values of the lateral 
oxidation strain components may be considerably higher than our estimated values. In this 
way the values of growth stresses obtained with an elastic model based on the true values of 
the oxidation strains would then also be distinctly higher than experimental values. 

The experimental results for growth stresses reported in [6] were all for oxidations at high 
temperatures, where stress relaxation mechanisms are probably most effective. But in 
accelerator driven systems the maximum foreseen temperature will be at 550°C. If the 
oxidation temperature is below the transition temperature for oxide deformation, purely 
elastic behavior of the oxide scale before cracking is to be expected [48]. Then relief of 
growth stresses can occur by tensile or shear cracking or by scale detachment or can also 
occur via ‘pseudo-plasticity’ [6]. This is due to a mechanism consisting of continuous micro-
crack formation along oxide grain boundaries with superimposed healing of these micro-
cracks by the oxidation process. 
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9. Conclusions 
The Pilling-Bedworth ratio determines the volume increase or decrease upon oxidation. 
Whether growth stresses are generated in the oxide scale and in the metallic substrate 
depends on the geometrical structure of the component and on the structure of the oxidation 
strain tensor. In case of a flat structural component we would, except for end effects, obtain 
no growth stresses for a uniaxial oxidation strain tensor. But so-called geometrically induced 
growth stresses would be generated in curved structural components. The lateral 
components of the oxidation strain tensor are responsible for the so-called intrinsic growth 
stresses. Based on experimental values of intrinsic growth stresses we could estimate the 
magnitude of these lateral strain components. Evidence for the action of lateral oxidation 
strains seems to be rather convincing for the case of Zry exposed to air, a problem which is 
of some importance in Light Water Reactor safety as there are scenarios of air ingress. 

Future work on the newly developed model will tend to investigate creep in the metallic 
substrate and in the oxide film and study the effects due to thermal cycling. In order to deal 
with the important stress relief mechanisms in the oxide scale like cracking (tensile or shear), 
spalling and scale detachment must have recourse to the methods of fracture mechanics. 
But we need in any case the stress values of the extended visco-elastic model as a basis for 
the analysis. Thermal stresses are now relatively well understood. A similar understanding of 
the mechanisms, character and effects of growth stresses has not been attained. The newly 
developed visco-elastic model for oxidation growth stresses should be helpful in this respect. 
We consider it as a valuable tool and a starting point for the analysis of stress situations in 
oxidizing tubes. Especially, the role of lateral components of the oxidation strain tensor has 
been highlighted.  
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