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Weight functions and stress intensity factors for ring-shaped cracks 

Abstract: 
Ring-shaped cracks appear in many fracture mechanics problems of ceramic materials. 
In ceramics fracture is often caused by material inhomogeneities like spherical pores 
and inclusions. Failure of such inhomogeneities generally is modelled by failure of an 
annular crack extending around the inhomogeneity.  

A simple procedure to compute the stress intensity factors is the application of the 
weight function method. If the weight function for the special crack problem is 
available, the stress intensity factor can be obtained by integration of the product of 
weight function and stress distribution caused by the inclusion in the case of the 
uncracked structure over the crack length. 
In this report, the weight functions for a ring-shaped crack are derived and the stress 
intensity factors for remote tension and thermal loading are computed. These stress 
intensity factor solutions are then compared with K-factors available in literature. 

 

Gewichtsfunktionen und Spannungsintensitätsfaktoren für Ringrisse 

Kurzfassung: 
Ringrisse treten verbreitet bei der bruchmechanischen Behandlung des Versagens ke-
ramischer Werkstoffe auf. Bei Keramiken und anderen spröden Werkstoffen geht der 
Bruch oft von Materialinhomogenitäten wie Einschlüssen und Poren aus. In solchen 
Fällen wird das Versagensverhalten unter Annahme eines Ringrisses um einen Ein-
schluss modelliert. Der unter Belastung an diesem Riss auftretende kritische Span-
nungsintensitätsfaktor wird der Risszähigkeit gleichgesetzt. 
Eine einfache Berechnungsmethode zur Bestimmung der Spannungsintensitätsfaktoren 
bei beliebig komplexen Spannungen ist die Gewichtsfunktionsmethode. Da Gewichts-
funktionen für Ringrisse in der Literatur nicht vorliegen, wurden diese bestimmt. Da-
mit konnten die Spannungsintensitätsfaktoren für mechanische und thermische Belas-
tungen berechnet und mit Literaturlösungen verglichen werden. 
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1. Introduction 
Ceramic components fail due to unstable propagation of microscopic flaws in the form of 
pores, cracks, inclusions, or other material inhomogeneities resulting from manufacturing. 
Description of failure due to internal elliptical cracks or semi-elliptical surface cracks is well 
established. The same holds for pores.  

In the case of inclusions, failure generally is modelled by the failure of an assumed annular 
crack extending around the inhomogeneity. Reference solutions for special loading cases are 
given in literature [1-6]. These solutions deviate significantly. 

A simple method for the determination of stress intensity factors for any stress distribution is 
the weight function procedure. Unfortunately, weight functions for ring cracks are not 
available in literature. Therefore, it is the aim of this report to provide weight functions for the 
outer and the inner crack tip.  

These solutions will then be compared with approximate weight functions resulting from the 
direct adjustment of appropriate set-ups to reference stress intensity factors from literature [4]. 
The weight function derived will then be tested by computing the stress intensity factors for 
loading by remote stresses and thermal mismatch stresses. As an example, the residual stress 
intensity factor of a Vickers indentation crack will be determined under the assumption that 
this crack is described by an annular crack, excluding the residual stress region. The results 
shall be compared with stress intensity factors based on the description of Vickers indentation 
cracks as cracks extending through the compressive residual stress region. 

In section 3.3, application of the weight function technique will be extended to inhomo-
geneous stress distributions which are not rotationally symmetric with respect to the inclusion 
centre. Stress intensity factors will be estimated for the case of an inclusion with an annular 
crack located in the plane of a straight-through-the-thickness crack.  
Section 4 will briefly deal with the problem of a pore with an annular crack. 

Finally, it will be studied in Section 5 how the stresses in a real diffuse material inhomo-
geneity differ from the ideal case of an inclusion with a sharp transition from the inclusion to 
the bulk material. 
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2. The ring-shaped crack 

2.1 Weight functions for the ring-shaped crack 
A ring-shaped crack in a homogeneous infinite body of inner radius R and crack size a is 
shown in Fig. 2.1a. The two crack tips are denoted as (A) and (B). 

R 

(A)(B) 

a 

x

R 

a)

σ=const 

b) 

 
Fig. 2.1 Ring-shaped crack, a) geometry, b) reference loading case (constant stress). 

Stress intensity factor solutions for the ring-shaped crack in an infinite body loaded by 
constant stress normal to the crack plane (Fig. 2.1b) were compiled by Rosenfelder [1].  
For an arbitrarily given stress distribution σ(x) in the uncracked body normal to the crack 
plane, the related stress intensity factors can be computed from  

  (2.1) ∫=
a

AA dxxhK
0

)()( )(σ

  (2.2) ∫=
a

BB dxxhK
0

)()( )(σ

Unfortunately, weight functions for this special crack do not seem to be available in literature. 
In this report, a weight function solution for the ring-shaped crack will be derived by an 
interpolating procedure.  
The determination of the weight function may be outlined in detail for the case of the outer 
crack tip (location A). In this case, several theoretical conditions have to be fulfilled: 

I. The weight function for the ring-shaped crack, h, must be smaller than the limit weight 
function which is given by the case of an internal penny-shaped crack loaded only in the 
region where the ring extends (x>0), i.e. h<hlim for any ratio of a/R and x/a. 

II. The weight function must disappear at the inner radius R, h(x=0)→0. 

III. At this location, the weight function must show the behaviour h∝√x. 

The upper limit solution is given as 
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This solution is plotted in Fig. 2.2a for several ratios of a/R.  
In the case of a/R→0, the solution for the ring-shaped crack must coincide with that of the 
internal straight crack. Consequently, it must hold 
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This solution is plotted in Fig. 2.2b together with the upper limit for a/R=0. The difference 
between these two solutions, ∆h(a/R→0), can be used to construct an interpolation function. 
If hlim,0 denotes the value of hlim at x/a=0, 
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and hlim,0,0 is the value of hlim,0 for a/R=0 

 
π
2

0,0lim, =ah  (2.6) 

the difference function ∆h(a/R) for any a/R can be approximated by 

 )0/()/(
0,0lim,

0lim, →∆=∆ Rah
h
h

Rah  (2.7) 

and the approximate weight function reads 

 )/()/()/( lim RahRahRah ∆−=  (2.8) 

 

Fig. 2.2 a) Upper limit of the weight function for location (A), given by the solution for the penny-shaped crack; 
b) solutions for the straight crack and difference ∆h between the two limit solutions for a/R→0. 
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In the case of the outer crack contour, the related weight function for location (B) also must 
fulfill the conditions (I-III). It has to be noted that this solution is not independent of that for 
location (A). For an arbitrarily given stress distribution over the crack (e.g. a circumferential 
line load), it must also fulfill the energy condition 

IV. )()( AB QQ =  (2.9) 

with  (2.10) ∫ +=
a

AA daaRaKQ
0

2
)()( ')')('(

  (2.11) ∫ −+=
a

AB daaaRaKQ
0

2
)()( ')')('(

The results of the numerical evaluations were fitted by 
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Figure 2.3 shows these results for variable values of a/R. It becomes obvious that the influ-
ence of the relative crack size is much stronger for location (B) than location (A). 

 
Fig. 2.3 a) Weight function for location (A), b) for location (B).  

2.2 Ring crack under constant load: comparison with solutions from literature 
For the reference load σ=σ0=const., stress intensity factors were computed by Nied and 
Erdogan [2] and Tada et al. [3]. Fit relations are given by Rosenfelder [1]. The data of Nied 
and Erdogan [2] are expressed by 
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with α=a/R. Figure 2.4 shows these stress intensity factor solutions as curves. Data reported 
as curves in the 1973 edition by Tada et al. [3] were fitted by Rosenfelder as 
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These solutions are also introduced in Fig. 2.4. The results obtained with the weight functions 
(2.12) and (2.13) are shown by the circles. There is an excellent agreement between the 
weight function results and those of Nied and Erdogan.  
In the 1985 edition of Tada’s handbook [3], closed-form expressions are given by 
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as shown in Fig. 2.4. 
A comparison of stress intensity factor relations for location (A) reveals an excellent agree-
ment of all solutions for a/R>2. The agreement of solutions (2.14), (2.19), and the weight 
function results is excellent for any a/R. 
A comparison for location (B) reveals clear deviations between the different solutions. These 
discrepancies were the reason for a more detailed analysis. The limit case of K(B) must be [3] 
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This limit is not fulfilled for (2.15a) and (2.20a). The reason in (2.20a) is a typing error. The 
sign in front of the quadratic term must be negative, i.e. 
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Equation (2.15a) can be improved by 
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The improved relations (2.15b) and (2.20b) are plotted in Fig. 2.5 together with the weight 
function results. Now, a good agreement is found also for location (B). 
For location (A), use of eqs.(2.14) and (2.19) is recommended. At location (B), eqs.(2.15b) 
and (2.20b) seem to be the best relations. 
An analytical evaluation of the weight function integrals is possible in special cases only. 
Under constant stress, the integration yields 
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Fig. 2.4 Stress intensity factors for a ring-shaped crack under constant stress. 
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Fig. 2.5 Corrected misprints and improvements of stress intensity factor solutions for a ring-shaped crack under 

constant stress. 

2.3 Rough weight function approximations 
The weight functions derived are expected to be highly accurate. A disadvantage is the 
complicated structure of the relations. For evaluations with a reduced degree of approxima-
tion, simplified weight functions may be of advantage. Such weight functions can be derived 
easily by adjusting h to simple reference stress intensity factor solutions [4].  
If the weight functions are approximated by  
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the stress intensity factors for σ=const. result as 
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Coefficients D(A) and D(B) are obtained from the solution of Tada [3]. With eqs.(2.19) and 
(2.20a) as the reference solutions it holds 
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Application of eqs.(2.14) and (2.15b) results in 
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Figure 2.6 represents the approximate weight functions computed with (2.27) and (2.28). In 
Fig. 2.7, the roughly approximated weight function at location (B) is given together with the 
more accurate solution (2.13). 
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Fig. 2.6 Weight function approximations using (2.27) and (2.28) for the outer (a) and the inner (b) crack tip. 
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Fig. 2.7 Weight function approximation for the inner crack tip; comparison with the weight function eq.(2.13) 
(dashed curves). 

2.4 Ring crack in an inhomogeneous non-radial symmetric stress field 
2.4.1 Linear stress distribution 
In section 1, the weight functions for the ring-shaped crack were derived for the case of 
rotational symmetry, i.e. they do not depend on the angle along the circumference. Here, it 
shall be checked whether the weight functions derived are also applicable to non-radial 
symmetric stresses. Especially for the case of a/R→0 (the so-called Griffith crack), the weight 
functions are applicable a priori to any type of stress distribution.  
As an example, the linear stress distribution 
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may be considered with the stress value σ=σ1 occurring at the outer radius (i.e. at ξ=R+a). 
The stress along the radial x-axis (see Fig. 2.8) is then given by  
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Inserting the stress (2.32) into (2.1) and use of the weight function (2.12) results in the solid 
curve plotted in Fig. 2.9a. Use of the simplified weight function (2.23, 2.27) results in the 
dash-dotted curve.  
The dotted line represents a solution for the linear stress distribution proposed by Tada et al. 
[3]. For the outer crack tip, it reads 
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The ratio of the weight function solution (2.12) and the literature solution (2.33) are shown in 
Fig. 2.9b. For a/R<2.5, the error of the weight function evaluation is less than 10%. 
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Fig. 2.8 Ring-shaped crack under a linear sress distribution. 

 
Fig. 2.9 a) Stress intensity factors for a linear stress distribution according to (2.31, 2.32), solid curve: computed 
with (2.12), dash-dotted curve: with (2.23, 2.27), dashed curve: solution (2.33) by Tada [3], b) ratio of the stress 

intensity factors of (a), Kwf= stress intensity factor via weight function. 
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2.4.1 Arbitrary stress distribution 
A Taylor series expansion of the stresses along the axis ξ reads  
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For the two first terms, handbook solutions exist. The constant term was addressed in detail in 
section 2.2. The linear term can be evaluated by using (2.33) according to Tada et al. [3]. 
Only the higher-order terms summarised by the remaining stress distribution ∆σ(ξ) of 
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need to be evaluated by the non-radialsymmetric weight functions (2.23) and (2.24) with 
coefficients (2.34) and (2.35). 
As an example of application, let us consider a ring crack located in the crack plane of a 
straight crack (Fig. 2.10). 
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Fig. 2.10 Ring-shaped crack ahead of a straight crack. 

If the ring crack is located in the prospective crack plane at a distance d from the tip of the 
straight (main) crack, the normal stress on the ring crack is given by 
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In (2.38), Kappl is the stress intensity factor of the straight crack. It is assumed here that the 
stress intensity factor of the main crack is not influenced significantly by the existence of the 
ring crack. From a Taylor series expansion with respect to ξ, the first stress terms result as 
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The stress contribution to be evaluated with the weight function method is  
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Now, the stress intensity factors for the ring crack may be computed for locations (C) and (D) 
as indicated in Fig. 2.10. The related angles are ϕ=0 for (D) and ϕ=π for (C). 
In Fig. 2.11a, the total stress intensity factor Ktot for ϕ=π, including the total stress distribution 
σ0+σ1+∆σ and the portion K0+K1 caused by the stress σ0+σ1, is plotted versus the relative 
distance from the main crack d/(a+R). The stress intensity factors are normalised to K0. The 
single stress intensity factor terms are given as 
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As shown in Fig. 2.11b for ϕ=π, the deviation between the approximation K0+K1 and the total 
stress intensity factor Ktot is less than 10% for d/(a+R)>2 and less than 2% for d/(a+R)>4. 
Similar plots are shown in Fig. 2.12 for ϕ=0. 
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Fig. 2.11 a) Representation of the total stress intensity factor Ktot and the portion K0+K1 versus the relative 
distance from the main crack for ϕ=π, b) ratio of the two-terms approximation K0+K1 and the total stress 

intensity factor. 

 
Fig. 2.12 a) Representation of the total stress intensity factor Ktot and the portion K0+K1 versus the relative 
distance from the main crack for ϕ=π, b) ratio of the two-terms approximation K0+K1 and the total stress 

intensity factor . 
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3. Spherical inclusion with an annular crack 

Figure 3.1 shows a spherical inclusion of radius R with an annular crack of size a. The 
material parameters for the inclusion are Ei and νi and for the matrix Em and νm. 

(A
(B)

a

x

R

 
Fig. 3.1 Spherical inclusion with an annular crack. 

3.1 Stress intensity factor due to thermal stresses 
3.1.1 Stress intensity factor at the outer crack tip 
The weight function derived in section 2 for a ring-shaped crack in a homogeneous body was 
used to estimate the stress intensity factor for thermal stresses at the outer crack tip (A) caused 
by different material properties of inclusion and matrix. At the inner crack tip (B), where the 
crack terminates the inclusion, a square-root shaped stress distribution does no longer appear. 
Hence, no stress intensity factor can be determined there. An exception is the special case of 
identical elastic parameters for the matrix and the inclusion. With the thermal stresses σn 
normal to the crack 

 3
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the thermal stress intensity factor Kth at (A) obtained with the weight function (2.12) is shown 
in Fig. 3.2 as the thick solid curve.  
The approximate weight functions according to (2.23) allow for simple analytical solutions. 
For the weight function coefficients given by (2.27) and (2.29), it results 
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In Fig. 3.2, these solutions are entered as the dashed and dash-dotted curves. Within the 
thickness of the curves, all these solutions coincide. In order to show the differences, Fig. 3.2c 
gives the relative deviations from the solution obtained with weight function eq.(2.12). 
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Fig. 3.2  Stress intensity factor at the outer crack tip caused by thermal stresses: (dashed: eq.(3.3), dash-dotted: 

eq.(3.4)). 

3.1.2 Stress intensity factor at the inner crack tip 
In the special case of identical elastic constants E and ν for the inclusion and the matrix, a 
stress intensity factor also occurs at the inner crack tip. The solution computed with the 
weight function (2.13) is plotted in Fig. 3.3 as the solid curve. 
The approximate weight function (2.28) gives the stress intensity factor relation for this 
location 
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In Fig. 3.2, it is shown as the dashed curve. Weight function (2.30) results in 
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as shown in Fig. 3.2 by the dash-dotted curve. 

1.4 1.3

 
Fig. 3.3 Stress intensity factor at the inner crack tip for the case of the same elastic constants in the inclusion and 

matrix (dashed: eq.(3.5), dash-dotted: eq.(3.6)). 

3.1.3 Comparison with stress intensity factor solutions from literature 
Stress intensity factor results from literature were compiled by Rosenfelder [1]. A simple esti-
mation procedure was proposed by Baratta [5]. This estimation is identical with the solution 
for constant crack-face loading by the stress at location x=a, i.e. 
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Since the thermal stress value at x=a is the lowest one that appears on the crack face, this 
solution underestimates the true stress intensity factor (Fig. 3.4).  
A solution from Ito [6] resulting from finite element computations reads for identical elastic 
properties of matrix and inclusion 
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Fig. 3.4 Stress intensity factor for the inclusion with an annular crack for thermal stresses. 

Whereas stress intensity factors for remote stresses increase continuously with increasing 
crack size, stress intensity factors under thermal stresses exhibit a maximum stress intensity 
factor at a/R=0.28, as can be seen from the representation in Fig. 3.5. 
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Fig. 3.5 Comparison of stress intensity factors for loading by remote tension (dashed curve) and thermal stresses. 

3.1.4 Vickers indentation crack modelled as a ring crack around an expanding sphere 
Below the contact area of a Vickers indenter pressed into the surface of a brittle material, a 
residual stress zone remains after unloading. In order to determine the stress intensity factor or 
the crack opening behaviour of Vickers indentation cracks under the residual stresses, a 
description of the expanding cavity is commonly used.  
For the pressure distribution, it was proposed by Hill [7] that 
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Computations of crack opening displacement were performed in [8, 9]. In this study, the crack 
was modelled by a half penny-shaped surface crack. The special case of (3.9) 
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(-p is the maximum pressure in the centre) was considered in detail (see Fig. 3.6a). After the 
indentation test, a crack opening behaviour is visible, as illustrated schematically in Fig. 3.6b. 
The inner radius of the open crack, R, can be measured from the COD profile observable on 
the specimen surface. 

σres/p 
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r/c2         
Fig. 3.6 a) Residual stresses in the uncracked body for the limit case c1=c2=b, b) crack opening profile on the 

specimen surface (schematic representation). 

As a second possibility of describing the Vickers crack problem, let us model this crack here 
as a ring-shaped crack around the central compressive zone. The inner radius of the ring-
shaped crack, R, is not necessarily identical with the size b of the compressive zone. 
If a material without an R-curve behaviour and subcritical crack growth is considered, the 
inner and outer ring crack radii must result from the condition  

 IcBA KKK == )()(  (3.12) 

where KIc is fracture toughness.  
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The stress intensity factors K(A) and K(B) were computed by inserting the stress distribution 
(3.11) into (2.1) and (2.2) and using the weight functions according to (2.12) and (2.13). The 
stress intensity factor computations have to be carried out iteratively for any fixed ratio of a/R 
by varying R/b until the condition (3.12) is satisfied. The total stress intensity factor at point 
(A) is plotted in Fig. 3.7a versus the parameter c defined as 

 Rac +=  (3.13) 

The results for the ring-shaped crack are represented by the solid symbols. The open symbols 
are results obtained in [8, 9] under the assumption of the crack being a semi-circular one, the 
centre region of which is also loaded by the compressive stresses of (3.11). There is an 
excellent agreement of the stress intensity factors resulting for these strongly different crack 
assumptions. For c/b≥2.5, the fitting line reads 
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The larger a crack is, the more does the inner crack radius “grow” into the compressive zone. 
This is shown in Fig. 3.7b.  
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Fig. 3.7 Stress intensity factor, a) comparison of results based on the assumption of a penny-shaped crack (open 

symbols) with results for a ring crack (full symbols), b) change of the inner radius of the ring crack. 

3.2 Stress intensity factor for remote tension 
Under a remote tensile stress σ∞, the tangential stresses at the equator of the sphere (normal to 
the prospective crack plane) are in the matrix 
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with the material parameters [10] 
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The subscript “i” stands for inclusion and “m” for matrix. Using the approximate weight 
function with (2.29), integration according to (2.1) gives the solution 
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In Fig. 3.8, the numerical solution of (2.12) represented as the solid curve is compared with 
the approximation (3.18) shown by the dashed curve and the rough approximation derived by 
Baratta [5]  
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and displayed by the dash-dotted curve. Whereas deviations between (3.18) and the numerical 
solution are hardly visible, the estimation of Baratta deviates significantly. 

 
Fig. 3.8 Stress intensity factors for a spherical inclusion with an annular crack, comparison of the numerical 

solution obtained with the weight function (2.12) and the closed-form expressions eqs.(3.18) and (3.19). 
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3.3 Inclusion with an annular crack under a varying applied stress 
The stress intensity factor computations for inclusions with an annular crack have been 
carried out so far for axis-symmetric stress distributions. For the case of stresses varying over 
the cross-section as illustrated by Fig. 3.9, an estimation procedure is proposed.  

The stresses may be expressed again by eq.(2.36) 
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The stress intensity factor solution under this stress is approximated by the superposition of 
the solution K∞ for a constant remote tensile stress σ∞=σ(0), eq.(3.18) or (3.19), with the 
stress intensity factor Kring representing the solution for the ring-crack under the varying 
stresses as given by eqs.(2.42-2.46). In this approximation the total stress intensity factor at 
the outer crack tip (A) is given by  
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Fig. 3.9 Inclusion with an annular crack for non-axissymmetric stress distributions. 

Special case: inclusion with an annular crack in front of a through-the-thickness crack 
If the spherical inclusion is located in the plane of a straight-through crack (Fig. 3.10), the 
constant stress term σ(0) is given by 
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and the stress intensity factor can be computed from eq.(3.20). For inclusions not too close to 
the main crack, the stress intensity factors for the annular crack are approximated by 
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with an error of less than 10% for d/(a+R)>2 and less than 2% for d/(a+R)>4, as concluded in 
section 2.4.1. 
Finally, we obtain 
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Fig. 3.10 Spherical inclusion with an annular crack ahead of a straight crack. 
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4. Pore with an annular crack  

The stresses of a pore under remote tensile loading can be obtained from the solution of a 
spherical inclusion by setting Ei=0. However, this is impossible for the stress intensity factors, 
since the crack is no longer closed at the sphere surface and, consequently, the weight 
function for an annular crack is no longer valid. In this case, the weight function is given in 
[4]. It reads 
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Under remote tension σ∞, the stresses normal to the prospective crack are  
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Several solutions for the stress intensity factor are known. A solution of the stress intensity 
factor was given by Baratta [11,12] 
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In [4], it is proposed that 
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Green [13,14] derived  
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These solutions are plotted in Fig. 4.2.  
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Fig. 4.1 Spherical pore with an annular crack. 
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Fig. 4.2 Stress intensity factor for a pore with an annular crack under remote tension for ν=0.25 (solid: [11,12], 

dashed: [4], dash-dotted: [13,14]). 
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5. Stresses at spherical inhomogeneities 

5.1 Inhomogeneity with smooth transition of thermal expansion coefficient 
In the examples covered by section 3, inclusions with an abruptly changing thermal expansion 
coefficient α at the location x=0 were considered. In real cases, the variation of the material 
properties may change continuously as, for instance, in case of diffusion layers at the sphere 
surface. Below, the principal effect of continuously varying material properties on the height 
of thermal stresses will be shown.  
Figure 5.1 shows a spherical inclusion with radius R, surrounded by a transition region in 
which α changes from the inclusion value αi to the matrix value αm. For reasons of simplicity, 
it is assumed that only the thermal expansion coefficient α may vary. Young’s modulus and 
Poisson’s ratio are assumed to be constant in all regions. This rough simplification allows to 
derive analytical expressions for the stresses. 

∆α

 
Fig. 5.1 Spherical inclusion with a smooth transition of the thermal expansion coefficient α. 

For instance, a simple assumption for ∆α is  
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Timoshenko and Goodier [15] (section 152) computed the stresses for a sphere with a 
constant thermal expansion coefficient α and variable temperature T. For thermal expansion 
as the reason of stresses, the product ∆α∆T is responsible. This allows to rewrite the equations 
for the radial σr and tangential stress σt in [15] as 
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With the abbreviation ρ=r/R and the normalisation 
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and the radial component as 
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Fig. 5.2 Normalised difference in thermal expansion coefficients according to eq.(5.1) (dashed curve) and 

eq.(5.7) (solid curve). 
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Fig. 5.3 Normalised tangential stresses for several values of η, a) eq.(5.5) and b) eq.(5.8). 

A second possibility to model a smooth change in α is, for example, 
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and the radial component as 
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Fig. 5.4 Normalised maximum tangential stresses versus η, a) eq.(5.5) and b) eq.(5.8). 

Figure 5.2 shows the ∆α variations according to (5.1) and (5.7) in a normalised represen-
tation. In Fig. 5.3, the tangential stresses are plotted for the two ∆α distributions. It becomes 
clear from these plots that the maximum tensile stresses decrease significantly with de-
creasing η, i.e. for increasing transition zones. The same tendency must occur for the stress 
intensity factors of annular cracks located in these reduced stress fields. Figure 5.4 represents 
the maximum tensile stresses as a function of η. The radial stresses are shown in Fig. 5.5 for 
η=1 and η→∞. 
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Fig. 5.5 Normalised radial stresses for η=1, dashed curve: eq.(5.1), solid curve: eq.(5.7); inclusion with sharp 

contour: η→∞. 
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5.2 Diffuse inhomogeneities with identical Young’s modulus 
5.2.1 Gaussian distribution of thermal expansion mismatch 
In some cases, an inclusion or a pore may not be described sufficiently by a sphere with a 
sharp radius having sectionally constant material parameters. For instance, local agglomera-
tions or density fluctuations in a material will result in more “diffuse inhomogeneities”. This 
will also be true for very small inclusions in a material with radii comparable to the 
microstructure (e.g. glass regions of higher density in a matrix of mean density). 
For the distribution of the thermal expansion coefficient in such an inhomogeneity, a simple 
dependency is chosen  

 ]  (5.10) )/(exp[)0( 2Rr−∆=∆ αα

in which the sphere radius is defined as the distance, at which the mismatch ∆α is 1/e (i.e. 
36.7%) of the maximum value in the centre. This dependency is plotted in Fig. 5.6a.  

The thermal stresses under the assumption of constant elastic parameters are then obtained 
from (5.2) and (5.3) as 
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with the so-called error function erf[ρ]. These stress distributions are shown in Fig. 5.6b. 
The stress intensity factor for a circular crack loaded by the tangential stress σt can be 
computed by applying the weight function for the embedded circular crack 
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with the generalised hypergeometric functions HypPFQ. The stress intensity factor is plotted 
in Fig. 5.7 by the geometric function defined here as 
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Fig. 5.6 a) Distribution of mismatch of thermal expansion coefficients, b) normalised thermal stresses.  
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Fig. 5.7 Stress intensity factor for a circular crack.  

5.2.2 More general distributions  
For a more general distribution of the thermal expansion coefficient in such an inhomogenei-
ty, a simple dependency is  

  (5.16) ])/(exp[)0( 2nRr−∆=∆ αα

with integer n. This dependency is plotted in Fig. 5.8 for several values of 2n. The higher the 
number n, the steeper is the transition from the inhomogeneity to the matrix. The sphere with 
a sharp transition is given by the limit n→∞.  
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In this case, the stresses are  
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where Γ(x) is the complete and Γ(x,y) the incomplete gamma function. Figure 5.9 shows the 
results (5.17) and (5.18) for several n-values. Also from Fig. 5.9a, it can be seen that the 
maximum tensile stress around the inhomogeneity (tension for ∆α∆T>0, compression for 
∆α∆T<0) decreases with decreasing n, i.e. with a smoother variation of the thermal expansion 
coefficient α. This becomes obvious from Fig. 5.10, where the maximum tangential tensile 
stress is plotted versus 1/(2n). The decreasing curve can be approximated by 

 ))]2/(31.11exp(464.0))2/(32.3exp(536.0[' 1 nn3max,t  (5.19) −+−≅σ

The stress intensity factor for a circular crack extending through the inhomogeneity, 
computed with eq.(5.13), is plotted in the form of F√a in Fig. 5.11. 
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Fig. 5.9 Normalised thermal stresses, a) tangential stress, b) radial stress.  
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The stress intensity factor for an annular crack with the inner crack tip at r=R, computed with 
the weight function (2.12), is plotted in the form of the geometric function F in Fig. 5.12. 
From this representation, a decreasing maximum stress intensity factor is visible. 
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Fig. 5.12 Stress intensity factor for an annular crack with the inner tip located at R.  

5.3 Variable Young’s modulus 
5.3.1 Differential equation for the radial displacements 
Modifying the analysis for constant Young’s moduli (given in [15], section 132), the problem 
of a simultaneously changing thermal expansion mismatch ∆α  and elastic constants E and ν 
can be solved.  
Having in mind that for a constant temperature change ∆T≠f(r) the elastic strains εel are given 
by the local differences of the expansion coefficient, it results from Hooke’s law that 
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With the total strains εr and εt replaced by the radial displacements u according to 
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the stress components yield 
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Inserting these stress components into the radial equilibrium condition 
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a somewhat lengthy ordinary differential equation for u(r) results with the highest derivative 
u’’. Therefore, the numerical evaluation was carried out with Mathematica using the option 
NDSolve. 

5.3.2 Determination of stresses for some examples 

In the following considerations, the distribution (5.10) is used for the thermal expansion 
mismatch. Young’s modulus is chosen to change in a similar way, namely, 

  (5.26) ∞∞ −=∆−∆+= EEERrEErE 0
2 )0(,])/(exp[)0()(

where E0 is the value in the centre and E∞ far away from the inhomogeneity. The variation of 
ν may be neglected and a fixed value of ν=0.25 is chosen for reasons of simplicity. 
From the solution of eq.(5.25), the radial displacements were determined. They are shown in 
Fig. 5.13 in a normalised form 
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From the displacements, the strains are computed via eqs.(5.22). Inserting into (5.23) and 
(5.24) provides the stress components. Here, the tangential stresses are of special interest. 
They are plotted in Fig. 5.14a in normalised form according to (5.4). The maximum tangential 
stresses are shown in Fig. 5.14b versus the ratio of the Young’s moduli in the centre of the 
inhomogeneity E0 and the bulk material E∞.  
The maximum tensile stresses are smaller by a factor of about 10 than those obtained from the 
model of a sharp transition of material properties from the inclusion to the bulk material. 
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Fig. 5.13 Displacements u(r) in normalised representation (5.27) for different ratios of Young’s moduli. 
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Fig. 5.14 a) Tangential stresses in normalised representation (5.4) for different ratios of Young’s moduli, b) 

maximum tangential stress versus Young’s moduli ratio. 

In the range of 0.2<E0/E∞≤5, the maximum tangential stresses of Fig. 5.14b can be expressed 
by 
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The maximum tangential stresses are shown again in Fig. 5.15 as a function of the modulus 
ratio E0/E∞. In this plot, the result of Fig. 5.14b is entered as the solid curve. The dash-dotted 
curve represents the result for a step-shaped variation of the material properties. The square is 
the maximum tangential stress obtained from eq.(5.19) for 2n=4 and E0/E∞=1. Also this 
comparison clearly shows the stress-reducing effect of a continuous change of material 
properties. Figure 5.15b shows the influence of the Young’s moduli on the stress intensity 
factor K(A) of an annular crack with the inner tip at r=R. 
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Fig. 5.15 a) Comparison of maximum tangential stresses (solid curve: result from Fig. 5.14b, dash-dotted curve: 

step-shaped transition of material parameters, square: stress from (5.19) for 2n=4), b) Influence of Young’s 
moduli on the geometric function according to eq.(5.15) for the outer tip of an annular crack.. 
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APPENDIX 

A1. Central penny-shaped crack in a spherical inclusion 
In the preceding sections, the interaction of stress fields around inclusions with an annular 
crack was addressed. Another case of interest is the crack in the inclusion. This problem shall 
now be addressed briefly. 
Figure A1 shows the crack of radius a in a sphere of radius R. The stress intensity factor 
solution under thermal stresses and remote tension was approximated by Rosenfelder [1] 
applying the weight function for a homogeneous material. This results in 

 dr
ra

rr
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I ∫
−

=
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22

)(2 σ
π

 (A1) 

Equation (A1) is exact for the limit case a/R→0. For crack sizes comparable with the 
inclusion radius, deviations have to be expected. Equation (A1) must become incorrect for 
a/R=1, since the stress singularity at a crack tip is different from the √r singularity of KI in this 
case. For an assessment of the accuracy of (A1), the case of a constant pressure on the crack 
faces may be considered. Inserting σ(r)=σ0 in (A1) gives the well-known result for a circular 
crack in an infinite body 

 0
2 σ
π

aK =∞  (A2) 

A numerical analysis of the case of constant loading was performed by Dhaliwal et al. [16] for 
the special case of identical Poisson ratios ν1=ν2=1/3. The stress intensity factor normalised to 
the value K∞ is plotted in Fig. A2 for several ratios of shear moduli Γ=µ2/µ1 (µ1= shear mo-
dulus of the inclusion, µ2= shear modulus of the matrix). The horizontal straight line, 
KI/K∞=1, corresponds to the result of the approximation (A1). 

 
Fig. A1 Spherical inclusion containing a central penny-shaped crack. 

From Fig. A2, it is concluded that for material combinations in the range of 0.5≤Γ≤3, the 
error of (A1) is less than 10% for a/R<0.65. Therefore, it is recommended to restrict the 
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R

r
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application of eq.(A1) to a/R<0.65 for the evaluation of more complicated stress distributions 
(e.g. thermal stresses). 
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Fig. A2 Stress intensity factor of a circular crack in an inclusion under constant crack-face loading normalised to 

the stress intensity factor of a circular crack in a half-space [16]. 

For cracks with a>R, Rosenfelder [1] proposed the application of the same weight function as 
used in eq.(A1). Stress intensity factor solutions for thermal stresses and remote tractions are 
reported in [1]. 

A2. Circular crack  
A2.1 Remote and cylinder-symmetric stresses 
A circular crack is the limit case a/R→∞ for the pore as well as for the inclusion with an 
annular crack. The stress intensity factor under rotationally symmetric stress distributions can 
be computed from eq.(A1). For a constant remote stress σ0, the stress intensity factor is given 
by eq.(A2). 

A2.2 Circular crack under non-symmetric stress 
A2.2.1 Stress intensity factors for a circular crack ahead of the main crack 
If the circular crack of radius a at distance d from the tip of the main crack (Fig. A3a) is 
loaded by an applied stress σappl that varies over the diameter,  
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where Kappl is the actual stress intensity factor for the main crack. The stress intensity factors 
at locations (A) and (B) can be computed from 
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as given by Tada ([3], page 24.12). Under loading by a crack-tip stress field, the stress 
intensity factor at point (A) is larger than at point (B).  
Inserting (A3) into (A4) yields 
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Fig. A3 a) Circular microcrack ahead of the main crack tip, b) stress intensity factors for locations (A) and (B), 

vertical arrow indicates the ratio d/a=0.066, for which KA/Kappl=1 is fulfilled.  

The stress intensity factors are plotted in Fig. A3b versus the normalised distance d/a. For 
cracks at larger distance (d>>a), it follows simply 

 applBA K
d
aKK

π
2

==  (A8) 

A2.2.2 Effect of a circular crack ahead of the main crack on the applied stress intensity factor  

A microcrack in front of the main crack may also influence the stress intensity factor of the 
main crack. This situation was studied by Karihaloo and Huang [17]. The stress intensity 
factor KC at the nearest distance (point C in Fig. A3a) is plotted in Fig. A4a as a function of 
the normalised distance d/a of the microcrack. The data of Fig. A4a can be fitted by 
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where Kappl,0 is the applied stress intensity factor, if no microcrack exists in front of the main 
crack. From the diagram Fig. A4a, it can be concluded that the main crack stress intensity 
factor is only changed for more than 10%, if d/a<0.2.  
The normalised stress intensity factors KA/Kappl,0 and KB/Kappl,0 are plotted in Fig. A4b. The 
upper limit curve is computed under the assumption that the circular crack is influenced by 
the stress intensity factor KC. The lower limit curve is computed assuming the externally 
applied stress intensity factor Kappl,0 as the loading parameter. In reality, the true solution must 
be between the two limit cases. The stress intensity factor KC is the maximum value along the 
front of the main crack. At larger distance, the K-value tends to Kappl,0. In order to minimise 
the uncertainty, we propose for the true applied stress intensity factor Kappl
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This value has to be inserted into eqs.(A6) and (A7). 
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Fig. A4 a) Influence of a microcrack on the stress intensity factor KC at the front of the main crack, b)upper and 

lower limits for the stress intensity factors at the circular crack. 
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