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Abstract 
 

Green’s function method and its application to verification of 
diffusion models of GASFLOW code 

 
To validate the diffusion model and the aerosol particle model of the GASFLOW 
computer code, theoretical solutions of advection diffusion problems are developed 
by using the Green’s function method. The work consists of a theory part and an 
application part. In the first part, the Green’s functions of one-dimensional advection 
diffusion problems are solved in infinite, semi-infinite and finite domains with the 
Dirichlet, the Neumann and/or the Robin boundary conditions. Novel and effective 
image systems especially for the advection diffusion problems are made to find the 
Green’s functions in a semi-infinite domain. Eigenfunction method is utilized to find 
the Green’s functions in a bounded domain. In the case, key steps of a coordinate 
transform based on a concept of reversed time scale, a Laplace transform and an 
exponential transform are proposed to solve the Green’s functions. Then the product 
rule of the multi-dimensional Green’s functions is discussed in a Cartesian coordinate 
system. Based on the building blocks of one-dimensional Green’s functions, the 
multi-dimensional Green’s function solution can be constructed by applying the 
product rule. Green’s function tables are summarized to facilitate the application of 
the Green’s function. In the second part, the obtained Green’s function solutions 
benchmark a series of validations to the diffusion model of gas species in continuous 
phase and the diffusion model of discrete aerosol particles in the GASFLOW code. 
Perfect agreements are obtained between the GASFLOW simulations and the Green’s 
function solutions in case of the gas diffusion. Very good consistencies are found 
between the theoretical solutions of the advection diffusion equations and the 
numerical particle distributions in advective flows, when the drag force between the 
micron-sized particles and the conveying gas flow meets the Stokes’ law about 
resistance. This situation is corresponding to a very small Reynolds number based on 
the particle diameter, with a negligible inertia effect of the particles. It is concluded 
that, both the gas diffusion model and the discrete particle diffusion model of 
GASFLOW can reproduce numerically the corresponding physics successfully. The 
Green’s function tables containing the building blocks for multi-dimensional 
problems is hopefully able to facilitate the application of the Green’s function method 
to the future work. 



Kurzfassung 
 

Die Green-Funktion und ihre Anwendung zur Überprüfung von 
GASFLOW-Diffusionsmodellen 

 
Zur Überprüfung des vom GASFLOW-Rechenprogramm erstellten Diffusionsmodells 
und des Aerosolpartikelmodells werden mit Hilfe der Green-Funktion theoretische 
Lösungen von Advektions-/Diffusionsproblemen entwickelt. Die vorliegende Arbeit 
gliedert sich in einen theoretischen und einen praktischen Teil. Im ersten Teil werden 
die Green-Funktionen von eindimensionalen Advektions-/Diffusionsproblemen im 
unendlichen, quasi-unendlichen und im endlichen Bereich unter Dirichlet-, Neumann- 
und/oder Robin-Rahmenbedingungen gelöst. Zur Bestimmung der Green-Funktionen 
in einem quasi-unendlichen Bereich werden insbesondere für Advektions-
/Diffusionsprobleme effektive Abbildungssysteme neu entwickelt. Die 
Eigenfunktionsmethode wird eingesetzt, um die Green-Funktionen in einem endlichen 
Bereich zu ermitteln. Zur Lösung der Green-Funktionen wird eine 
Koordinatentransformation auf der Grundlage einer umgekehrten Zeitskala, einer 
Laplace-Transformation und einer exponentiellen Transformation vorgeschlagen. 
Anschließend wird die Produktregel der mehrdimensionalen Green-Funktionen in 
einem kartesischen Koordinatensystem diskutiert. Mit Hilfe der Produktregel lässt 
sich die Lösung der mehrdimensionalen Green-Funktion aus den Bestandteilen der 
eindimensionalen Green-Funktionen ableiten. Die Green-Funktionstabellen werden 
zusammengefasst, um die Anwendung der Green-Funktion zu erleichtern. Im zweiten 
Teil der Arbeit werden die ermittelten Lösungen der Green-Funktion zur Validierung 
des in GASFLOW erstellten Diffusionsmodells für Gase in einer kontinuierlichen 
Phase und des Diffusionsmodells für diskrete Aerosolpartikel eingesetzt. Für die 
Gasdiffusion zeigen die GASFLOW-Simulationen eine perfekte Übereinstimmung 
mit den Lösungen der Green-Funktion. Sehr gute Übereinstimmungen finden sich 
ebenfalls zwischen den theoretischen Lösungen der Advektions-
/Diffusionsgleichungen und den numerischen Partikelverteilungen in advektiven 
Strömungen, sofern die Zugkraft zwischen den Partikeln im Mikronbereich und der 
Gasströmung das Widerstandsgesetz von Stokes erfüllt. Dieser Fall entspricht einer 
sehr kleinen Reynoldszahl bezogen auf den Partikeldurchmesser, mit einem 
vernachlässigbaren Trägheitseffekt auf die Partikel. Es zeigt sich, dass sowohl das 
Gasdiffusionsmodell als auch das diskrete Partikeldiffusionsmodell in GASFLOW die 
entsprechende Physik hervorragend numerisch modellieren. Somit sollten die Green-
Funktionstabellen mit den Bestandteilen für mehrdimensionale Probleme die 
Anwendung der Green-Funktion in Zukunft erleichtern. 
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1. Introduction 
Analytical solutions play import roles in validations and verifications for 
Computational Fluid Dynamic (CFD) computer codes, besides of experimental data. 
Diffusion problems with specified sources and /or boundary values are often 
encountered in both engineering and code validations. Green’s function method 
(GFM) supplies a powerful tool to solve linear partial differential equations. A lot of 
applications of the GFM can be found in literatures. For example, a problem of solute 
transport in porous media is solved by using the GFM (Leij and Priesack et al., 2000); 
the GFM is applied to model analytically the non-aqueous phase liquid dissolution 
(Leij and van Genuchten, 2000); analytical solutions are made by utilizing the GFM 
for contamination transport from multi-dimensional sources in finite thickness aquifer 
(Park and Zhan, 2001); atmospheric diffusion equations with multiple sources and 
height-dependent wind speed and eddy diffusions are solved by using the GFM (Lin 
and Hildemann, 1996); a two dimensional analysis of advection diffusion problem is 
carried out by using the GFM to understand the effluent dispersion in shallow tidal 
waters (Kay, 1990). A systematic application of the GFM to heat conduction is 
formed as a monograph by Beck and Cole et al. (1992). A more mathematical 
monograph about Green’s functions with applications is the work of Duffy (2001). 
This report is engaged in applying the GFM to solve a series of diffusion and 
advection diffusion equations (ADE) in various concerned domains like, infinite 
(free), semi-infinite and bounded multi- dimensional regions, no matter the involved 
background is about heat transfer, mass diffusion, particle dispersion and so on. These 
solutions are utilized to make comparisons with numerical simulations, and to 
benchmark computer code validations based on solving this sort of ADE problems. A 
secondary aim of this work is to supply a kind of handbook on Green’s functions to 
facilitate readers to apply the GFM to their own problems. 

In order to make it easier to understand, some necessary mathematical fundamentals 
are presented at the beginning, including the basic knowledge about Dirac Delta 
function, Heaviside function, Fourier transform and Laplace transform. Then the basic 
idea of the GFM is illustrated in a general sense. In the next part concentrations are 
focused on the detailed procedures to solve ADE problem with different boundary 
conditions. The results are applied, as examples, to validate the diffusion solver and 
dust motion (or particle model) of the GASFLOW computer code, which is widely 
used in nuclear industries and developed in Research Center Karlsruhe. 

Some figures exported from Mathcad or self-made C programs could appear in the 
report to illustrate the results more explicitly. 
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2. Mathematical fundamentals 

2.1 Dirac Delta function 
Dirac function (or called, delta function) is used very often through the report. 
Therefore, the basic concepts like the definition and the properties of the function are 
presented here, although it is not the aim to repeat the content of math text book. 

Delta function is defined as (James, 2002), 

0=δ )x(  unless 0=x , 

∞=δ )(0 , 

∫
∞

∞−

=δ 1dx)x( .         (2-1-1) 

The following useful properties (Duffy, 2001; James, 2002) should be kept in mind, 

0=−δ )ax(  unless ax = ,       (2-1-2) 

and the so-called shift theorem, 

∫
∞

∞−

=−δ )a(fdx)ax()x(f ,       (2-1-3) 

and others, 

)x(
a

)ax( δ=δ
1 , specially )x()x( δ=−δ ,     (2-1-4) 

)ax()a(f)ax()x(f −δ=−δ ,       (2-1-5) 

)x('x)x( δ−=δ ,        (2-1-6) 

0=δ )x(x )m(n  if nm <≤0 ,       (2-1-7) 

)z()y()x()z,y,x( δδδ=δ ,       (2-1-8) 

∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞−

=−−−δ )c,b,a(f)cz,by,ax()z,y,x(f .    (2-1-9) 

2.2 Heaviside function 
Heaviside function with another name of step function is defined as (Duffy, 2001), 

⎪
⎩

⎪
⎨

⎧

<
=

>
=−

.ax,
,ax,.

,ax,
)ax(H

0
50

1
       (2-2-1) 

(The function value at ax =  could be defined as other values as 1 or 0 in some 
literatures.) 

Delta function is the derivative of step function, 
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)x(H
dx
d)x( =δ .        (2-2-2) 

2.3 Fourier transform 
The Fourier transform is the natural extension of Fourier series to a function )x(f  of 
infinite period. It is defined in terms of a pair of integrals (James, 2002), 

∫
∞

∞−

− ξξξ
π

=ξ= d)xiexp()(F)](F[)x(f
2
11F ,     (2-3-1) 

and 

∫
∞

∞−

ξ−==ξ dx)xiexp()x(f)]x(f[)(F F .     (2-3-2) 

Equality (2-3-2) is the Fourier transform of )x(f , while (2-3-1) is the inverse Fourier 
transform. 

Some properties and useful Fourier transforms of functions (James, 2002) are listed 
here, which are also used in the following sections. 

)(Fi)]x('f[ ξξ=F ,        (2-4-1) 

)iaexp()]ax([ ξ−=−δF .       (2-4-2) 

2.4 Laplace transform 
If a function )x(f  equals to 0 for 0<x , then the integral, 

∫
∞

−==
0

dx)sxexp()x(f)s(F)]x(f[L ,      (2-4-1) 

is defined as the Laplace transform of )x(f  (Duffy, 2001). Some Laplace transforms, 
cited from the “Handbook of mathematics” by Bronshtein et al. (2003), are used in the 
report, 

0>
−

=− s,
s

)asexp()]ax(H[L ,      (2-4-2 

)asexp()]ax([ −=−δL ,       (2-4-3) 

as,
as

)]ax[exp( >
−

=
1

L ,       (2-4-4) 

)(f)s(sF)]x('f[ 0−=L ,       (2-4-5) 

)s(F)asexp()]ax(H)ax(f[ −=−−L .      (2-4-6) 

2.5 Error function 
Error function is defined as, 

∫ −
π

=
x

dt)texp()x(erf
0

22
,        (2-5-1) 
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and complementary error function as, 

∫
∞

−
π

=−=
x

dt)texp()x(erf)x(erfc 221 .     (2-5-2) 

Some of the properties are listed here, 

1=∞)(erf ,         (2-5-3) 

)x(erf)x(erf −=− ,        (2-5-4) 

)x(erfc)x(erfc −=− 2 .       (2-5-5) 
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3. Green’s function method 

3.1 General partial differential equation 
The Green’s function was first proposed by George Green in 1830s and was named 
after him. The general ideal of the GFM is described in details in a monograph by M. 
D. Greenberg (1971). The convention of notations about the GFM in the monograph 
is followed by this report. However the formulation of the GFM is not simply 
repeated in the report, but oriented to the aim of this work. The theory about Green’s 
function can be referred to the works of Stakgold (1998), Tychonov and Samarski 
(1967), Roach (1982) and so on. 

In general, a linear partial differential equation (PDE) of second order, with two 
independent variables x  and y  (sometimes, t ) can be formulated as, 

φ=+++++= FuEuDuCuBuAuLu yxyyxyxx 2 ,    (3-1-1) 

where L  is the original differential operator, φ,F,...A  are given functions of x  and 
y . Equation (3-1-1) holds over a prescribed region R with general linear boundary 
conditions, 

fuu)u(B n =β+α= ,       (3-1-2) 

on the boundary curve B of the domain R, where nu  denotes the outward normal 

derivative 
n
u
∂
∂ , and f,,βα  may be functions defined on B, as shown in Figure 3-1-1. 

 
Figure 3-1-1 General boundary value problem 
The GFM is applicable only when differential operator satisfies superposition 
principle. In fact, most operators encountered in engineering can meet the basic 
requirement, e.g., the diffusion equation, wave equation, Laplace equation, actually 
all the linear second order partial differential equations and so on. The general second 
order equation (3-1-1) is taken as an example to explain how the GFM works. First, 
multiply Lu  by an arbitrary function v , and make integration by parts, 

∫∫∫∫∫ σ+⋅+=σ
RBR

vduLnds)NjMi(vLud * ,     (3-1-3) 

where 

σd  is the differential area on R, 

y 

x 

φ=Lu
R 

B 

n j 
i 
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ds  is the differential arc on B, idsndy ⋅= , jdsndx ⋅= , 

Fv)Ev()Dv()Cv()Bv()Av(vL yxyyxyxx
* +−−++= 2 ,   (3-1-4) 

*L  is the adjoint operator associated to L , 

DuvvBu)Av(uAvuM yxx ++−= 2 , 

Euv)Cv(uCvu)Bv(uN yyx +−+−= 2 .     (3-1-5) 

If ),(vv ηξ=  is selected so smart that, 

)y,x(vL* −η−ξδ= ,        (3-1-6) 

then the second integration term of the right hand side of (3-1-3), 

∫∫∫∫ =ηξ−η−ξδ=ηξ )y,x(udd)y,x(udvduL* ,    (3-1-7) 

is the solution of (3-1-1). The last step proceeds by using the property of delta 
function (2-1-9). This function )y,x;,(v ηξ  is called Green’s function, denoted as 

)y,x;,(G ηξ , which is determined by, 

)y,x(GL* −η−ξδ= .       (3-1-8) 

Substitute (3-1-7) into (3-1-3) with considering that φ=Lu , the expression of the 
solution is obtained as, 

∫ ∫∫∫∫∫ ⋅+−σφ=⋅+−σ=
B BRR

nds)NjMi(dGnds)NjMi(GLud)y,x(u . (3-1-9) 

If the equation (3-1-8) about the Green’s function G  is solved successfully with 
certain boundary conditions, then the solution of the problem (3-1-1) is explicitly 
expressed by (3-1-9). This is the basic idea of the GFM. 

3.2 One-dimensional advection diffusion equation 
Based on the general idea of the GFM described in last subsection, this subsection is 
devoted to apply the method to solve the advection diffusion equation in a general 
sense. The differential operator of one dimensional advection diffusion problem is 
denoted as, 

x
D

x
V

t
L 2

2

∂
∂

−
∂
∂

+
∂
∂

= ,       (3-2-1) 

where V  stands for the advection velocity, D  for diffusion coefficient, both are 
assumed as constants for simplicity. The problem is formulated as, 

)t,x(DuVuuLu xxxt φ=−+= ,     (3-2-2) 

with certain boundary conditions. In order to show explicitly the procedure to 
integrate by parts, the domain is prescribed as a rectangular region, as shown in 
Figure 3-2-1, namely, 21 xxx << , 21 ttt << . 
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Figure 3-2-1 Rectangular region for advection diffusion problem 

Integrate by parts for ∫∫ σ
R

vLud , 

∫ ∫∫∫ −+=σ
2

1

2

1

x

x

t

t
xxxt dtdx)DvuVvuvu(vLud

R

.    (3-2-3) 

The three terms in the brackets are calculated one by one, 

∫∫∫∫ ∫∫ ∫ σ−=−=
R

duvdx)vu(dx)dtuvvu(dtdx)vu( t

x

x

t
t

x

x

t

t
t

t
t

x

x

t

t
t

2

1

2

1

2

1

2

1

2

1

2

1

2

1

, 

∫∫∫∫ ∫∫ ∫ σ−=−=
R

dVuvdt)Vvu(dt)dxuvvu(Vdtdx)Vvu( x

t

t

x
x

t

t

x

x
x

x
x

x

x

t

t
x

2

1

2

1

2

1

2

1

2

1

2

1

2

1

, 

dt]dxuv)uvvu[(Ddtdx)Dvu(
t

t

x

x
xx

x
xxx

x

x

t

t
xx ∫ ∫∫ ∫ +−−=−

2

1

2

1

2

1

2

1

2

1

 

∫∫∫ σ−−−=
R

dDuvdt])uvvu(D[ xx

t

t

x
xxx

2

1

2

1
. 

The summation of the three equalities is 

∫∫∫∫∫∫ σ−−−+−−+=σ
RR

d)DuvVuvuv(dt])uvvu(DVvu[dx)vu(vLud xxxt

t

t

x
xxx

x
x

x

x

t
t

2

1

2

1

2

1

2

1

2

1

 ∫∫∫∫ σ+−−+=
R

vduLdt])uvvu(DVvu[dx)vu( *
t

t

x
xxx

x
x

x

x

t
t

2

1

2

1

2

1

2

1

2

1
. (3-2-4) 

Here xxxt
* DvVvvvL −−−= , and *L  is the adjoint differential operator associated 

to the L  in (3-2-1), denoted as, 

x
D

x
V

t
L*

2

2

∂
∂

−
∂
∂

−
∂
∂

−= .       (3-2-5) 

If we choose the function of v  as the Green’s function )t,x;,(G τξ  to satisfy, 

)t,x(GL* −τ−ξδ= ,        (3-2-6) 

t 

x 

R 

n=j

n=i

2x  1x  

2t  

1t  

n=-i 

n=-j
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with certain boundary conditions for G . Then substitute v  as G  in (3-2-4), 

∫∫∫∫∫∫ σ+−−+=σ
RR

GduLdt])uGGu(DVGu[dx)Gu(GLud *
t

t

x
xxx

x
x

x

x

t
t

2

1

2

1

2

1

2

1

2

1
.(3-2-7) 

Applying the property of delta function and the equality of φ=Lu , then changing the 
integration dummy variables from )t,x(  to ),( τξ , we have the general expression of 
solution of the problem (3-2-2), 

τ−−−ξ−τξφ= ∫∫∫∫
τ

τ

ξ
ξξξ

ξ
ξ

ξ

ξ

τ
τ d])uGGu(DVGu[d)Gu(ddG)t,x(u

2

1

2

1

2

1

2

1

2

1
R

. (3-2-8) 

According to the GFM, solving the original problem (3-2-2) is transferred to solving 
the problem of (3-2-6) to seek the Green’s function! The essential point of the GFM is 
that the boundary value problem governing G  is in general somewhat simpler than 
the original one governing u . It is worth to mention that the running variables in 
Green’s functions are τξ,  instead of t,x . However the latter are active in the 
function of u . 
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4. Green’s function of advection diffusion equation 
In this section, the GFM is applied to solve step by step the advection diffusion 
problems, with different boundary conditions. 

4.1 Dirichlet boundary 
Now we have to come to a specific problem to show the detailed techniques to apply 
the GFM, including the determination of the “adjoint” boundary conditions for 
Green’s function. 

Let’s define a one-dimensional advection diffusion problem in a semi-infinite axis 
with an initial condition at 0=t  and a boundary condition at 0=x  and a source term 
of )t,x(φ . The problem is generally formulated as, 

)t,x(DuVuuLu xxxt φ=−+= , ∞<< x0 , ∞<< t0 ,   (4-1-1a) 

)x(f),x(u =0 ,         (4-1-1b) 

)t(h)t,(u =0 .         (4-1-1c) 

In the case, the function value is prescribed on the boundary. This type of condition is 
called a Dirichlet boundary or first type of boundary. According to (3-2-8), the 
solution of (4-1-1) can be expressed as, 

−ξ−−τξφ= =τ

∞

∞=τ

∞ ∞

∫∫ ∫ d])Gu()Gu[(ddG)t,x(u 0
00 0  

 τ+−−+−− ∫ =ξξξ∞=ξξξ d])uDGDGuVGu()uDGDGuVGu[(
t

0
0 . (4-1-2) 

In order to identify ∞=τG , ∞=ξG  and ∞=ξξG , the natural boundary conditions at 
infinite of Green’s function have to be understood based on the physics that the 
differential equation describes. Let’s take the advection diffusion equation as an 
example. The Green’s function is determined by (3-2-6), and the adjoint operator *L  
can be denoted in another way besides (3-2-5), 

x
D

x
)V(

)t(
L*

2

2

∂
∂

−
∂
∂

−+
−∂
∂

= .      (4-1-3) 

Comparing (4-1-3) to (3-2-1), it can be concluded that *L  is still an advection 
diffusion differential operator, with “reversed” time coordinate and “reversed” 
advection direction. The solution of the Equation (3-2-6), namely, the Green’s 
function )t,x;,(G τξ  stands for, say, the subsequent heat distribution incurred by an 
instantaneous unit heat pulse at the location of x  and at the moment of t . Hereafter it 
can be concluded that ∞=τG , ∞=ξG  and ∞=ξξG  must be zero, because the unit heat 
pulse exerted at a finite location can not influence the distribution at an infinite far 
place or at infinite long time future. The nature features of G , ∞=τG , 0=∞=ξG  and 

0=∞=ξξG , are called homogenous boundary condition of Green’s functions at 
infinite. By applying the homogeneous boundary conditions at infinite, (4-1-2) can be 
simplified as, 
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+ξξξ+τξτξφτξ= ∫∫ ∫
∞∞ ∞

d),(u),(Gdd),(),(G)t,x(u
00 0

00  

 τττ+ττ−ττ+ ∫ ξξ d]),(u),(DG),(u),(DG),(u),(VG[
t

0

000000 . (4-1-4) 

Keep in mind that )(f),(u ξ=ξ 0  and )(h),(u τ=τ0  according to (4-1-1b) and (4-1-
1b), so, in (4-1-4), only the term “ ),(u),(DG ττ ξ 00 ” is unwelcome. In order to make it 
vanish, one can have 00 =τ),(G  as a boundary condition for determining G . Then 
(4-1-4) can be simplified further, based on the assumed conditions of G , 

τττ+ξξξ+τξτξφτξ= ∫∫∫ ∫ ξ

∞∞ ∞

d])(h),(DG[d)(f),(Gdd),(),(G)t,x(u
t

000 0

00 . (4-1-5) 

And the adjoint problem about G  is formulated as, 

)t,x(DGVGGGL* −τ−ξδ=−−−= ξξξτ , ∞<ξ<0 , ∞<τ<0 , (4-1-6a) 

00 =τ),(G .         (4-1-6b) 

4.2 Principle solution 
Based on the basic principle of differential equations, the problem (4-1-6) can be 
divided into two problems defined on the infinite space. One is to solve only the 
inhomogeneous differential equation without considering any boundary conditions, 
the solution is called principle solution, say, U ; the other is to solve the homogeneous 
differential equation with the given boundary conditions, the solution is called regular 
solution, say, g . Then the solution of the original problem (4-1-6) is U  plus g , 
namely, 

)t,x;,(g)t,x;,(U)t,x;,(G τξ+τξ=τξ .     (4-2-1) 

The two problems are formulated as, 

)t,x(DUVUUUL* −τ−ξδ=−−−= ξξξτ , ∞<ξ<∞− , ∞<τ<0 , (4-2-2) 

and, 

0=−−−= ξξξτ DgVgggL* , ∞<ξ<∞− , ∞<τ<0 ,   (4-2-3a) 

00 =ξ−=τ )UG(),(g ,        (4-2-3b) 

respectively. 

The main task of this subsection is to solve problem (4-2-2) to obtain the principle 
solution U . 

In order to solve equation (4-2-2), Fourier transform is performed on the equation 
from ξ  to ω . Multiply ξωξ− d)iexp(  on both sides of equation (4-2-2), and integrate 
from ∞−  to ∞ , 

∫∫∫
∞

∞−
ξξ

∞

∞−
ξ

∞

∞−
τ ξωξ−−ξωξ−−ξωξ−− d)iexp(UDd)iexp(UVd)iexp(U  
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∫
∞

∞−

ξωξ−−τ−ξδ= d)iexp()t,x(  

∫
∞

∞−

ξωξ−−ξδ−τδ= d)iexp()x()t(  

)xiexp()t( ω−−τδ= .       (4-2-4) 

Define 

∫
∞

∞−

ξωξ−τξ≡τω d)iexp(),(U),(Û .      (4-2-5) 

Apply the properties about Fourier transform to the left hand side of (4-2-4), it is 
reduced to, 

)xiexp()t(ÛDÛVi
d
Ûd

ω−−τδ=ω+ω−
τ

− 2 , namely, 

)xiexp()t(Û)ViD(
d
Ûd

ω−−τδ=ω−ω+
τ

− 2 .    (4-2-6) 

According to definition of delta function, the right hand side of (4-2-6) is equal to 
zero for t>τ  and t<τ , namely, 

02 =ω−ω+
τ

− Û)ViD(
d
Ûd , if t>τ  or t<τ .     (4-2-7) 

Separate variables between Û  and τ , then integrate (4-2-7), 

⎪⎩

⎪
⎨
⎧

<ττω−ω

>ττω−ω
=

,tif],)iVDexp[(A

,tif],)iVDexp[(A
Û

2
2

2
1       (4-2-8) 

where 1A  and 2A  are undetermined integration constants. To determine them, make 
integration of (4-2-6) on τ  from 0−t  to 0+t , 

∫∫
+

−

+

−

+
− τ−τδω−=τω−ω+−

0

0

0

0

20
0

t

t

t

t

t
t d)t()xiexp(dÛ)ViD(Û .   (4-2-9) 

The second term on the left hand side of (4-2-9) is zero because the integrand Û  is 
finite anyhow and the interval is infinitesimal. Thus the singularity caused by the delta 
function must be embodied on the first term. Using the property of delta function 

again 1
0

0

=τ−τδ∫
+

−

t

t

d)t(  and substituting (4-2-8) into (4-2-9), it becomes as, 

)xiexp(]t)iVDexp[(A]t)iVDexp[(A ω−=ω−ω−ω−ω 2
1

2
2 .  (4-2-10) 

Remember that U  hence Û  stands for the “heat” distribution along the REVERSED 
time coordinate, caused by the instantaneous “heat” pulse at the time t=τ , therefore, 

0=Û , if t>τ . Namely 01 =A . According to (4-2-10), we have, 
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]t)iVD(xiexp[A ω−ω−ω−= 2
2 .      (4-2-11) 

Substitute 1A  and 2A  into (4-2-8), the solution of (4-2-6) is obtained as, 

)t(H)]t)(iVD(xiexp[Û τ−τ−ω−ω−ω−= 2 .    (4-2-12) 

Make inverse Fourier transform of (4-2-12) from ω  to ξ , 

∫
∞

∞−

ωωξ
π

=τξ d)iexp(Û),(U
2
1  

∫
∞

∞−

ωτ−ω−ω−−ξω
π
τ−

= d)]t)(iVD()x(iexp[)t(H 2

2
 

∫
∞

∞−

ω
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
ω

τ−
τ−+−ξ

−ωτ−−
π
τ−

= d
)t(D

)t(V)x(i)t(Dexp)t(H 2

2
.  (4-2-13) 

Let, 

)t(D
)t(V)x(ic

τ−
τ−+−ξ

=2 , namely,      (4-2-14) 

)t(D
)t(V)x(ic

τ−
τ−+−ξ

=
2

.       (4-2-15) 

Substitute (4-2-14) into (4-2-13), continue to simplify, 

∫
∞

∞−

ωω−ωτ−−
π
τ−

=τξ d)]c)(t(Dexp[)t(H),(U 2
2

2  

∫
∞

∞−

ω−−ωτ−−
π
τ−

= d]}c)c)[(t(Dexp{)t(H 22

2
.    (4-2-16) 

Let, 

)c()t(D −ωτ−=ζ , then ζ
τ−

=ω d
)t(D

d 1 . Substitute them into (4-2-16), 

∫
∞

∞−

ζ
τ−

⋅τ−⋅ζ−
π
τ−

=τξ d
)t(D

]c)t(Dexp[)exp()t(H),(U 1
2

22  

∫
∞

∞−

ζζ−
τ−

⋅τ−
π
τ−

= d)exp(
)t(D

]c)t(Dexp[)t(H 22 1
2

.   (4-2-17) 

Substitute (4-2-15) into (4-2-17) and use the equality ∫
∞

∞−

π=ζζ− d)exp( 2 , then 

⎥
⎦

⎤
⎢
⎣

⎡
τ−
τ−+−ξ

−
τ−π

τ−
=τξ

)t(D
)]t(Vx[exp

)t(D
)t(H)t,x;,(U

44

2

.   (4-2-18) 

This is the solution of (4-2-2), also the principle solution of (4-1-6). 
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4.3 Regular solution 
Now it is the time to solve problem (4-2-3) to obtain the regular solution for problem 
(4-1-6). The boundary condition for g  can be reformulated based on the obtained 
principle solution. According to (4-2-3b), 

),(U),(G),(g τ−τ=τ 000 .       (4-3-1) 

According to (4-1-6b), 00 =τ),(G . According to (4-2-18), 

⎥
⎦

⎤
⎢
⎣

⎡
τ−
τ−−

−
τ−π

τ−
=τ

)t(D
)]t(Vx[exp

)t(D
)t(H),(U

44
0

2

.    (4-3-2) 

So problem (4-2-3) can be reformulated as, 

0=−−−= ξξξτ DgVgggL* , ∞<ξ<∞− , ∞<τ<0 ,   (4-3-3a) 

⎥
⎦

⎤
⎢
⎣

⎡
τ−
τ−−

−
τ−π
τ−−

=τ
)t(D
)]t(Vx[exp

)t(D
)t(H),(g

44
0

2

.    (4-3-3b) 

Inspection approach is of much importance and is widely used to solve the regular 
solution in the GFM. It needs to understand the solutions in view of physics. Keep in 
mind that, in physics, the principle solution about the Green’s function, )t,x;,(U τξ , 
of the advection diffusion equation describes the heat distribution at ),( τξ  caused by 
a positive unit heat pulse at )t,x( . In the specific problem (4-1-6), the Green’s 
function value is required to be zero at the origin. In order to satisfy the condition, an 
image of negative heat source can be designed at )t,x(− , as shown in Figure 4-3-1, to 
compensate the positive value being diffused from )t,x( . The strength of the negative 
source is unclear so far because of the reversed advection effects, but it can be 
assumed as γ  times of unit and γ  may vary with ),( τξ , namely, ),( τξγ=γ . Based 
on the inspection, the solution of problem (4-3-3) is anticipated to be in the form of, 

)t,x;,(U),(),(g −τξτξγ−=τξ .      (4-3-4) 

 
Figure 4-3-1 Schematic image system for advection diffusion problem with 

Dirichlet boundary condition 

ξ  

x  

x−  

tt Δ−

tt Δ− 2
tt Δ−  

tt Δ− 2

t  

t  

00 =τ),(G

)t,x;,(U τ0
)t,x;,(U −τγ− 0

Reversed 
advection

V−
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The boundary condition of g  in (4-3-3b) is applied to determine ),( τξγ=γ . 
According (4-3-4) and (4-2-18), we have, 

⎥
⎦

⎤
⎢
⎣

⎡
τ−
τ−+

−
τ−π

τ−
τγ−=−ττγ−=τ

)t(D
)]t(Vx[exp

)t(D
)t(H),()t,x;,(U),(),(g

44
0000

2

 

⎥
⎦

⎤
⎢
⎣

⎡
τ−

τ−+τ−−
−

τ−π
τ−

τγ−=
)t(D

)t(Vx)]t(Vx[exp
)t(D

)t(H),(
4

4
4

0
2

 

),(
D

Vxexp
)t(D
)]t(Vx[exp

)t(D
)t(H

τγ⋅⎟
⎠
⎞

⎜
⎝
⎛ −⋅⎥

⎦

⎤
⎢
⎣

⎡
τ−
τ−−

−
τ−π
τ−−

= 0
44

2

 

),(
D

Vxexp),(g τγ⋅⎟
⎠
⎞

⎜
⎝
⎛ −⋅τ= 00 .     (4-3-5) 

The last step is based on (4-3-3b), therefore we have, 

⎟
⎠
⎞

⎜
⎝
⎛=τγ

D
Vxexp),(0 .        (4-3-6) 

γ  is a function defined on the ),( τξ  plane, but the right hand side of (4-3-6) is 
nothing about ξ  and τ  at all, just a “constant” term. Thus it must be, 

⎟
⎠
⎞

⎜
⎝
⎛≡τξγ

D
Vxexp),( .        (4-3-7) 

So far the regular solution of g  is obtained, 

)t,x;,(U
D

Vxexp)t,x;,(g −τξ⋅⎟
⎠
⎞

⎜
⎝
⎛−=τξ , namely, 

⎥
⎦

⎤
⎢
⎣

⎡
τ−
τ−++ξ

−⋅⎟
⎠
⎞

⎜
⎝
⎛⋅

τ−π

τ−
−=τξ

)t(D
)]t(Vx[exp

D
Vxexp

)t(D
)t(H)t,x;,(g

44

2

.  (4-3-8) 

The solution (4-3-8) is obtained by inspection approach. Is it really the solution of (4-
3-3)? The answer is definitely positive. It is proofed as follows. 

First, it is obvious that (4-3-8) satisfies the boundary condition of (4-3-3b). Then, it 
should be proofed to satisfy the differential equation of (4-3-3a) also. 

Based on (4-3-8), we have, 

⎥
⎦

⎤
⎢
⎣

⎡
τ−

τ−++ξ
−⋅=ξ )t(D

)t(Vxgg
2

,       (4-3-9) 

⎥
⎦

⎤
⎢
⎣

⎡
τ−

−
τ−
τ−++ξ

⋅=ξξ )t(D)t(D
)]t(Vx[gg

2
1

4 22

2

,     (4-3-10) 

⎥
⎦

⎤
⎢
⎣

⎡
+

τ−
+ξ

−
τ−

⋅=τ D
V

)t(D
)x(

)t(
gg

442
1 2

2

2

.     (4-3-11) 

Thus, 
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+
τ−

τ−++ξ
−+

τ−
+ξ

−
τ−

⋅−=−−− ξξξτ )t(D
)t(V)x(V

D
V

)t(D
)x(

)t(
{gDgVgg

2442
1 22

2

2

 

}
)t()t(D

)]t(Vx[
τ−

−
τ−

τ−++ξ
+

2
1

4 2

2

.  (4-3-12) 

The sum of the terms in “{}” of (4-3-12) is zero by straightforward calculations. It 
does mean that the differential equation of (4-3-3a) is met also by (4-3-8). So far it is 
proofed that the solution (4-3-8) obtained by observation in view of physics is 
genuinely the solution of the problem (4-3-3). 

Let’s come back to the problem (4-1-6), both the principle and regular solutions are 
obtained. According to (4-2-1), (4-2-18) and (4-3-8), the Green’s function being 
sought is expressed as, 

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
τ−
τ−++ξ

−−⎥
⎦

⎤
⎢
⎣

⎡
τ−
τ−+−ξ

−
τ−π

τ−
=τξ

)t(D
)]t(Vx[

D
Vxexp

)t(D
)]t(Vx[exp

)t(D
)t(H)t,x;,(G

444

22

          (4-3-13) 

or in a succinct form, 

)t,x;,(U
D

Vxexp)t,x;,(U)t,x;,(G −τξ⎟
⎠
⎞

⎜
⎝
⎛−τξ=τξ ,    (4-3-14) 

where )t,x;,(U τξ  is expressed in (4-2-18). The solution (4-3-13) or (4-3-14) is the 
Green’s function in semi-infinite domain with a Dirichlet boundary condition. Once 
the Green’s function is determined, then the solution of the original problem (4-1-1) 
can be obtained by the integration expression of (4-1-5). 

To verify the analytical solution, a numerical scheme is established to solve 
numerically the 1D advection diffusion equation by using a C program. If it is purely 
a boundary value problem with the Dirichlet type, say, )t.sin()t(h)t,(u π== 400 , 
and 0=φ )t,x( , 00 == )x(f),x(u , then the analytical solution can be obtained based 
on (4-1-5) and (4-3-13) as, 

+⎥
⎦

⎤
⎢
⎣

⎡
τ−
τ−−

⋅⎥
⎦

⎤
⎢
⎣

⎡
τ−
τ−−

−
τ−π

πτ= ∫
t

)t(D
)t(Vx

)t(D
)]t(Vx[{exp

)t(D
).sin(D)t,x(u

0

2

244
140

 τ⎥
⎦

⎤
⎢
⎣

⎡
τ−
τ−+

⋅⎥
⎦

⎤
⎢
⎣

⎡
τ−
τ−+

−+ d}
)t(D

)t(Vx
)t(D
)]t(Vx[

D
Vxexp

24

2

. 

By using Mathcad, the analytical solutions at different values of t  are plotted as solid 
lines in Figure 4-3-2, while the symbols stand for the corresponding numerical 
solutions. The high agreement between them supplies a good verification to the 
Green’s function obtained in this section. 
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Figure 4-3-2 Verification of Green’s function in semi-infinite domain with 

Dirichlet boundary condition 

4.4 Neumann and Robin boundaries 
The advection diffusion problem with a Dirichlet boundary condition is solved in last 
subsections. Actually, the boundary conditions can be given in another form in 
engineering, e.g., the derivative of the function instead of the function value, or an 
expression of combination of the derivative and the function values. The former is 
called a Neumann type or second type of boundary, the latter is called a Robin 
boundary, or a mixed type or third type of boundary in some literatures. The aim of 
this subsection is to solve the advection diffusion problem with more general Robin 
boundary conditions in a semi-infinite domain. 

The formal problem is described as, 

)t,x(DuVuuLu xxxt φ=−+= , ∞<< x0 , ∞<< t0 ,   (4-4-1a) 

)x(f),x(u =0 ,         (4-4-1b) 

)t(h)t,(u)t,(u x =β+α 00 , )( 0≠β .      (4-4-1c) 

If 0=β , it is actually a Dirichlet boundary, which is discussed in last subsections. So 
only the case of 0≠β  is considered here. If 0=α , it changes to a Neumann 
boundary. Namely, the Neumann boundary is a special case of the Robin boundary. 
The general expression of the solution is already given in (4-1-4), 

+ξξξ+τξτξφτξ= ∫∫ ∫
∞∞ ∞

d),(u),(Gdd),(),(G)t,x(u
00 0

00  

 τττ+ττ−ττ+ ∫ ξξ d]),(u),(DG),(u),(DG),(u),(VG[
t

0

000000 . (4-1-4) 

Rearrange (4-4-1c) as, 

)]t,(u)t(h[)t,(ux 010 α−
β

= , namely,     (4-4-2) 
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)],(u)(h[),(u τα−τ
β

=τξ 010 .       (4-4-3) 

Substitute (4-4-3) into (4-1-4), 

+ξξξ+τξτξφτξ= ∫∫ ∫
∞∞ ∞

d),(u),(Gdd),(),(G)t,x(u
00 0

00  

τττ+τα−τ
β

τ−ττ+ ∫ ξ d}),(u),(DG)],(u)(h[),(DG),(u),(VG{
t

0

0001000  

         +ξξξ+τξτξφτξ= ∫∫ ∫
∞∞ ∞

d),(u),(Gdd),(),(G
00 0

00  

τττ
β

−ττ+τ
β
α

++ ∫ ξ d)}(h),(GD),(u)],(DG),(G)DV{[(
t

0

0000 . (4-4-4) 

In order that the unwelcome term “ ),(u)],(DG),(G)DV[( ττ+τ
β
α

+ ξ 000 ” in (4-4-4) 

can vanish, Green’s function has to satisfy the boundary condition, 

000 =τ+τ
β
α

+ ξ ),(DG),(G)DV( , namely, 000 =τβ+τβ+α ξ ),(DG),(G)VD( . 

If so, (4-4-4) can be further reduced to, 

τττ
β

−ξξξ+τξτξφτξ= ∫∫∫ ∫
∞∞ ∞

d)](h),(GD[d)(f),(Gdd),(),(G)t,x(u
t

000 0

00 . (4-4-5) 

Therefore the boundary value problem for ),(G τξ  is formulated as, 

)t,x(DGVGGGL* −τ−ξδ=−−−= ξξξτ , ∞<ξ<0 , ∞<τ<0 , (4-4-6a) 

000 =τβ+τβ+α ξ ),(DG),(G)VD( .      (4-4-6b) 

Similar to solving the Dirichlet boundary problem, Green’s function G  is sought to 
be the sum of principle solution U  and regular solution g , namely, 

)t,x;,(g)t,x;,(U)t,x;,(G τξ+τξ=τξ .     (4-2-1) 

The principle solution )t,x;,(U τξ  is obtained already in Section 4.2. By means of 
inspection approach again, the regular solution )t,x;,(g τξ  is constructed by an image 
system, as show in Figure 4-4-1. [Similar image system is used to solve the normal 
diffusion problem without advection in reference (Greenberg, 1971). The image 
system depicted here is an extension of that one.] 
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Figure 4-4-1 Schematic image system for advection diffusion problem with Robin 

boundary condition 
Based on the layout of source image, the regular solution can be in the form of, 

∫
−

∞−

ζζτξζψ+−τξγ=τξ
x

d)t,;,(U)()t,x;,(U)t,x;,(g .    (4-4-7) 

Substitute (4-4-7) to (4-2-1), 

∫
−

∞−

ζζτξζψ+−τξγ+τξ=τξ
x

d)t,;,(U)()t,x;,(U)t,x;,(U)t,x;,(G .  (4-4-8) 

Now let’s apply the boundary condition (4-4-6b) to determine γ  and )(ζψ . 

In terms of (4-4-8), 

∫
−

∞−

ζζτζψ+−τγ+τ=τ
x

d)t,;,(U)()t,x;,(U)t,x;,(U)t,x;,(G 0000  

∫
−

∞−

ζζτζψ+γ⎟
⎠
⎞

⎜
⎝
⎛ −τ+τ=

x

d)t,;,(U)(
D

Vxexp)t,x;,(U)t,x;,(U 000 . (4-4-9) 

So, 

+⎥
⎦

⎤
⎢
⎣

⎡
γ⎟
⎠
⎞

⎜
⎝
⎛ −+β+ατ=τβ+α

D
Vxexp)VD)(t,x;,(U)t,x;,(G)VD( 100    

    ∫
−

∞−

ζζψβ+αζτ+
x

d)()VD)(t,;,(U 0 .  (4-4-10) 

On the other hand, 

−
τ
τ−

τ=τξ D
Vx)t,x;,(U)t,x;,(G

2
00  

+γ⎟
⎠
⎞

⎜
⎝
⎛ −τ−γ⎟

⎠
⎞

⎜
⎝
⎛ −⋅

τ
τ−

τ−
D
V

D
Vxexp)t,x;,(U

D
Vxexp

D
Vx)t,x;,(U 0

2
0  

∫
−

∞−

ζζψζτ+−ψ−⋅⎟
⎠
⎞

⎜
⎝
⎛ −τ+

x

d)(')t,;,(U)]x([
D

Vxexp)t,x;,(U 00 . (4-4-11) 

Then, 

−⎥
⎦

⎤
⎢
⎣

⎡
γ⎟
⎠
⎞

⎜
⎝
⎛ −−β⋅

τ
τ−

τ=τβ ξ D
VxexpD

D
Vx)t,x;,(U)t,x;,(DG 1

2
00  

)(ζΨ  

x− x

ξ  
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∫
−

∞−

ζζψβζτ+−ψβ+γβ⎟
⎠
⎞

⎜
⎝
⎛ −τ−

x

d)('D)t,;,(U)]x(DV[
D

Vxexp)t,x;,(U 00 . (4-4-12) 

Equality (4-4-10) plus (4-4-12), 

+Φ⋅
τ
τ−

τ=τβ+τβ+α ξ 12
000

D
Vx)t,x;,(U)t,x;,(DG)t,x;,(G)VD(  

∫
−

∞−

ζΦ⋅ζτ+Φ⋅τ+
x

d)t,;,(U)t,x;,(U 32 00 , (4-4-13) 

where, 1Φ , 2Φ  and 3Φ  are temporary variables, 

⎥
⎦

⎤
⎢
⎣

⎡
γ⎟
⎠
⎞

⎜
⎝
⎛ −−β=Φ

D
VxexpD 11 ,       (4-4-14) 

)]x(DV[
D

Vxexp
D

Vxexp)VD( −Ψβ+γβ⎟
⎠
⎞

⎜
⎝
⎛ −−⎥

⎦

⎤
⎢
⎣

⎡
γ⎟
⎠
⎞

⎜
⎝
⎛ −+β+α=Φ 12 , (4-4-15) 

)('D)()VD( ζψβ+ζψβ+α=Φ3 .      (4-4-16) 

According to boundary condition (4-4-6b), the left hand side of (4-4-13) is zero. 
Because equality (4-4-13) holds for any τ , it must have 0321 =Φ=Φ=Φ . This 
results in three equations about γ  and )(ζψ , 

01 =⎥
⎦

⎤
⎢
⎣

⎡
γ⎟
⎠
⎞

⎜
⎝
⎛ −−β

D
VxexpD ,       (4-4-14a) 

01 =−Ψβ+γβ⎟
⎠
⎞

⎜
⎝
⎛ −−⎥

⎦

⎤
⎢
⎣

⎡
γ⎟
⎠
⎞

⎜
⎝
⎛ −+β+α )]x(DV[

D
Vxexp

D
Vxexp)VD( ,  (4-4-15a) 

0=ζψβ+ζψβ+α )('D)()VD( .      (4-4-16a) 

Because 0≠β  and obviously 0≠D , (4-4-14a) tells that, 

⎟
⎠
⎞

⎜
⎝
⎛=γ

D
Vxexp .        (4-4-17) 

Based on (4-4-17), (4-4-15a) can be simplified as, 

⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β
α

+=−Ψ
D

Vxexp
D
V)x( 2 .      (4-4-18) 

Separate variables of (4-4-16a) and integrate on both sides, we have, 

⎥
⎦

⎤
⎢
⎣

⎡
ζ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β
α

+−=ζΨ
D
VexpA)( ,      (4-4-19) 

where A  is an undetermined constant, and is determined by putting (4-4-18) and (4-
4-19) together, 
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⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β
α

+=−Ψ=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β
α

+=ζΨ −=ζ D
Vxexp

D
V)x(x

D
VexpA)( x

2 . 

Thus, 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β
α

+−⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β
α

+= x
D
Vexp

D
Vxexp

D
VA 2 .    (4-4-20) 

Substitute (4-4-20) into (4-4-19), we have, 

⎥
⎦

⎤
⎢
⎣

⎡
+ζ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
β
α

+−⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β
α

+=ζΨ )x(
D
Vexp

D
Vxexp

D
V)( 2 .   (4-4-21) 

Substitute (4-4-17) about γ  and (4-4-21) about )(ζψ  back into (4-4-8), the solution 
of Green’s function is obtained as, 

+−τξ⎟
⎠
⎞

⎜
⎝
⎛+τξ=τξ )t,x;,(U

D
Vxexp)t,x;,(U)t,x;,(G  

∫
−

∞−

ζζτξ⎥
⎦

⎤
⎢
⎣

⎡
+ζ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
β
α

+−⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β
α

++
x

d)t,;,(U)x(
D
Vexp

D
Vxexp

D
V 2 , (4-4-22) 

where )t,x;,(U τξ  is expressed in (4-2-18). 

In (4-4-22), the last term contains an integral, which can be replaced in form of error 
function. If define for convenience, 

β
α

=σ ,         (4-4-23) 

τ−=τ t~ ,         (4-4-24) 

and substitute (4-2-18) into the last term of (4-4-22), denoted as 3T , then have, 

∫
−

∞−

ζζτξ⎥
⎦

⎤
⎢
⎣

⎡
ζ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β
α

+−⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β
α

+−⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β
α

+=
x

d)t,;,(U
D
Vexpx

D
Vexp

D
Vxexp

D
VT 2

3  

∫
−

∞−

ζ⎥
⎦

⎤
⎢
⎣

⎡
τ
τ+ζ−ξ

−⎥
⎦

⎤
⎢
⎣

⎡
ζ⎟
⎠
⎞

⎜
⎝
⎛ σ+−

τπ
τ

σ−⎟
⎠
⎞

⎜
⎝
⎛ σ+=

x

d~D
]~V[exp

D
Vexp~D

)~(H)xexp(
D
V

44
2

2

 

...=  

⋅
τπ

τ
σ−⎟

⎠
⎞

⎜
⎝
⎛ σ+= ~D

)~(H)xexp(
D
V

4
2  

∫
−

∞−

ζτσ+ττσ−ξ+τσ+τ+ξ−ζ
τ

−⋅
x

d)]}~D~V)(~D()~D~V[(~D
exp{ 42

4
1 2  

⋅⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +στσ−ξ−⋅

τπ
τ

σ−⎟
⎠
⎞

⎜
⎝
⎛ σ+=

D
V)~D(exp~D

)~(H)xexp(
D
V

4
2  
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∫
−

∞−

ζ⎥
⎦

⎤
⎢
⎣

⎡
τ

τσ+τ+ξ−ζ
−⋅

x

d~D
)~D~V(exp

4
2 2

.    (4-4-25) 

Assume that, 

τ
τσ+τ+ξ−ζ

=χ ~D

~D~V
4

2 ,       (4-4-26) 

and that, 

τ
τσ+τ+ξ−−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

τ
τσ+τ+ξ−ζ

=χ− −=ζ ~D

~D~Vx
~D

~D~V
x 4

2
4

2
0 ,   (4-4-27) 

then 

χτ=ζ d~Dd 4 .        (4-4-28) 

Substitute (4-4-26), (4-4-27) and (4-4-28) into (4-4-25), 

∫
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χχ−τ⎥
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⎠
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D
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⎥
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⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +στσ−ξ−σ−⎟

⎠
⎞

⎜
⎝
⎛ σ+τ= ~D

~)DV(xerfc
D
V)~D(exp)xexp(

D
V)~(H

4
2

2
. 

          (4-4-29) 

Substitute the third term of (4-4-22) with (4-4-29) and replace τ~  by )t( τ− , 

+−τξ⎟
⎠
⎞

⎜
⎝
⎛+τξ=τξ )t,x;,(U

D
Vxexp)t,x;,(U)t,x;,(G  

⋅⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +στ−σ−ξ−σ−⎟

⎠
⎞

⎜
⎝
⎛ σ+τ−+

D
V)]t(D[exp)xexp(

D
V)t(H
2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

τ−
τ−σ+−+ξ

⋅
)t(D

)t)(DV(xerfc
4

2 .     (4-4-30) 

The final solution of the Neumann or Robin boundary condition problem (4-4-1) can 
be obtained by substituting the Green’s function into (4-4-5). 

τττ
β

−ξξξ+τξτξφτξ= ∫∫∫ ∫
∞∞ ∞

d)](h),(GD[d)(f),(Gdd),(),(G)t,x(u
t

000 0

00 . (4-4-5) 

Here give an example to show how the final solution looks like. To make it easier, the 
advection diffusion problem with only boundary value is considered, without source 
term, namely, 0=φ )t,x(  and without non-zero initial value, i.e., 0=)x(f . Then (4-4-
5) is reduced as, 
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τττ
β

−= ∫ d)](h),(GD[)t,x(u
t

0

0 .      (4-4-31) 

According to (4-4-30), 
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⎠
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⎩
⎨
⎧

⎥
⎦
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⎡
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−⎟
⎠
⎞

⎜
⎝
⎛+⎥
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⎢
⎣

⎡
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          (4-4-32) 

Substitute (4-4-32) into (4-4-31) and apply the commutative law about convolution, 

i.e., ∫∫ ττ⋅τ−=ττ−⋅τ
tt

d)(f)t(fd)t(f)(f
0

21
0

21 , and note that 1=τ− )t(H  if t<τ , then 

we have, 

−ττ−⎥
⎦

⎤
⎢
⎣

⎡
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−= ∫ d)t(h
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⎦
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⎢
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⎡
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τσ+−

τσ+σσ−⎟
⎠
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t

d)}t(h
D

)DV(xerfc])VD{exp[()xexp(
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2
. 

          (4-4-33) 

If the parameters are specified as, 10210 −=β=α== ,,V,.D , and )t.sin()t(h π= 40 , 
i.e., a Neumann boundary of )t.sin()t,(ux π−= 400 , the analytical solutions at 
different time are shown in Figure 4-4-2 as solid lines. In the figure, the symbol lines 
are the computational results by solving the advection-differential equation 
numerically. The high consistency between the analytical and numerical solutions 
identifies the correctness of the solutions obtained by the GFM. 
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Figure 4-4-2 Verification of Green’s function solution in semi-infinite domain 

with Neumann boundary 

Similar to the example of the Neumann boundary, if a change is made only of 1=α , 
then it becomes a Robin boundary, i.e., )t.sin()t,(u)t,(u x π=− 4000 . The 
comparison between the analytical solutions and the numerical solutions is shown in 
Figure 4-4-3. It verifies again the Green’s function obtained in this section. 
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Figure 4-4-3 Verification of Green’s function solution in semi-infinite domain 

with Robin boundary 
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5. Green’s functions of finite domains 
In Section 4, the principle solution U  is actually the Green’s function for the infinite 
domain. For the case of semi-infinite domain, the Green’s function problems with the 
Dirichlet, the Neumann and the Robin boundary conditions are solved in last section. 
This section is devoted to solve the Green’s function in a bounded finite domain. It is 
not enough for this kind of problem to apply only inspection approach. New 
approaches like the eigenfunction method have to be utilized to seek the Green’s 
function. 

5.1 Eigenfunction method 
Eigenvalue problem for an ordinary differential equation has to be understood before 
stepping into the next subsection. Any linear second order inhomogeneous ordinary 
differential equation can be transformed as, 

fwu]''pu[ =+ , bxa ≤≤        (5-1-1) 

where )x(ff),x(ww),x(pp),x(uu ==== . Among the equations expressed as (5-1-
1), the most commonly encountered in practice is in the form of, 

fu)rq(]''pu[ =λ++ , bxa ≤≤       (5-1-2) 

where, like others, )x(rr),x(qq == , λ  is a parameter. (5-1-2) is called Sturm-
Liouville equation. The eigenvalue problem is constructed by the homogenous Sturm-
Liouville equation with linear homogeneous boundary conditions, i.e., 

0=λ++ u)rq(]''pu[ ,  bxa ≤≤       (5-1-3a) 

011 =β+α )a('u)a(u ,        (5-1-3b) 

022 =β+α )b('u)b(u ,       (5-1-3c) 

where 02
1

2
1 ≠β+α  and 02

2
2
2 ≠β+α . Three distinct features of the regular Sturm-

Liouville problem should be caught, 

(i) a bounded finite interval ]b,a[ , where both a  and b  are neither ∞−  nor ∞ ; 

(ii) r,q,'p,p  must be continuous; 

(iii) 00 >> r,p  must hold strictly for any ]b,a[x∈ . 

Based on the principle of differential equation, the homogeneous Sturm-Liouville 
problem (5-1-3) has nontrivial solutions only when λ  equals to certain values. These 
nontrivial solutions are called eigenfunctions, denoted as )x(nϕ , each of which is 
corresponding to an eigenvalue nλ . Furthermore, the functions )x(nϕ , ,...),,n( 321= , 
are mutually orthogonal, namely, 

0=ϕϕ∫
b

a
nm dx)x()x()x(r , if nm ≠ .      (5-1-4) 

If they are normalized, then, 

1=ϕϕ∫
b

a
nm dx)x()x()x(r , if nm = .      (5-1-5) 
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The set of )}x({ nϕ  is a normalized orthogonal complete set in the sense of mean 
square convergence. For any function )x(f  defined on ]b,a[ , it can be expanded as 
Fourier series based on )}x({ nϕ , i.e., 

∑
∞

=

ϕ
1n

nn )x(a~)x(f , ∫ ϕ=
b

a
nn dx)x(r)x()x(a f ,    (5-1-6) 

and the series is absolutely and uniformly convergent to )x(f . 

This is the basic idea of eigenfunction method. It should be noted that this paper work 
is devoted to explain the application of the GFM, not to form a mathematical textbook. 
Therefore any details about, say, singularity, existence and uniqueness and so forth, 
are not discussed fundamentally. Let’s continue the eigenvalue problem. If it is still 
somehow abstract, an example may be helpful to understand. A simple problem is 
listed as follows, 

0=λϕ+ϕ '' , ax ≤≤0 ,       (5-1-7a) 

00 =ϕ )( ,         (5-1-7b) 

0=ϕ )a( .         (5-1-7c) 

The problem satisfies strictly the three requirements of homogeneous Sturm-Liouville 
problem. It would be more straight if (5-1-7a) is rewritten as 0101 =ϕ⋅λ++ϕ⋅ )(]''[ . 
It is quite easy to obtain the normalized eigenfunctions and corresponding eigenvalues 
of the problem, 

⎟
⎠
⎞

⎜
⎝
⎛ π

=ϕ
a

xnsin
a

)x(n
2 , 2

22

a
n

n
π

=λ , ,...),,n( 321= .    (5-1-8) 

It is actually the sine series of Fourier transform, which can be looked as, in a sense, a 
particular case of eigenfunction expansions. 

5.2 Eigenfunction expansion 
In the subsection, only a short example is discussed to explain how to use 
eigenfunction method to solve a Green’s function-like problem with a delta function 
on the right hand side of an equation. For an instance, 

)x()x;(gk)x;(''g −ξδ=ξ+ξ 2 , a≤ξ≤0      (5-2-1a) 

00 =)x;(g ,         (5-2-1b) 

0=)x;a(g ,         (5-2-1c) 

where, like in Section 3 and Section 4, ξ  is the running variable, x  is looked as 
constant. It is known already that the associated eigenvalue problem of (5-2-1) is 
actually the one of (5-1-7), which solution is used directly here. According to the 
eigenfunction method, the both functions of )x;(g ξ  and )x( −ξδ  in (5-2-1a) can be 
expanded based on )}x({ nϕ  shown in (5-1-8), 

∑
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=
⎥
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⎤
⎢
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⎡
⎟
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⎞

⎜
⎝
⎛ πξ
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1

2
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n a
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a
)x(a)x;(g ,      (5-2-2) 
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where, )x(an  is to be determined. 

Differentiate twice (5-2-2) on both sides, 
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Expand the delta function )x( −ξδ  as, 
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where, according to (5-1-6) and noting that “ 1=)x(r ” in the eigenvalue problem of 
(5-1-7) or “ 1=ξ)(r ” here, 
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The last step proceeds by using the property of delta function (2-1-3). 

Substitute (5-2-2), (5-2-3) and (5-2-4) into (5-2-1a), 
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Simplified as, 
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Equality (5-2-6) must hold for any ξ , therefore it must have, 
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In the last step )x(bn  is substituted by using (5-2-5). The solution of (5-2-1) is 
obtained by bringing (5-2-7) into (5-2-2), 
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5.3 Green’s function of general advection diffusion problem 
The general problem is formulated as, 

)t,x(DuVuuLu xxxt φ=−+= , ax <<0 , ∞<< t0 ,   (5-3-1a) 
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)x(f),x(u =0 ,         (5-3-1b) 

)t(h)t,(u)t,(u x 111 00 =β+α ,       (5-3-1c) 

)t(h)t,a(u)t,a(u x 222 =β+α ,       (5-3-1d) 

where 02
1

2
1 ≠β+α  and 02

2
2
2 ≠β+α . The boundary conditions cover the Dirichlet, 

the Neumann and the Robin boundary conditions. 

According to (3-2-8), the solution of (5-3-1) can be expressed as, 

−ξ+τξφ= =τ∫∫ ∫ d])Gu([ddG)t,x(u
at a

0
00 0  

 τ−+−−+− ∫ =ξξξ=ξξξ d}]DGuu)DGVG[(]DGuu)DGVG{[(
t

a
0

0 . (5-3-2) 

Based on the different values of 2121 ββαα ,,,  in (5-3-1c) and (5-3-1d), the boundary 
values of u  or xu  )u( ξ  can be brought into (5-3-2). The adjoint boundary conditions 
for G  can be determined by vanishing of the unwelcome terms in (5-3-2). The 
boundary conditions for G  obtained by this way must be homogeneous, and be linear 
combinations of G  and/or ξG  taking values on the boundary. Together with the 
governing equation of Green’s function, the boundary value problem on G  can be 
formulated as, 

)t,x(DGVGGGL* −τ−ξδ=−−−= ξξξτ , a<ξ<0 , ∞<τ<0   (5-3-3a) 

000 11 =τβ+τα ξ ),(G~),(G~ ,       (5-3-3b) 

022 =τβ+τα ξ ),a(G~),a(G~ .       (5-3-3c) 

where 2211 βαβα
~,~,~,~  are determined by the values of D,V,,,, 2211 βαβα  and so on 

depending on different boundary conditions. 

To handle the delta function in (5-3-3), it might be easier to appeal to Laplace 
transform. According to Section 4, 0=G  if t>τ ; and G  is a function if t<τ . In 
another word, G  might be nonzero if 0<τ , although negative time does not mean 
anything in physics. Therefore, in order to utilize Laplace transform, (referring to the 
definition of Laplace transform in Section 2), it is necessary to reverse the time 
coordinate, namely, to assume that, 

τ−=τ~ ,         (5-3-4) 

then to denote G  as G~  in the transformed time coordinate, 

)t,x;,(G)t,x;~,(G~ τ−ξ=τξ .       (5-3-5) 

It is obvious that, after transformation, 0=G~  if t~ <τ . By the treatment and 
considering that delta function is an even function, the problem (5-3-3) is transformed 
as, 

)t~,x(G~DG~VG~ ~ +τ−ξδ=−− ξξξτ , a<ξ<0 , ∞<τ< ~0    (5-3-6a) 
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000 11 =τβ+τα ξ )~,(G~~)~,(G~~ ,       (5-3-6b) 

022 =τβ+τα ξ )~,a(G~~)~,a(G~~ .       (5-3-6c) 

It is worth to mention that the reversed time τ~  can be from ∞−  to ∞ , in the light of 
the broadened time concept. However, it is still defined as ∞<τ< ~0  in (5-3-6a) for 
symmetry, because 0≡G~  when t~ <τ  and t  is a positive constant here. Actually if 
someone likes, it can be defined as ∞<τ< ~t . 

So far Laplace transform can be performed on (5-3-6a) from τ~  to s . Recovering the 
properties about Laplace transform in Section 2, it is easy to obtain, 

)tsexp()x(''GD'GVGs −ξδ=−− ,      (5-3-7a) 

000 11 =β+α ξ )s,(G~)s,(G~ ,       (5-3-7b) 

022 =β+α ξ )s,a(G~)s,a(G~ ,       (5-3-7c) 

where ∫
∞

ττ−τξ=τξ≡ξ
0

~d)~sexp()t,x;~,(G~)]t,x;~,(G~[)t,x;s,(G L . 

It comes to apply eigenfunction method to solve the problem of (5-3-7). However it is 
not in the form of regular Sturm-Liouville equation (5-1-2), which does not have the 
term of the first derivative. So we must make proper transformation on G . Assume 
that, 

)()(g)(G ξψξ=ξ .        (5-3-8) 

Substitute (5-3-8) into (5-3-7a) and arrange it as, 

)tsexp()x(g)s'V''D('g)V'D(''gD −ξδ−=ψ−ψ+ψ+ψ+ψ+ψ 2 .  (5-3-9) 

Since the coefficient of the first derivative 'g  is not preferred by the form of Sturm-
Liouville, it is demanded that, 

02 =ψ+ψ V'D .        (5-3-10) 

By straightforward calculation without considering the integration coefficient, we 
have, 
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In the light of (5-3-8) and (5-3-11), we have, 
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Substitute (5-3-11) back into (5-3-9) and simplify as, 
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In the exponential term on the right and side, ξ  is replaced by x  in the last step. This 
is the direct result by using the property of delta function (2-1-5). The boundary 
conditions (5-3-7b) and (5-3-7c) are transformed accordingly as, 
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Fortunately they are still homogeneous after transformation. Equation (5-3-13a) and 
boundary conditions (5-3-13b) and (5-3-13c) form the eigenvalue problem. The 
associated Sturm-Liouville problem to (5-3-13) is formulated as, 

0=λϕ+ϕ '' ,         (5-3-14a) 
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V~ .      (5-3-14c) 

It should be emphasized that the boundary conditions for the associated Sturm-
Liouville problem (5-3-14) should be identical to the original problem (5-3-13). 
Assume that the solution of (5-3-14) is )(n ξϕ  corresponding to nλ ,...),,n( 321= . The 
specific expressions or values depend on the specific boundary conditions. In view of 
eigenfunction method, all the function in (5-3-13a), g , ''g  and )x( −ξδ  can be 
expanded as Fourier series on the complete set )}({ n ξϕ . Let’s say, 
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Differentiate twice (5-3-15) on both sides, 
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Noting that )(n ξϕ  is a solution of (5-3-14), it must satisfy the equation (5-3-14a), 
namely, 

0=ξϕλ+ξϕ )()('' nnn , i.e., )()('' nnn ξϕλ−=ξϕ .    (5-3-17) 

Substitute (5-3-17) into (5-3-16), 
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)x( −ξδ  is expanded as, 
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)()x(b)x( n
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where, according to (5-1-6) with considering that “ 1=ξ)(r ”, 
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Bring (5-3-20) into (5-3-19), 
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Substituting (5-3-15), (5-3-18) and (5-3-21) to (5-3-13a), we have, 
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Since the equality (5-3-22) holds for any ξ , it must have, 
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Substitute (5-3-23) into (5-3-15), 
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This is the solution of problem (5-3-13). 

Depending on (5-3-12), the solution of problem (5-3-7) is obtained as, 
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By making inverse Laplace transform on (5-3-25) from s  to τ~ , the solution of the 
problem (5-3-6) is obtained as, 
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(5-3-26) 

By recovering the original time coordinate based on (5-3-4), the solution of the 
problem (5-3-3) is obtained as, 
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(5-3-27) 

where, the eigenfunctions and corresponding eigenvalues }),({ nn λξϕ  are determined 
by (5-3-14), i.e., the explicit expressions about }),({ nn λξϕ  are determined only by 
the given boundary conditions. Once the Green’s function )t,x;,(G τξ  is solved, the 
final solution )t,x(u  of the original general problem (5-3-1) can be obtained by 
substituting (5-3-27) into (5-3-2). If it is still abstract, we have to come to solve 
specific problems as examples. 

5.4 Examples 
For a one-dimensional problem, the concerned interval has two boundaries, on each of 
which one of three sorts of boundary conditions could be prescribed, the Dirichlet, the 
Neumann or the Robin boundary, noted as D, N and R, respectively. It is simple to 
know there are nine different combinations. Fortunately the Neumann type of 
boundary can be handled somehow as a special case of the Robin boundary with 
specifying 0=α i  and 1=β i  )ori( 21=  in (5-3-1). In other words, combinations can 
be reduced by handling only two types of boundaries, the Dirichlet and the Robin 
boundaries. Therefore the four problems with D-D, D-R, R-D and R-R are solved as 
four examples. 

5.4.1 Dirichlet- Dirichlet (D-D) boundaries 
As the title says, Dirichlet boundary conditions are prescribed at both ends. The 
problem is described as, 

)t,x(DuVuuLu xxxt φ=−+= , ax <<0 , ∞<< t0 ,   (5-4-1-1a) 

)x(f),x(u =0 ,         (5-4-1-1b) 

)t(h)t,(u 10 = ,        (5-4-1-1c) 

)t(h)t,a(u 2= .        (5-4-1-1d) 

According to (5-3-2), the solution can be expressed as, 

−ξ+τξφ= =τ∫∫ ∫ d])Gu([ddG)t,x(u
at a

0
00 0  

 τ−+−−+− ∫ =ξξξ=ξξξ d}]DGuu)DGVG[(]DGuu)DGVG{[(
t

a
0

0 . (5-3-2) 

Based on the given boundary conditions, the terms of “ 0=ξξ− )DGu( ” and 

“ a)DGu( =ξξ− ” in (5-3-2) are unwelcome, so the adjoint boundary conditions for 

Green’s function can be defined as, 00==ξG  and 0==ξ aG . Together with the 
governing equation of G , the Green’s function problem is defined as, 

)t,x(DGVGGGL* −τ−ξδ=−−−= ξξξτ , a<ξ<0 , ∞<τ<0   (5-4-1-2a) 
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00 =τ),(G ,         (5-4-1-2b) 

0=τ),a(G .         (5-4-1-2c) 

On the other hand, by applying the boundary conditions of G , the expression of 
solution (5-3-2) can be simplified as, 
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(5-4-1-3) 

By comparing (5-4-1-2) to (5-3-3), it is obvious that, 

01 2121 =β=β=α=α
~~,~~ .       (5-4-1-4) 

By substituting the above values into (5-3-14), the eigenvalue problem for this case is 
directly obtained as, 

0=λϕ+ϕ '' ,         (5-4-1-5a) 

00 =ϕ )( ,         (5-4-1-5b) 

0=ϕ )a( .         (5-4-1-5c) 

The following steps are devoted to solve the eigenvalue problem. 

The general solution of (5-4-1-5a) is in the form of, 

)cos(B)sin(A)( ξλ+ξλ=ξϕ ,     (5-4-1-6) 

where A  and B  are undetermined constants. By using (5-4-1-5b), we have, 
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Thus, 
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According to (5-4-1-4c), 
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In order to obtain nontrivial solutions for (5-4-1-5a), λ  must meet, π=λ na , 
namely, 
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This is the eigenvalue of the problem (5-4-1-5). The corresponding eigenfunction is, 
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To determine A , nϕ  is normalized as follows, 
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thus, 

a
A 2
= . 

So the normalized eigenfunction is obtained as, 
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Based on (5-3-27), the Green’s function can be obtained as, 
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For convenience, h  is introduced and defined as, 

D
V
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=h .         (5-4-1-9) 

The following h  in the text shares the same definition as here. Then the Green’s 
function can be expressed as, 
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The final solution )t,x(u  of the problem (5-4-1-1) with the Dirichlet- Dirichlet 
boundary conditions can be obtained by substituting the Green’s function into (5-4-1-
3). 

5.4.2 Dirichlet- Robin (D-R) boundaries 
As the title says, a Dirichlet boundary condition is prescribed at 0=x  and a Robin 
boundary at ax = . The problem is formulated as, 

)t,x(DuVuuLu xxxt φ=−+= , ax <<0 , ∞<< t0 ,   (5-4-2-1a) 

)x(f),x(u =0 ,         (5-4-2-1b) 

)t(h)t,(u 10 = ,        (5-4-2-1c) 

)t(h)t,a(u)t,a(u x 222 =β+α , )( 02 ≠β .     (5-4-2-1d) 

According to (5-3-2), the general solution can be expressed as, 

−ξ+τξφ= =τ∫∫ ∫ d])Gu([ddG)t,x(u
at a

0
00 0  
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 τ−+−−+− ∫ =ξξξ=ξξξ d}]DGuu)DGVG[(]DGuu)DGVG{[(
t

a
0

0 . (5-3-2) 

The boundary condition (5-4-2-1d) can be changed as, 

)]t,a(u)t(h[)t,a(ux 22
2

1
α−

β
= , i.e., 

)],a(u)(h[),a(u τα−τ
β

=τξ 22
2

1 . 

By using the equality, (5-3-2) is rearranged as, 

−ξ+τξφ= =τ∫∫ ∫ d])Gu([ddG)t,x(u
at a

0
00 0  

 τ−+−
β

−+σ+− ∫ =ξξξ=ξξ d}]DGuu)DGVG[(]GhDu)DGDGVG{[(
t

a
0

02
2

2 ,

          (5-4-2-2) 

where, 
2

2
2 β

α
=σ .        (5-4-2-3) 

(The following 2σ  has the same definition as here.) 

According to the given boundary conditions, the terms of “ 0=ξξ− )DGu( ” and 

“ a]u)DGDGVG[( =ξξ+σ+ 2 ” in (5-4-2-2) are unwelcome, so the adjoint boundary 

conditions for Green’s function can be defined as, 00==ξG  and 

02 =+σ+ =ξξ a)DGDGVG( . Together with the governing equation of G , the 
Green’s function problem is defined as, 

)t,x(DGVGGGL* −τ−ξδ=−−−= ξξξτ , a<ξ<0 , ∞<τ<0   (5-4-2-4a) 

00 =τ),(G ,         (5-4-2-4b) 

02 =τ+τσ+ ξ ),a(DG),a(G)DV( .      (5-4-2-4c) 

On the other hand, by applying the boundary conditions of G , the expression about 
solution (5-4-2-2) can be simplified as, 

τττ−ττ
β

−−ξξξ+τξφ= ∫∫∫ ∫ ξ d])(h),(DG)(h),a(GD[d)(f),(GddG)t,x(u
tat a

0
12

200 0

00 . 

(5-4-2-5) 

By comparing (5-4-2-4) to (5-3-3), it is obvious that, 

D~,~),V(~,~ =β=βσ+=α=α 21221 01 .     (5-4-2-6) 

By substituting the above values into (5-3-14), the eigenvalue problem for this case is 
obtained as, 
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0=λϕ+ϕ '' ,         (5-4-2-7a) 

00 =ϕ )( ,         (5-4-2-7b) 

02 =ϕ+ϕσ+ )a(')a()(h ,       (5-4-2-7c) 

where, h  is defined in (5-4-1-9) and 02 ≠σ+h . 

The general solution of the eigenvalue problem is in the form of, 

)cos(B)sin(A)( ξλ+ξλ=ξϕ .     (5-4-1-6) 

According to (5-4-2-7b), 

0000 ==+=ϕ B)cos(B)sin(A)( . 

That is, 

)sin(A)( ξλ=ξϕ , thus, )cos(A)(' ξλλ=ξϕ . 

According to (5-4-2-7c), 

022 =λλ+λσ+=ϕ+ϕσ+ )acos(A)asin(A)()a(')a()( hh , i.e., 

2σ+
λ−

=λ
h

)atan( .        (5-4-2-8) 

Assume that the n th positive root of the above equation is nλ , which is the 
eigenvalue of the problem. Then the eigenfunction is, accordingly, 

)sin(A)( nn ξλ=ξϕ . 

To determine A , nϕ  is normalized as follows, 

=
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⎡
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n
nn

n h

h
 

The last second step proceeds by using the equality of 
2σ+

λ−
=λ
h

n
n )atan( . 

Thus, 

)(])([a
])([

A
n

n

2
2

2

2
22

σ++σ++λ
σ++λ

=
hh

h
. 

So the normalized eigenfunction is obtained as, 

)sin(
)(])([a

])([
)( n

n

n
n ξλ

σ++σ++λ
σ++λ

=ξϕ
2

2
2

2
22
hh

h
.    (5-4-2-9) 

Based on (5-3-27), the Green’s function is obtained as, 
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∑
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⋅
σ++σ++λ

σ++λ
τ−=τξ

1 2
2

2

2
22

n n

n

)(])([a
])([

)t(H)t,x;,(G
hh

h
 

)sin()xsin()]x()t)((Dexp[ nnn ξλλ−ξ−τ−+λ−⋅ hh 2 .  (5-4-2-10) 

The final solution about u of the problem (5-4-2-1) with the Dirichlet- Robin 
boundary conditions can be obtained by substituting the Green’s function into (5-4-2-
5). 

5.4.3 Robin- Dirichlet (R-D) boundaries 
Although the boundary conditions are quite similar to Example 5.4.2, it is still being 
put here to complete the boundary combinations. The problem is formulated as, 

)t,x(DuVuuLu xxxt φ=−+= , ax <<0 , ∞<< t0 ,   (5-4-3-1a) 

)x(f),x(u =0 ,         (5-4-3-1b) 

)t(h)t,(u)t,(u x 111 00 =β+α , )( 01 ≠β ,     (5-4-3-1c) 

)t(h)t,a(u 2= .        (5-4-3-1d) 

According to (5-3-2), the general solution can be expressed as, 

−ξ+τξφ= =τ∫∫ ∫ d])Gu([ddG)t,x(u
at a

0
00 0  

 τ−+−−+− ∫ =ξξξ=ξξξ d}]DGuu)DGVG[(]DGuu)DGVG{[(
t

a
0

0 . (5-3-2) 

Based on the boundary condition (5-4-3-1c), 

)],(u)(h[),(u τα−τ
β

=τξ 010 11
1

. 

By using the equality, (5-3-2) is rearranged as, 

−ξ+τξφ= =τ∫∫ ∫ d])Gu([ddG)t,x(u
at a

0
00 0  

 τ
β

−+σ+−−+− ∫ =ξξ=ξξξ d}]GhDu)DGDGVG[(]DGuu)DGVG{[(
t

a
0

01
1

1 ,

          (5-4-3-2) 

where, 
1

1
1 β

α
=σ .        (5-4-3-3) 

(The following 1σ  has the same definition as here.) 

By vanishings of the unwelcome terms in (5-4-3-2), the adjoint Green’s function 
problem is formulated as, 

)t,x(DGVGGGL* −τ−ξδ=−−−= ξξξτ , a<ξ<0 , ∞<τ<0   (5-4-3-4a) 

0001 =τ+τσ+ ξ ),(DG),(G)DV( ,      (5-4-3-4b) 
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0=τ),a(G .         (5-4-3-4c) 

Therefore the expression (5-4-3-2) can be simplified as, 

τττ
β

+ττ−ξξξ+τξφ= ∫∫∫ ∫ ξ d])(h),(GD)(h),a(DG[d)(f),(GddG)t,x(u
tat a

0
1

1
2

00 0

00 . 

(5-4-3-5) 

By comparing (5-4-3-4) to (5-3-3), we have, 

01 21221 =β=β=ασ+=α
~,D~,~),V(~ .     (5-4-3-6) 

By substituting the above values into (5-3-14), the corresponding eigenvalue problem 
is obtained as, 

0=λϕ+ϕ '' ,         (5-4-3-7a) 

0001 =ϕ+ϕσ+ )(')()(h ,       (5-4-3-7b) 

0=ϕ )a( ,         (5-4-3-7c) 

where 01 ≠σ+h . 

By solving the eigenvalue problem, the eigenvalues satisfies the equation of, 

1σ+
λ

=λ
h

)atan( ,        (5-4-3-8) 

which n th positive root is denoted as nλ . The corresponding eigenfunction is, 

)]a(sin[
)(])([a

])([
)( n

n

n
n −ξλ

σ+−σ++λ
σ++λ

=ξϕ
1

2
1

2
12
hh

h
.   (5-4-3-9) 

Based on (5-3-27), the Green’s function is obtained as, 
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1 1
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2
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)(])([a
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hh
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        )]a(sin[)]ax(sin[)]x()t)((Dexp[ nnn −ξλ−λ−ξ−τ−+λ−⋅ hh 2 . (5-4-3-10) 

The final solution of the problem (5-4-3-1) with the Robin- Dirichlet boundary 
conditions can be obtained by substituting the Green’s function into (5-4-3-5). 

5.4.4 Robin- Robin (R-R) boundaries 
This problem might be the most complicated one. It is defined as, 

)t,x(DuVuuLu xxxt φ=−+= , ax <<0 , ∞<< t0 ,   (5-4-4-1a) 

)x(f),x(u =0 ,         (5-4-4-1b) 

)t(h)t,(u)t,(u x 111 00 =β+α , )( 01 ≠β ,     (5-4-4-1c) 

)t(h)t,a(u)t,a(u x 222 =β+α , )( 02 ≠β .     (5-4-4-1d) 

The general solution is in (5-3-2), 
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−ξ+τξφ= =τ∫∫ ∫ d])Gu([ddG)t,x(u
at a

0
00 0  

 τ−+−−+− ∫ =ξξξ=ξξξ d}]DGuu)DGVG[(]DGuu)DGVG{[(
t

a
0

0 . (5-3-2) 

Boundary conditions of (5-4-4-1c) and (5-4-4-1d) can be changed as, 

)]t,(u)t(h[)t,(ux 010 11
1

α−
β

= , )]t,a(u)t(h[)t,a(ux 22
2

1
α−

β
= , 

respectively. By utilizing the equalities, (5-3-2) is rearranged as, 

−ξ+τξφ= =τ∫∫ ∫ d])Gu([ddG)t,x(u
at a

0
00 0  

τ
β

−+σ+−
β

−+σ+− ∫ =ξξ=ξξ d}]GhDu)DGDGVG[(]GhDu)DGDGVG{[(
t

a
0

01
1

12
2

2

 
           (5-4-4-2) 

where, 1σ  and 2σ  are defined in (5-4-3-3) and (5-4-2-3), respectively. In this case, 
the unwelcome terms are “ 01 =ξξ+σ+ ]u)DGDGVG[( ” and 

“ a]u)DGDGVG[( =ξξ+σ+ 2 ” in (5-4-4-2). Thus the assumptions about Green’s 

function’s boundary conditions of 001 =+σ+ =ξξ )DGDGVG(  and 

02 =+σ+ =ξξ a)DGDGVG(  can make them disappear. So, the Green’s function 
problem is defined as, 

)t,x(DGVGGGL* −τ−ξδ=−−−= ξξξτ , a<ξ<0 , ∞<τ<0   (5-4-4-3a) 

0001 =τ+τσ+ ξ ),(DG),(G)DV( ,      (5-4-4-3b) 

02 =τ+τσ+ ξ ),a(DG),a(G)DV( .      (5-4-4-3c) 

By using (5-4-4-3b) and (5-4-4-3c), the expression of solution (5-4-4-2) becomes as, 

τττ
β

−ττ
β

+ξξξ+τξφ= ∫∫∫ ∫ d])(h),(GD)(h),a(GD[d)(f),(GddG)t,x(u
tat a

0
1

1
2

200 0

00 . 

(5-4-4-4) 

By comparing (5-4-4-3) to (5-3-3), we have, 

D~~),DV(~),DV(~ =β=βσ+=ασ+=α 212211 . 

By applying these values into (5-3-14), the eigenvalue problem of this case is 
obtained as, 

0=λϕ+ϕ '' ,         (5-4-4-5a) 

0001 =ϕ+ϕσ+ )(')()(h ,       (5-4-4-5b) 

02 =ϕ+ϕσ+ )a(')a()(h ,       (5-4-4-5c) 
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where 02
2

2
1 ≠σ++σ+ )()( hh . 

The eigenvalue problem is solved as follows, 

)cos(B)sin(A)( ξλ+ξλ=ξϕ , thus, 

)sin(B)cos(A)(' ξλλ−ξλλ=ξϕ , 

where A  and B  are undetermined constants. By using (5-4-4-5b), we have, 

000 11 =λ+σ+=ϕ+ϕσ+ AB)()(')()( hh . 

By using (5-4-4-5c), 

+λσ++λσ+=ϕ+ϕσ+ )acos(B)()asin(A)()a(')a()( 222 hhh  

0=λλ−λλ+ )asin(B)acos(A . 

Based on the above two equations, we have, 
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Assume that the n th positive root of the above equation is nλ , ...,,n 321= . nλ  is the 
eigenvalue of the problem. Then the eigenfunction is, accordingly, 

)]sin()()cos([A~)( nnnn ξλσ+−ξλλ=ξϕ 1h , 

where, A~  is a constant, which is determined by the normalization of )(n ξϕ . 
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Noting that, 
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Substituting them into the integration of =ξξϕ∫
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Then the normalized eigenfunction is, 
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Therefore, according to (5-3-27), the Green’s function is, 
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Ψ
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      )]sin()()cos()][xsin()()xcos([ nnnnnn ξλσ+−ξλλλσ+−λλ⋅ 11 hh , 

          (5-4-4-9) 

then the solution of problem (5-4-4-1) with the Robin- Robin boundary conditions can 
be obtained by substituting the Green’s function into (5-4-4-4). 

As stated at the beginning of the subsection, the Neumann boundary condition can be 
treated as a special case of the Robin boundary. Among the boundary combinations, 
the Neumann- related are the D-N, N-D, N-N, N-R and R-N combinations. Although 
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it is straightforward to obtain the solutions by shrinking from a Robin to a Neumann 
boundary, the Green’s functions of the remaining boundary combinations are all 
solved in the following examples, but in a more succinct way. 

5.4.5 Dirichlet- Neumann (D-N) boundaries 
Based on the solved D-R problem (Example 5.4.2), it is specified as, 

02 =α , namely, 02 =σ , and 12 =β . 

The solution of D-N problem can be obtained by substituting the newly specified 
parameters into the equations or solutions of the D-R problem. 

The D-N problem is described as, 

)t,x(DuVuuLu xxxt φ=−+= , ax <<0 , ∞<< t0 ,   (5-4-5-1a) 

)x(f),x(u =0 ,         (5-4-5-1b) 

)t(h)t,(u 10 = ,        (5-4-5-1c) 

)t(h)t,a(ux 2= .        (5-4-5-1d) 

The adjoint Green’s function problem is formulated as, accordingly, 

)t,x(DGVGGGL* −τ−ξδ=−−−= ξξξτ , a<ξ<0 , ∞<τ<0   (5-4-5-2a) 

00 =τ),(G ,         (5-4-5-2b) 

0=τ+τ ξ ),a(DG),a(VG .       (5-4-5-2c) 

The corresponding eigenvalue problem is, 

0=λϕ+ϕ '' ,         (5-4-5-3a) 

00 =ϕ )( ,         (5-4-5-3b) 

0=ϕ+ϕ )a(')a(h ,        (5-4-5-3c) 

where 0≠h . The solutions are obtained by substituting 02 =σ  into (5-4-2-8) and (5-
4-2-9), 
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          (5-4-5-5) 

Then the Green’s function is, 
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)sin()xsin()]x()t)((Dexp[ nnn ξλλ−ξ−τ−+λ−⋅ hh 2 .  (5-4-5-6) 

The final solution about u  is expressed as (5-4-2-5) with 12 =β , 
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τττ−ττ−−ξξξ+τξφ= ∫∫∫ ∫ ξ d])(h),(DG)(h),a(DG[d)(f),(GddG)t,x(u
tat a

0
12

00 0

00 . 

(5-4-5-7) 

5.4.6 Neumann- Dirichlet (N-D) boundaries 
Based on the solved R-D problem (Example 5.4.3), it is specified as, 

01 =α , namely, 01 =σ , and 11 =β . 

The solution of N-D problem can be obtained by substituting the newly specified 
parameters into the equations or solutions of the R-D problem. 

The N-D problem is described as, 

)t,x(DuVuuLu xxxt φ=−+= , ax <<0 , ∞<< t0 ,   (5-4-6-1a) 

)x(f),x(u =0 ,         (5-4-6-1b) 

)t(h)t,(ux 10 = ,        (5-4-6-1c) 

)t(h)t,a(u 2= .        (5-4-6-1d) 

The adjoint Green’s function problem is formulated as, accordingly, 

)t,x(DGVGGGL* −τ−ξδ=−−−= ξξξτ , a<ξ<0 , ∞<τ<0   (5-4-6-2a) 

000 =τ+τ ξ ),(DG),(VG ,       (5-4-6-2b) 

0=τ),a(G .         (5-4-6-2c) 

The corresponding eigenvalue problem is, 

0=λϕ+ϕ '' ,         (5-4-6-3a) 

000 =ϕ+ϕ )(')(h ,        (5-4-6-3b) 

0=ϕ )a( ,         (5-4-6-3c) 

where 0≠h . The solutions are obtained by substituting 01 =σ  into (5-4-3-8) and (5-
4-3-9), 
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Then the Green’s function is, 
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        )]a(sin[)]ax(sin[)]x()t)((Dexp[ nnn −ξλ−λ−ξ−τ−+λ−⋅ hh 2 . (5-4-6-6) 

The final solution about u  is expressed as (5-4-3-5) with 11 =β , 

τττ+ττ−ξξξ+τξφ= ∫∫∫ ∫ ξ d])(h),(DG)(h),a(DG[d)(f),(GddG)t,x(u
tat a

0
12

00 0

00 . 

(5-4-6-7) 

5.4.7 Neumann- Neumann (N-N) boundaries 
Based on the solved R-R problem (Example 5.4.4), it is specified as, 

021 =α=α , namely, 021 =σ=σ , and 121 =β=β . 

The solution of N-N problem can be obtained by substituting the newly specified 
parameters into the R-R problem. 

The N-N problem is described as, 

)t,x(DuVuuLu xxxt φ=−+= , ax <<0 , ∞<< t0 ,   (5-4-7-1a) 

)x(f),x(u =0 ,         (5-4-7-1b) 

)t(h)t,(ux 10 = ,        (5-4-7-1c) 

)t(h)t,a(ux 2= .        (5-4-7-1d) 

The adjoint Green’s function problem is formulated as, accordingly, 

)t,x(DGVGGGL* −τ−ξδ=−−−= ξξξτ , a<ξ<0 , ∞<τ<0   (5-4-7-2a) 

000 =τ+τ ξ ),(DG),(VG ,       (5-4-7-2b) 

0=τ+τ ξ ),a(DG),a(VG .       (5-4-7-2c) 

The corresponding eigenvalue problem is, 

0=λϕ+ϕ '' ,         (5-4-7-3a) 

000 =ϕ+ϕ )(')(h ,        (5-4-7-3b) 

0=ϕ+ϕ )a(')a(h ,        (5-4-7-3c) 

where 0≠h . The solutions are obtained by substituting 021 =σ=σ  into (5-4-4-6), 
(5-4-4-7) and (5-4-4-8), 
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Then the Green’s function is, 
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The final solution about u  is obtained on (5-4-4-4) with 121 =β=β , 

τττ−ττ+ξξξ+τξφ= ∫∫∫ ∫ d])(h),(DG)(h),a(DG[d)(f),(GddG)t,x(u
tat a

0
12

00 0

00 . 

(5-4-7-8) 

5.4.8 Neumann- Robin (N-R) boundaries 
Based on the solved R-R problem (Example 5.4.4), it is specified as, 

01 =α , namely, 01 =σ , and 11 =β . 

The solution of N-R problem can be obtained by substituting the newly specified 
parameters into the R-R problem. 

The N-R problem is described as, 

)t,x(DuVuuLu xxxt φ=−+= , ax <<0 , ∞<< t0 ,   (5-4-8-1a) 

)x(f),x(u =0 ,         (5-4-8-1b) 

)t(h)t,(ux 10 = ,         (5-4-8-1c) 

)t(h)t,a(u)t,a(u x 222 =β+α , )( 02 ≠β .     (5-4-8-1d) 

The adjoint Green’s function problem is formulated as, accordingly, 

)t,x(DGVGGGL* −τ−ξδ=−−−= ξξξτ , a<ξ<0 , ∞<τ<0   (5-4-8-2a) 

000 =τ+τ ξ ),(DG),(VG ,       (5-4-8-2b) 

02 =τ+τσ+ ξ ),a(DG),a(G)DV( .      (5-4-8-2c) 

The corresponding eigenvalue problem is, 
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0=λϕ+ϕ '' ,         (5-4-8-3a) 

000 =ϕ+ϕ )(')(h ,        (5-4-8-3b) 

02 =ϕ+ϕσ+ )a(')a()(h ,       (5-4-8-3c) 

where 02
2

2 ≠σ++ )(hh . The solutions are obtained by substituting 01 =σ  into (5-
4-4-6), (5-4-4-7) and (5-4-4-8), 
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Then the Green’s function is, 

∑
∞

=

⋅−ξ−τ−+λ−
Ψ+Ψ

Ψ
τ−=τξ

1

2

32

12
n

n
nn

n )]x()t)((Dexp[)t(H)t,x;,(G hh  

      )]sin()cos()][xsin()xcos([ nnnnnn ξλ−ξλλλ−λλ⋅ hh , 

          (5-4-8-7) 

The final solution about u  is obtained on (5-4-4-4) with 11 =β , 

τττ−ττ
β

+ξξξ+τξφ= ∫∫∫ ∫ d])(h),(DG)(h),a(GD[d)(f),(GddG)t,x(u
tat a
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          (5-4-8-8) 

5.4.9 Robin- Neumann (R-N) boundaries 
Based on the solved R-R problem (Example 5.4.4), it is specified as, 

02 =α , namely, 02 =σ , and 12 =β . 

The solution of R-N problem can be obtained by substituting the newly specified 
parameters into the R-R problem, and by somewhat transform or simplification. 

The R-N problem is described as, 

)t,x(DuVuuLu xxxt φ=−+= , ax <<0 , ∞<< t0 ,   (5-4-9-1a) 
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)x(f),x(u =0 ,         (5-4-9-1b) 

)t(h)t,(u)t,(u x 111 00 =β+α , )( 01 ≠β ,     (5-4-9-1c) 

)t(h)t,a(ux 2= .        (5-4-9-1d) 

The adjoint Green’s function problem is formulated as, accordingly, 

)t,x(DGVGGGL* −τ−ξδ=−−−= ξξξτ , a<ξ<0 , ∞<τ<0   (5-4-9-2a) 

0001 =τ+τσ+ ξ ),(DG),(G)DV( ,      (5-4-9-2b) 

0=τ+τ ξ ),a(DG),a(VG .       (5-4-9-2c) 

The corresponding eigenvalue problem is, 

0=λϕ+ϕ '' ,         (5-4-9-3a) 

0001 =ϕ+ϕσ+ )(')()(h ,       (5-4-9-3b) 

0=ϕ+ϕ )a(')a(h ,        (5-4-9-3c) 

where 022
1 ≠+σ+ hh )( . The solutions are obtained by substituting 02 =σ  into (5-

4-4-6), (5-4-4-7) and (5-4-4-8), 
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Then the Green’s function is, 
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          (5-4-9-7) 

The final solution about u  is obtained on (5-4-4-4) with 12 =β , 
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Example 5.4.1 through 5.4.9 summarize all possible boundary conditions for the 
advection diffusion problems in a finite interval. In principle, the Green’s functions in 
the Example 5.4.1 through 5.4.9 can be shrunk into the solutions for the 
corresponding problems without advection, simply by applying the equalities, 0=V  
and/or 0=h . However some exceptional cases are listed as follows. (The numberings 
of the sub-titles and equations in the exceptional examples use the same as those in 
the corresponding advection problems, but plus a prime.) 

5.4.10 Dirichlet- Neumann (D-N) boundaries without advection 
Based on Example 5.4.5, the corresponding D-N problem without advection is 
described as, 

)t,x(Duu xxt φ=− , ax <<0 , ∞<< t0 ,     (5-4-5-1a’) 

)x(f),x(u =0 ,         (5-4-5-1b’) 

)t(h)t,(u 10 = ,        (5-4-5-1c’) 

)t(h)t,a(ux 2= .        (5-4-5-1d’) 

The adjoint Green’s function problem is formulated as, accordingly, 

)t,x(DGG −τ−ξδ=−− ξξτ , a<ξ<0 , ∞<τ<0    (5-4-5-2a’) 

00 =τ),(G ,         (5-4-5-2b’) 

0=τξ ),a(G .         (5-4-5-2c’) 

The corresponding eigenvalue problem is, 

0=λϕ+ϕ '' ,         (5-4-5-3a’) 

00 =ϕ )( ,         (5-4-5-3b’) 

0=ϕ )a(' .         (5-4-5-3c’) 

The solutions are easily obtained as, 
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Then the Green’s function is, 
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The final solution about u  is expressed as, 

τττ−ττ−−ξξξ+τξφ= ∫∫∫ ∫ ξ d])(h),(DG)(h),a(DG[d)(f),(GddG)t,x(u
tat a

0
12
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00 . 
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(5-4-5-7’) 

5.4.11 Neumann- Dirichlet (N-D) boundaries without advection 
Based on Example 5.4.6, the corresponding N-D problem without advection is 
described as, 

)t,x(Duu xxt φ=− , ax <<0 , ∞<< t0 ,     (5-4-6-1a’) 

)x(f),x(u =0 ,         (5-4-6-1b’) 

)t(h)t,(ux 10 = ,        (5-4-6-1c’) 

)t(h)t,a(u 2= .        (5-4-6-1d’) 

The adjoint Green’s function problem is formulated as, accordingly, 

)t,x(DGG −τ−ξδ=−− ξξτ , a<ξ<0 , ∞<τ<0    (5-4-6-2a’) 

00 =τξ ),(G ,         (5-4-6-2b’) 

0=τ),a(G .         (5-4-6-2c’) 

The corresponding eigenvalue problem is, 

0=λϕ+ϕ '' ,         (5-4-6-3a’) 

00 =ϕ )(' ,         (5-4-6-3b’) 

0=ϕ )a( .         (5-4-6-3c’) 

The solutions are obtained as, 
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Then the Green’s function is, 
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The final solution about u  is expressed as, 

τττ+ττ−ξξξ+τξφ= ∫∫∫ ∫ ξ d])(h),(DG)(h),a(DG[d)(f),(GddG)t,x(u
tat a
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00 . 

          (5-4-6-7’) 

5.4.12 Neumann- Neumann (N-N) boundaries without advection 
Based on Example 5.4.7, the corresponding N-N problem without advection is 
described as, 
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)t,x(Duu xxt φ=− , ax <<0 , ∞<< t0 ,     (5-4-7-1a’) 

)x(f),x(u =0 ,         (5-4-7-1b’) 

)t(h)t,(ux 10 = ,        (5-4-7-1c’) 

)t(h)t,a(ux 2= .        (5-4-7-1d’) 

The adjoint Green’s function problem is formulated as, accordingly, 

)t,x(DGG −τ−ξδ=−− ξξτ , a<ξ<0 , ∞<τ<0    (5-4-7-2a’) 

00 =τξ ),(G ,         (5-4-7-2b’) 

0=τξ ),a(G .         (5-4-7-2c’) 

The corresponding eigenvalue problem is, 

0=λϕ+ϕ '' ,         (5-4-7-3a’) 

00 =ϕ )(' ,         (5-4-7-3b’) 

0=ϕ )a(' .         (5-4-7-3c’) 

The solutions are obtained as, 
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In this case, the corresponding solution to the eigenvalue of zero is non-trivial, so it 
must be an element of the orthogonal complete set. 

Then the Green’s function is, 
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          (5-4-7-6’) 

The final solution about u  is obtained as, 

τττ−ττ+ξξξ+τξφ= ∫∫∫ ∫ d])(h),(DG)(h),a(DG[d)(f),(GddG)t,x(u
tat a
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          (5-4-7-7’) 
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6. Multi-dimensional Green’s function 
All the content in Section 3, 4 and 5 are about solving one-dimensional advection 
diffusion problem. This section is contributed to solve the problem in multi-
dimensions, say, three-dimension (3D). 

6.1 Direct solution 
Actually, the extension of the GFM from one dimension to higher dimensions, (even 
from lower order to higher orders), is entirely straightforward. The advection 
diffusion problem in 3D is generally formulated as, 

)t,z,y,x()uuu(DVuuLu zzyyxxxt φ=++−+= ,    (6-1-1a) 

fuuBu n =β+α= ,        (6-1-1b) 

where, (6-1-1a) holds in a given domain R, which could be infinite or finite, and (6-1-
1b) on the boundary B of R. Here the advection direction is defined in the x -direction 
without losing any general sense. The following steps are just to repeat the idea or 
procedure of the GFM to solve multi-dimensional problems. 

First, multiply Green’s function ),,,(G τζηξ  on both sides of (6-1-1a), and integrate 
by parts, 

∫ ∫ ∫ ∫∫ ∫ ∫ ∫ τζηξ+=τζηξ dddGduLTerms_BoundarydddGLud * , (6-1-2) 

where, 
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Then, G  is required to satisfy, 

)t,z,y,x(GL* −τ−ζ−η−ξδ= ,      (6-1-5) 

with homogeneous boundary conditions that can make the unwelcome boundary 
terms in (6-1-2) vanish. They are unwelcome because they contain boundary values 
being not prescribed. Therefore the remaining terms are only those containing the 
prescribed boundary values. In terms of (6-1-1a), (6-1-2) and (6-1-5), the solution can 
be expressed as, 

Terms_Boundary_mainingReddddG)t,z,y,x(u −τζηξφ= ∫ ∫ ∫ ∫ . (6-1-6) 

If the domain R is rectangular and is bounded in )z,y,x(  space by, 

]z,z[]y,y[]x,x[ 212121 ××  or by ],[],[],[ 212121 ζζ×ηη×ξξ , 

in ),,( ζηξ  space, and if the time is define as ∞<< t0 , then the “boundary terms” in 
(6-1-2), created by integration by parts, can be expressed explicitly, i.e., 
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where, both the welcome and unwelcome terms are included. (In the process of the 
integration by parts, a property of Green’s function, 0=∞=τG  is applied.) As 
mentioned, the unwelcome terms can be eliminated by applying the homogeneous 
boundary conditions of the Green’s function. In case of two-dimension, (6-1-7) is 
reduced as, 
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The expressions of (6-1-7) and (6-1-8) are useful to make multi-dimensional solutions 
by using the GFM. 

Green’s function equation (6-1-5) with its boundary conditions can be solved directly 
by using image system based on inspection, integral transform, or by using 
eigenfunction method, like in the case of one dimension. The extension from one 
dimension to multi-dimension is completely straightforward. However, efforts are not 
taken to that direction in this paper, but to apply a so-called “product rule” to create 
multi-dimensional Green’s function based on the one-dimensional Green’s functions 
we have solved already in last sections. 

6.2 Product solution 
Based on the approach of product solution, the multi-dimensional Green’s function 
can be obtained easily by multiplying one-dimensional Green’s functions together, if 
the boundary conditions of Green’s function are homogeneous. In other words, the 
problem of solving multi-dimensional Green’s function can be degraded to several 
one-dimensional problems. It is a big advantage and a lovely feature of the GFM. On 
the other hand, it must be emphasized that the approach of product solution is not 
universal. It is applicable only to Cartesian coordinate systems and cylindrical 
systems in a more limited sense. The approach does NOT apply to spherical 
coordinate system. Fortunately the latter two systems are not involved in this paper. 
This subsection is devoted to explain the principle of product solution based on the 
example of the advection diffusion problem. 

Let’s consider a cubic volume in space of ),,( ζηξ  bounded by iξ=ξ , iη=η , iζ=ζ , 
where 21,i =  and iii ,, ζηξ  can be finite constants or infinite, the 3D Green’s function 
problem defined on the cube with general linear homogeneous boundary conditions is 
formulated as, 
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)t,z,y,x()GGG(DVGG −τ−ζ−η−ξδ=++−−− ζζηηξξξτ ,  (6-2-1a) 

011 =β+α ξ=ξξ i
)GG( ii ,       (6-2-1b) 

022 =β+α η=ηη i
)GG( ii ,       (6-2-1c) 

033 =β+α ζ=ζζ i
)GG( ii , ),i( 21= ,      (6-2-1d) 

where, as usual in the GFM, τζηξ ,,,  are running variables and t,z,y,x  are constants. 
Let’s recover the physical meaning of G  in (6-2-1a). It stands for the heat distribution, 
caused by a unit heat pulse released at )z,y,x(  and at t , along a reversed time scale 
and with a reversed advection direction. (The latter reversed nature is not concerned 
here.) If the time is reversed and shifted by t , the physical meaning of Green’s 
function can be re-formulated as: it describes the heat distribution, initiated by a unit 
heat pulse released at an initial time of zero, along a time axis with normal direction. 
In other words, the original Green’s function problem with point source (6-2-1) is 
equivalent to an initial value problem without source term. By using mathematical 
language, the transform about the time coordinate is defined as, 

t~ +τ−=τ .         (6-2-2) 

Denoting the Green’s function as G~  in the new time coordinate, the problem (6-2-1) 
is transformed as, 

0=++−− ζζηηξξξτ )G~G~G~(DG~VG~ ~ ,     (6-2-3a) 

)z,y,x(G~ ~ −ζ−η−ξδ==τ 0 ,       (6-2-3b) 

011 =β+α ξ=ξξ i
)G~G~( ii ,       (6-2-3c) 

022 =β+α η=ηη i
)G~G~( ii ,       (6-2-3d) 

033 =β+α ζ=ζζ i
)G~G~( ii , ),i( 21= .      (6-2-3e) 

The problem (6-2-3) can be solved in the way to assume that, 

)~,(Z~)~,(Y~)~,(X~)~,,,(G~ τζ⋅τη⋅τξ=τζηξ .     (6-2-4) 

By substituting (6-2-4) into (6-2-3a) and rearranging, we have, 

0=−+−+−− ζζτηητξξξτ Y~X~)Z~DZ~(Z~X~)Y~DY~(Z~Y~)X~DX~VX~( ~~~ ,  (6-2-5) 

which can be satisfied if, 

0=−− ξξξτ X~DX~VX~ ~ ,       (6-2-6a) 

0=− ηητ Y~DY~~ ,        (6-2-7a) 

0=− ζζτ Z~DZ~ ~ .        (6-2-8a) 

Substitute (6-2-4) into the initial condition of (6-2-3b), 

=−ζ−η−ξδ=ζ⋅η⋅ξ=ζηξ )z,y,x(),(Z~),(Y~),(X~),,,(G~ 0000  
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)z()y()x( −ζδ−ηδ−ξδ= ,    (6-2-9) 

where, the last step is the result by using the property of delta function (2-1-8). 
Equality (6-2-9) can be satisfied if, 

)x(X~ ~ −ξδ==τ 0 ,        (6-2-6b) 

)y(Y~ ~ −ηδ==τ 0 ,        (6-2-7b) 

)z(Z~ ~ −ζδ==τ 0 .        (6-2-8b) 

Then, substitute (6-2-4) into the boundary condition of (6-2-3c), 

011 =β+α ξ=ξξ i
)X~X~(Z~Y~ ii ,       (6-2-10) 

where, 21,i = . Clearly, equality (6-2-10) can be satisfied if, 

011 =β+α ξ=ξξ i
)X~X~( ii .       (6-2-6c) 

Similar equalities can be obtained by substituting (6-2-4) into (6-2-3d) and (6-2-3e), 
respectively, 

022 =β+α η=ηη i
)Y~Y~( ii ,       (6-2-7c) 

033 =β+α ζ=ζζ i
)Z~Z~( ii ,       (6-2-8c) 

where, 21,i = . Therefore, the initial value problem (6-2-3) is divided into three initial 
value problems, 

⎪
⎪

⎩

⎪
⎪

⎨

⎧
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=τ

ξξξτ

),i(
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iii
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~
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0

0
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⎪

⎩

⎪
⎪

⎨
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−ηδ=

=−

η=ηη

=τ

ηητ
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)Y~Y~(

)y(Y~
Y~DY~
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~
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21
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0
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0  
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⎪

⎩

⎪
⎪

⎨

⎧
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−ζδ=
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ζ=ζζ

=τ

ζζτ

),i(

)Z~Z~(

)z(Z~
Z~DZ~

iii

~

~

21

0

0

33

0  

 (6-2-6)    (6-2-7)    (6-2-8) 

Based on the splitting procedure described above, the product solution of the three 
problems must satisfy the equation and the initial value and the boundary conditions 
of (6-2-3). That is to say, the product solution must be the solution of (6-2-3). The 
problems (6-2-6), (6-2-7) and (6-2-8) can be inversely transformed from τ~  
backwards to τ based on (6-2-2), and the initial value problems are re-formulated as 
point source problems, respectively, 

⎪
⎪
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=β+α
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011      (6-2-11) 
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⎪
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)YY(
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022       (6-2-12) 

⎪
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⎩
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=β+α

−τ−ζδ=−−

ζ=ζζ

ζζτ
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)t,z(DZZ

iii
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033       (6-2-13) 

where, )~,(X~),(X τξ=τξ , )~,(Y~),(Y τη=τη , )~,(Z~),(Z τζ=τζ . Look at the three 
problems, they are so familiar to us and appear many times in last sections. They are 
all one-dimensional Green’s function problem. The problems of (6-2-12) and (6-2-13) 
are looked as special cases of (6-2-11) with the advection velocity V  equal to zero. It 
is obvious that the transform on time coordinate does not affect at all the conclusion 
that, the product of the one-dimensional Green’s functions determined by (6-2-11), 
(6-2-12) and (6-2-13) are genuinely the solution of the multi-dimensional Green’s 
function of the problem (6-2-1), namely, 

)t,z;,(Z)t,y;,(Y)t,x;,(X)t,z,y,x;,,,(G τζτητξ=τζηξ .   (6-2-14) 

6.3 Green’s function tables 
Only for convenience, the Green’s functions for different domains and different 
boundary conditions are summarized in tables. The tables are constructed completely 
based on the solutions obtained in the previous sections. Without losing general sense, 
x  is selected as the advection direction and the directional Green’s functions are 
listed in Table 6-3-1. Accordingly, y  and z  are the transverse directions, which 
Green’s functions are summarized in Table 6-3-2 and Table 6-3-3, respectively. 
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Table 6-3-1 List of Green’s functions in advection direction, x  or ξ * 

I. Infinite domain ),( ∞−∞  

B.C. 
of u  

B.C. of G  G Solution term related to B.C. 

none none 1 none 

II. Semi-infinite domain ),( ∞0  

B.C. 
of u  

B.C. of G  G Solution term related to B.C. 

D 00 =τ),(G  2 
τττ+ ∫ ξ d])(h),(DG[

t

0

0  

N 000 =τ+τ ξ ),(DG),(VG  3 
τττ− ∫ d)](h),(DG[

t

0

0  

R 000 =τβ+τβ+α ξ ),(DG),(G)VD( 4 
τττ

β
− ∫ d)](h),(GD[

t

0

0  

III. Finite domain )a,(0  

B.C. 
of u  

B.C. of G  G Solution term related to B.C. 

D-D 00 =τ),(G  

0=τ),a(G  

5 
τττ−ττ− ∫ ξξ d])(h),(DG)(h),a(DG[

t

0
12 0

D-N 00 =τ),(G  

0=τ+τ ξ ),a(DG),a(VG  

6 
τττ−ττ−− ∫ ξ d])(h),(DG)(h),a(DG[

t

0
12 0

D-R 00 =τ),(G  

02 =τ+τσ+ ξ ),a(DG),a(G)DV(  

7 
τττ+ττ

β
+ ∫ ξ d])(h),(DG)(h),a(GD[

t

0
12

2

0

N-D 000 =τ+τ ξ ),(DG),(VG  

0=τ),a(G  

8 
τττ+ττ− ∫ ξ d])(h),(DG)(h),a(DG[

t

0
12 0  

N-N 000 =τ+τ ξ ),(DG),(VG  

0=τ+τ ξ ),a(DG),a(VG  

9 
τττ−ττ+ ∫ d])(h),(DG)(h),a(DG[

t

0
12 0  

N-R 000 =τ+τ ξ ),(DG),(VG  

02 =τ+τσ+ ξ ),a(DG),a(G)DV(  

10 
τττ−ττ

β
+ ∫ d])(h),(DG)(h),a(GD[

t

0
12

2

0  

R-D 0001 =τ+τσ+ ξ ),(DG),(G)DV(  

0=τ),a(G  

11 
τττ

β
+ττ− ∫ ξ d])(h),(GD)(h),a(DG[

t

0
1

1
2 0  
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R-N 0001 =τ+τσ+ ξ ),(DG),(G)DV(  

0=τ+τ ξ ),a(DG),a(VG  

12 
τττ

β
−ττ+ ∫ d])(h),(GD)(h),a(DG[

t

0
1

1
2 0  

R-R 0001 =τ+τσ+ ξ ),(DG),(G)DV(  

02 =τ+τσ+ ξ ),a(DG),a(G)DV(  

13 
τττ

β
−ττ

β
+ ∫ d])(h),(GD)(h),a(GD[

t

0
1

1
2

2

0

*i D means a Dirichlet boundary condition. It is defined as, 

)t(h)t,(u =0 , or )t(h)t,(u 10 = , )t(h)t,a(u 2= . 

*ii N means a Neumann boundary condition. It is defined as, 

)t(h)t,(ux =0 , or )t(h)t,(ux 10 = , )t(h)t,a(ux 2= . 

*iii R means a Robin boundary condition. It is defined as, 

)t(h)t,(u)t,(u x =β+α 00 , or, 

)t(h)t,(u)t,(u x 111 00 =β+α , )t(h)t,a(u)t,a(u x 222 =β+α . 

*iv 
β
α

=σ , 
1

1
1 β

α
=σ , 

2

2
2 β

α
=σ , 

D
V
2

=h  

*v Green’s functions 1 through 13 are given as, 
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Table 6-3-2 List of Green’s functions in transverse direction, y  or η * 

I. Infinite domain ),( ∞−∞  

B.C. 
of u  

B.C. of G  G Solution term related to B.C. 

none none 1 none 

II. Semi-infinite domain ),( ∞0  

B.C. 
of u  

B.C. of G  G Solution term related to B.C. 

D 00 =τ),(G  2 
τττ+ ∫ η d])(h),(DG[

t

0

0  

N 00 =τη ),(G  3 
τττ− ∫ d)](h),(DG[

t

0

0  

R 000 =τβ+τα η ),(G),(G  4 
τττ

β
− ∫ d)](h),(GD[

t

0

0  

III. Finite domain )b,(0  

B.C. 
of u  

B.C. of G  G Solution term related to B.C. 

D-D 00 =τ),(G  

0=τ),b(G  

5 
τττ−ττ− ∫ ηη d])(h),(DG)(h),b(DG[

t

0
12 0

D-N 00 =τ),(G  

0=τη ),b(G  

6 
τττ−ττ−− ∫ η d])(h),(DG)(h),b(DG[

t

0
12 0

D-R 00 =τ),(G  

02 =τ+τσ η ),b(G),b(G  

7 
τττ+ττ

β
+ ∫ η d])(h),(DG)(h),b(GD[

t

0
12

2

0

N-D 00 =τη ),(G  

0=τ),b(G  

8 
τττ+ττ− ∫ η d])(h),(DG)(h),b(DG[

t

0
12 0  

N-N 00 =τη ),(G  

0=τη ),b(G  

9 
τττ−ττ+ ∫ d])(h),(DG)(h),b(DG[

t

0
12 0  

N-R 00 =τη ),(G  

02 =τ+τσ η ),b(G),b(G  

10 
τττ−ττ

β
+ ∫ d])(h),(DG)(h),b(GD[

t

0
12

2

0  

R-D 0001 =τ+τσ η ),(G),(G  

0=τ),b(G  

11 
τττ

β
+ττ− ∫ η d])(h),(GD)(h),b(DG[

t

0
1

1
2 0
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R-N 0001 =τ+τσ η ),(G),(G  

0=τη ),b(G  

12 
τττ

β
−ττ+ ∫ d])(h),(GD)(h),b(DG[

t

0
1

1
2 0  

R-R 0001 =τ+τσ η ),(G),(G  

02 =τ+τσ η ),b(G),b(G  

13 
τττ

β
−ττ

β
+ ∫ d])(h),(GD)(h),b(GD[

t

0
1

1
2

2

0

*i D means a Dirichlet boundary condition. It is defined as, 

)t(h)t,(u =0 , or )t(h)t,(u 10 = , )t(h)t,b(u 2= . 

*ii N means a Neumann boundary condition. It is defined as, 

)t(h)t,(uy =0 , or )t(h)t,(uy 10 = , )t(h)t,b(uy 2= . 

*iii R means a Robin boundary condition. It is defined as, 

)t(h)t,(u)t,(u y =β+α 00 , or, 

)t(h)t,(u)t,(u y 111 00 =β+α , )t(h)t,b(u)t,b(u y 222 =β+α . 

*iv 
β
α

=σ , 
1

1
1 β

α
=σ , 

2

2
2 β

α
=σ . 

*v Green’s functions 1 through 8 are given as, 
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Table 6-3-3 List of Green’s functions in transverse direction, z or ζ * 

I. Infinite domain ),( ∞−∞  

B.C. 
of u  

B.C. of G  G Solution term related to B.C. 

none none 1 none 

II. Semi-infinite domain ),( ∞0  

B.C. 
of u  

B.C. of G  G Solution term related to B.C. 

D 00 =τ),(G  2 
τττ+ ∫ ζ d])(h),(DG[

t

0

0  

N 00 =τζ ),(G  3 
τττ− ∫ d)](h),(DG[

t

0

0  

R 000 =τβ+τα ζ ),(G),(G  4 
τττ

β
− ∫ d)](h),(GD[

t

0

0  

III. Finite domain )c,(0  

B.C. 
of u  

B.C. of G  G Solution term related to B.C. 

D-D 00 =τ),(G  

0=τ),c(G  

5 
τττ−ττ− ∫ ζζ d])(h),(DG)(h),c(DG[

t

0
12 0

D-N 00 =τ),(G  

0=τζ ),c(G  

6 
τττ−ττ−− ∫ ζ d])(h),(DG)(h),c(DG[

t

0
12 0

D-R 00 =τ),(G  

02 =τ+τσ ζ ),c(G),c(G  

7 
τττ+ττ

β
+ ∫ ζ d])(h),(DG)(h),c(GD[

t

0
12

2

0

N-D 00 =τζ ),(G  

0=τ),c(G  

8 
τττ+ττ− ∫ ζ d])(h),(DG)(h),c(DG[

t

0
12 0  

N-N 00 =τζ ),(G  

0=τζ ),c(G  

9 
τττ−ττ+ ∫ d])(h),(DG)(h),c(DG[

t

0
12 0  

N-R 00 =τζ ),(G  

02 =τ+τσ ζ ),c(G),c(G  

10 
τττ−ττ

β
+ ∫ d])(h),(DG)(h),c(GD[

t

0
12

2

0  

R-D 0001 =τ+τσ ζ ),(G),(G  

0=τ),c(G  

11 
τττ

β
+ττ− ∫ ζ d])(h),(GD)(h),c(DG[

t

0
1

1
2 0
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R-N 0001 =τ+τσ ζ ),(G),(G  

0=τζ ),c(G  

12 
τττ

β
−ττ+ ∫ d])(h),(GD)(h),c(DG[

t

0
1

1
2 0  

R-R 0001 =τ+τσ ζ ),(G),(G  

02 =τ+τσ ζ ),c(G),c(G  

13 
τττ

β
−ττ

β
+ ∫ d])(h),(GD)(h),c(GD[

t

0
1

1
2

2

0

*i D means a Dirichlet boundary condition. It is defined as, 

)t(h)t,(u =0 , or )t(h)t,(u 10 = , )t(h)t,c(u 2= . 

*ii N means a Neumann boundary condition. It is defined as, 

)t(h)t,(uz =0 , or )t(h)t,(uz 10 = , )t(h)t,c(uz 2= . 

*iii R means a Robin boundary condition. It is defined as, 

)t(h)t,(u)t,(u z =β+α 00 , or, 

)t(h)t,(u)t,(u z 111 00 =β+α , )t(h)t,c(u)t,c(u z 222 =β+α . 

*iv 
β
α

=σ , 
1

1
1 β

α
=σ , 

2

2
2 β

α
=σ . 
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  where, 
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7. Applications 

7.1 Validation of gas diffusion model of GASFLOW 
GASFLOW is a multi-dimensional fluid dynamics field computer code, which is 
widely applied in flow and safety analyses in nuclear industry (Travis et al., 1998). 
The original ideal of the work about Green’s functions is to validate the diffusion 
solver of GASFLOW based on the theoretical solutions obtained by using the GFM. 
To exclude any adverse effects such as buoyancy and chemistry, a problem of 
nitrogen diffusing into an advective air flow is designed to verify purely the diffusion 
solver. The advection diffusion problems in 1D, 2D and 3D are simulated, 
respectively, by using GASFLOW; the computational results are compared with the 
Green’s function solutions accordingly. 

7.1.1 One-dimensional advection diffusion problem 
A 1D channel is designed to contain a uniform advective air flow, as shown in Figure 
7-1-1-1. At one end of the channel, nitrogen is injected into the air flow. Another end 
is assumed to be far enough. The pressure is 0.1013 MPa and the temperature 298.15 
K. By defining the mass fraction of nitrogen as the solved variable )t,x(uu = , the 
advection diffusion process can be formulated as, 

0=−+ xxxt DuVuu , ∞<< x0 , ∞<< t0 ,    (7-1-1-1a) 

00 =),x(u ,         (7-1-1-1b) 

10 =)t,(u .         (7-1-1-1c) 

 
Figure 7-1-1-1 One-dimensional advective diffusion of nitrogen into air flow 
This is a boundary value problem in a Dirichlet type, defined in a semi-infinite 
domain, without a source term and with a zero initial value. By looking up the 
Green’s function in Table 6-3-1, the solution is simply expressed as, 
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⎣
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Figure 7-1-1-2 One-dimensional advective diffusion with 10.D = cm2/s and 

different ifvl  options 

If 10.D = cm2/s and 2=V cm/s, the theoretical nitrogen mass fraction distribution at 
5=t s is shown as the thicker solid line in Figure 7-1-1-2. The same problem is 

simulated by using GASFLOW. In the code, a van Leer option ( ifvl ) is set to choose 
the first- or second-order of the numerical schemes for discretizing of the advection 
term in space: “0” means the first-order, “1” the second-order. The simulation results 
by using both options are plotted in Figure 7-1-1-2 for comparison with the Green’s 
function. The figure shows that the second order result is better than the first-order, 
and has a good agreement with the Green’s function solution. Two important aspects 
about the propagating front of nitrogen are reflected in Figure 7-1-1-2: the advection 
distance and the diffusion length. The former is about 10 cm, equal to the product of 
the advection velocity (2 cm/s) and the time (5 s), the latter is about 5 cm, which 
depends on the diffusion coefficient and the time. 

The sensitivity of the simulation results on cell sizes are performed for the cases of 
010.D = cm2/s and 0010.D = cm2/s, and the results together with the corresponding 

Green’s function solutions are shown in Figure 7-1-1-3 (a) and (b), respectively. The 
advection velocity is not changed and the second-order scheme about advection 
( 1=ifvl ) is applied in the GASFLOW simulations. It is the same as here if no special 
words are given in following text. Figure 7-1-1-3 indicates that the smaller the 
diffusion coefficient is, the sharper the nitrogen front, and the smaller cell size is 
needed to reproduce the leading front. The convergence of the simulating results to 
the theoretical solutions is presented from coarse grids to refined grids in both (a) and 
(b). 



-      - 67

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0

0.0

0.2

0.4

0.6

0.8

1.0

M
as

s 
fra

ct
io

n

x, cm

D=0.01cm2/s, t=5s
 GFM
 Gasflow,dx=0.05cm
 Gasflow,dx=0.1cm
 Gasflow,dx=1/3cm

 
(a) 

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0

0.0

0.2

0.4

0.6

0.8

1.0

M
as

s 
fra

ct
io

n

x, cm

D=0.001cm2/s, t=5s
 GFM
 Gasflow,dx=0.01cm
 Gasflow,dx=0.05cm
 Gasflow,dx=0.1cm
 Gasflow,dx=1/3cm

 
(b) 

Figure 7-1-1-3 One-dimensional advective diffusion with different cell sizes 
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Figure 7-1-1-4 One-dimensional advective diffusion with different diffusion 

coefficients 
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The comparisons between the GASFLOW simulations and the Green’s function 
solutions are also made for different diffusion coefficients ranging from 0.001 cm2/s 
to 1 cm2/s, as shown in Figure 7-1-1-4. Perfect agreements are obtained between the 
GFM and GASFLOW in the different cases except that of 1=D cm2/s, which has a 
slight deviation, but within an acceptable limit. Figure 7-1-1-4 clearly manifests that a 
bigger D  results in a wider nitrogen front, or a bigger diffusion distance. 

7.1.2 Two-dimensional advection diffusion problem 
A similar two-dimensional advection diffusion problem of nitrogen into an air flow is 
designed to validate the performance of GASFLOW. As shown in Figure 7-1-2-1, 
nitrogen is released only from the interval ]y,y[ 10  to the advective air flow. The mass 
fraction of nitrogen is defined as the unknown variable, u , to be solved. The problem 
can be modeled as a semi-infinite ( x  direction) and infinite ( y  direction) 2D 
advection diffusion problem with a Dirichlet boundary condition: 

0=+−+ )uu(DVuu yyxxxt , ∞<< y,x0 , ∞<< t0 ,   (7-1-2-1a) 

00 =),y,x(u ,         (7-1-2-1b) 

⎩
⎨
⎧

=
,
,

)t,y,(u
0
1

0   
.otherwise

],y,y[y,if 10∈       (7-1-2-1c) 

 
Figure 7-1-2-1 Two-dimensional advective diffusion of nitrogen into air flow 
According to the GFM, the general solution for a 2D problem is expressed as (6-1-8), 
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2

1

2

1
. (6-1-8) 

In the application, ),(),( ∞=ξξ 021 , ),(),( ∞−∞=ηη 21 . By substituting them into (6-
1-8), it becomes as, 

+ηξ+τηξφ= ∫ ∫∫ ∫ ∫
∞

∞−

∞

=τ

∞

∞−

∞

0
0

0 0

dd)Gu(dddG)t,y,x(u
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           ∫ ∫∫ ∫
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0 00
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In the case, 0=φ  and 00==τu  according to (7-1-2-1a) and (7-1-2-1b), respectively, 
then (7-1-2-2) is reduced as, 

∫ ∫∫ ∫
∞

∞=η
−∞=ηηη

∞

∞−

∞=ξ
=ξξξ τξ−+τη−−=

tt

dd)]uGGu(D[dd]VGu)uGGu(D[)t,y,x(u
0 00

0 . 

          (7-1-2-3) 

Considering the homogenous boundary conditions of the Green’s function at infinite, 
namely, 

0=∞=ξG , 0=±∞=ηG , 0=∞=ξξ )G( , 0=±∞=ηη )G( ,    (7-1-2-4) 

the expression of solution (7-1-2-3) is reduced further as, 

∫ ∫
∞

∞−
=ξξξ τη−−−=

t

dd]VGu)uGGu(D[)t,y,x(u
0

0 ,    (7-1-2-5) 

where 0=ξu  is prescribed in (7-1-2-1c) as a Dirichlet boundary and 0=ξξ )u(  is not 

prescribed. Therefore the term 0=ξξ )Gu(  in (7-1-2-5) is unwelcome, then the 

additional boundary condition of G  must be 00 ==ξG . By applying the boundary 
condition, (7-1-2-5) is changed as, 
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Based on the product rule of Green’s function, we have, 
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By substituting (7-1-2-8) into (7-1-2-6), we have, 
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By using the Green’s function tables, Table 6-3-1 and Table 6-3-2, we can find the 
proper directional Green’s functions according the domain and the boundary 
condition, 
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By bringing them into (7-1-2-9) and applying (7-1-2-1c), the solution becomes as, 
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This is the final solution of the nitrogen mass fraction distribution in the advective air 
flow. If 10.D = cm2/s, 2=V cm/s, 500 .y −= cm, 501 .y = cm, a 3D view of the 
nitrogen mass fraction distribution at 10=t s is shown in Figure 7-1-2-2, which is 
drawn based on (7-1-2-10) by using Mathcad, a mathematics compute program. 

On the other hand, GASFLOW is applied to simulate the advection diffusion problem 
accordingly, with a grid size of 0.2 cm. Figure 7-1-2-3 presents the mass fraction 
distribution along the central line of the plume in the advection direction at different 
times of 2s, 4s, 6s, 8s and 10s, to depict the developing front of the diffusing 
concentration. 

The mass fraction distributions in the transverse direction at 10=x cm and at 
different times are shown in Figure 7-1-2-4, which shows a Gaussian distribution with 
a growing amplitude on time. In the light of the figure, the upstream diffusion front 
arrives here at about 4 s, and grows up to be mature at about 6 s. The fastest growing 
occurs at about 5 s, simply because the advection front arrives here at this moment 
and dominates the mixing process. The high consistency between the theoretical 
solutions and the numerical solutions manifests that GASFLOW can reproduce 
numerically the advection diffusion process in a quite satisfactory way. 
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Figure 7-1-2-2 Three-dimensional view of advection diffusion plume of nitrogen 

at 10=t s 
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Figure 7-1-2-3 Mass fraction distributions in advection direction ( 0=y cm) at 

different times (two-dimensional problem) 
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Figure 7-1-2-4 Mass fraction distributions in transverse direction ( 10=x cm) at 

different times (two-dimensional problem) 

7.1.3 Three-dimensional advection diffusion problem 
The three-dimensional problem of nitrogen diffusion into an air flow is depicted 
schematically in Figure 7-1-3-1. It is in principle a 3D boundary value problem. The 
governing equation about the nitrogen mass fraction distribution is, 

0=++−+ )uuu(DVuu zzyyxxxt , ∞<< z,y,x0 , ∞<< t0 ,  (7-1-3-1a) 
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Figure 7-1-3-1 Three-dimensional advective diffusion of nitrogen into air flow 

In the light of the GFM, the solution expression is, 
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          (7-1-3-2) 

By looking up the directional Green’s functions Z,Y,X  from Table 6-3-1, Table 6-3-
2 and Table 6-3-3, respectively, and substituting them into (7-1-3-2) and applying the 
communication law of convolution, we have, 
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This is the formula the nitrogen mass fraction should satisfy. By using Mathcad, the 
mass fraction distributions along the x -axis at =t 2s, 4s, 6s and s10  are plotted as 
solid lines in Figure 7-1-3-2, where 10.D = cm2/s, 2=V cm/s, 5000 .zy −== cm, 

5011 .zy == cm. In the figure, the symbols stand for the GASFLOW simulation with 
a grid size of 0.2 cm. The mass fraction distributions at transverse directions ( y and z ) 
at 10=x cm and at 6=t s are also compared with the theoretical solution in Figure 7-
1-3-3. Perfect agreements are obtained between the GFM and GASFLOW in both 
figures. 
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Figure 7-1-3-2 Mass fraction distributions in advection direction ( 0== zy cm) at 

different times (three-dimensional problem) 
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Figure 7-1-3-3 Mass fraction distributions in transverse directions ( 10=x cm) at 

6=t s (three-dimensional problem) 

7.2 Validation of particle mobilization model of GASFLOW 
A discrete Lagrangian particle transport model is developed in the GASFLOW code. 
The mean motion of each simulating particle is governed by particle momentum 
equations according to the Lagrangian approach. A stochastic turbulent particle 
diffusion model is developed accordingly to describe the particle diffusion caused by 
particle concentration gradients and the turbulence of the conveying gas flow (Travis 
et al., 1998). In terms of the model, the particle turbulent fluctuations on the mean 
motion are described by a diffusion velocity, diffU

r
, which is determined by, 

]k)(erfj)(erfi)(erf[
t
DUdiff

rrrr
3

1
2

1
1

14
ζ±ζ±ζ±

Δ
= −−− ,   (7-2-0-1) 

where D  is the particle diffusion coefficient, tΔ  is the time step of the numerical 
scheme, 321 ζζζ ,,  are three random numbers within ],[ 10 , the sign “ ± ” is also 

randomly determined, k,j,i
rrr

 stand for unit vectors in the three coordinate directions, 
respectively, )(erf ⋅−1  is the inversed error function (Xu et al., 2007). The factor of the 
turbulence is accounted in the coefficient D . In principle, the stochastic 
representation (7-2-0-1) satisfies the Fick’s law about diffusion. In other word, the 
particle distribution, say, the concentration should converge to the continuous solution 
by solving the diffusion equations analytically, if the particle sample number is 
sufficiently big. This subsection is contributed to verify the particle model of 
GASFLOW fundamentally and systematically, based on the developed Green’s 
function solutions in Section 6. Since particles could be released instantaneously or 
continuously, from ideal points, two-dimensional areas or three-dimensional cubes, 
into stagnant or advective flows, a series of diffusion problems are discussed in the 
following subsections. 

7.2.1 Point source in stagnant flow 
In case of stagnant flows, particles are driven to move only by the concentration 
gradients. Since the accompanying fluid is quiescent, it is a general diffusion problem 
without advection, namely, “ 0=V ”. The diffusion model of GASFLOW is verified 
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in case of 1D, 2D and 3D, with instantaneous and continuous particle releases, 
respectively. 

I. Instantaneous point source 
Mathematically, a one- or multi-dimensional Dirac delta function is applied to 
formulate the instantaneous particle release as a point source term with a constant 
coefficient to stand for the strength of the particle source. It can be assumed that the 
particles are released instantaneously at 0=t , and at the very center (origin) of an 
infinite 1D pipe, a 2D square or a 3D cube. The 1D, 2D and 3D problems are 
formulated as, respectively, 

)t,x(Q)u(Du xxt δ=− 1 , ∞<<∞− x , ∞<< t0 ,    (7-2-1-1) 

)t,y,x(Q)uu(Du yyxxt δ=+− 2 , ∞<<∞− y,x , ∞<< t0 ,  (7-2-1-2) 

)t,z,y,x(Q)uuu(Du zzyyxxt δ=++− 3 , ∞<<∞− z,y,x , ∞<< t0 , (7-2-1-3) 

where ),,N(QN 321=  is the total number of the released particles, or called “source 
strength”. By applying the GFM, and noting the properties of delta function and the 
product rule about Green’s functions, the solutions can be expressed as, 
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          (7-2-1-6) 

where Z,Y,X  stand for the directional Green’s functions. By looking up the Green’s 
functions in Table 6-3-2 or Table 6-3-3, the solutions can be obtained explicitly for 
the 1D, 2D and 3D, respectively, 
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If the distance to the origin is denoted as r , the above three formulas can be united 
into one expression by noting that 22 xr = , 222 yxr +=  or 2222 zyxr ++= , 
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where, 0≠t , N  denotes the number of dimensions. 

The three diffusion problems are simulated numerically by using GASFLOW. The 
computational results are compared with the above theoretical solutions in Figure 7-2-
1-1. In the GASFLOW simulations, the key parameters are specified as follows: the 
particle diameter, 4105 −×=pd cm, the particle density, 1=ρp g/cm3, the gas density 

3101791 −×=ρ .g g/cm3, the gas dynamic viscosity, 210−=μ g g/cms, thus, the particle 

Reynolds number 1<<μ−ρ= gpgpgp /UUdRe
rr

, where pg U,U
rr

 denote the 
velocities of the gas and the particle, respectively. In this case, the drag force of the 
conveying gas on the tiny particles satisfies the Stokes’ law, and the Stokes 
coefficient ( ) 52 102718 ×=ρμ=α .d/ ppgs s-1. The particle diffusion coefficient is 

specified as 10.D = cm2/s. The particle sample numbers are specified as 5102× , 610 , 
and 6104×  for 1D, 2D and 3D simulations, respectively. The particle concentration is 
defined as the particle number in unit length, unit area or unit volume in cases of 1D, 
2D and 3D, respectively. The normalized particle concentration is the particle 
concentration divided by the total particle number in that problem. Accordingly, the 

NQ  in the Green’s function solutions is assumed equal to unit for normalization. The 
cell size is 0.1 cm in all of these simulations. 

According to Figure 7-2-1-1, the particle concentrations are in Gaussian distributions 
with decaying amplitudes on time, as expected in view of physics. Good agreements 
are obtained between the analytical solutions and the simulations. In the case of 3D (c) 
and (d), some random deviations exist between the simulation points and the 
theoretical curve. However they are completely statistical effects, which should 
vanish if the particle sample number is sufficiently big. It can be concluded that the 
diffusion model of GASFLOW can work properly in case of diffusion from 
instantaneous sources in stagnant flows. 
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Figure 7-2-1-1 Particle diffusion from instantaneous point source in quiescent 
flows in one-, two- and three-dimension 

II. Continuous point source 
In case of continuous point source, let’s take the 3D problem as an example to show 
how to create the Green’s function solution. The formulation of the diffusion problem 
is described as, 

)z,y,x(q)uuu(Du zzyyxxt δ=++− 3 , ∞<<∞− z,y,x , ∞<< t0 . (7-2-1-11) 

Based on the GFM, the solution should be in the form of, 
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The directional Green’s functions are the same as in the instantaneous case. By 
substituting them into the above expression, we have, 
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If the distance to the origin is defined as r , by considering the property about 
convolution, we have, 
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where 02222 ≠++= zyxr  and 0≠t . Analogously, the solution in the 2D case is 
expressed as, 
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where 0222 ≠+= yxr , 0≠t , )(Ei ⋅  is the function of exponential integral 

(Bronshtein et al., 2003), defined as ∫
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The solution in the 1D case is obtained similarly by integrations, 
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where 0≠= xr  and 0≠t . The ),,N(qN 321=  in (7-2-1-11) through (7-2-1-15) stands 
for the released particle number per unit time. 

The Green’s function solutions (7-2-1-15), (7-2-1-14) and (7-2-1-13) are represented 
as solid lines in Figure 7-2-1-2 for the different dimensions, respectively. The Nq  is 
specified as one for normalization. The corresponding diffusion problems with 
continuous point sources are simulated by using GASFLOW. The parameters about 
the continuous sources are specified as: for 1D, the total particle number 4105× , the 
total injection time 10s, the injection interval time 4102 −× s; for 2D, the total particle 
number 610 , the total injection time 10s, the injection interval time 4102 −× s; for 3D, 
the total particle number 51069 ×. , the total injection time 4s, the injection interval 
time 41052 −×. s. The other parameters are the same as the case of the instantaneous 
source. 

Figure 7-2-1-2 manifests a good consistency about the particle distributions between 
the Green’s function solutions and the GASFLOW simulations. It verifies that the 
model about the continuous particle source in GASFLOW performs in a proper 
manner. It is worth to mention that, the particle concentration at the origin is infinite 
theoretically. The distribution at the vicinity of the origin is not of interest to be 
concerned in reality, as can be seen in (b) and (c) of Figure 7-2-1-2. 
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Figure 7-2-1-2 Particle diffusion from continuous point source in quiescent flows 
in one-, two- and three-dimension 

7.2.2 Point source in advective flow 
This subsection is contributed to solve or to simulate the diffusion from an 
instantaneous or continuous point source to a uniform advective flow. From here on, 
the advective flow velocity is assumed to be equal to 2=V cm/s as an example, if no 
additional words are given. 

I. Instantaneous point source 

The particles are released only once at the time 0=t s, then they are transported by 
the accompanying advective gas flow and start to diffuse. The mathematical 
expressions for the advection diffusion problems are similar to those in the case of 
stagnant flow in Section 7.2.1, except the advection term, 

)t,x(Q)u(DVuu xxxt δ=−+ 1 , ∞<<∞− x , ∞<< t0 ,   (7-2-2-1) 

)t,y,x(Q)uu(DVuu yyxxxt δ=+−+ 2 , ∞<<∞− y,x , ∞<< t0 , (7-2-2-2) 

)t,z,y,x(Q)uuu(DVuu zzyyxxxt δ=++−+ 3 , ∞<<∞− z,y,x , ∞<< t0 , 

           (7-2-2-3) 
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where the u  denotes the particle concentration. The expressions of the solutions are 
also similar to those listed in (7-2-1-4) through (7-2-1-6), except that the Green’s 
functions in x -direction (advection direction) are replaced by the advective Green’s 
functions fund in Table 6-3-1. By the replacements, the solutions for 1D, 2D and 3D 
can be obtained as, 
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If 2=V cm/s, 10.D = cm2/s and ),,,N(,QN 3211 ==  for normalization, the 
theoretical particle concentrations at different times are shown in Figure 7-2-2-1 as 
solid lines, in 1D, 2D and 3D, respectively. It presents propagating Gaussian 
distributions along the x -direction and with decaying amplitudes on time, clearly due 
to the advective flow and the diffusion of the particles themselves. Accordingly the 
GASFLOW simulations are performed and the results are shown as symbols in Figure 
7-2-2-1. The specifications about particles are the same as in Section 7.2.1. The 
released particle numbers are 4105× , 610  and 610  in 1D, 2D and 3D, respectively. It 
is obvious that the GASFLOW models reproduce the particle behaviors in a way 
following the analytical solutions. 
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Figure 7-2-2-1 Particle diffusion from instantaneous point source in advective 
flows in one-, two- and three-dimension 

II. Continuous point source 
By applying the GFM, the theoretical particle concentrations caused by continuous 
point sources in infinite domains with advective flows can be simply obtained as, 
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for 1D, 2D and 3D, respectively, where Nq  is the particle release rate. The 
comparisons between the GFM solutions and the GASFLOW simulations are 
presented in Figure 7-2-2-2. In the simulations the continuous sources are defined as: 
the total particle number is 610  and the injection interval time 41052 −×. s for 1D, 2D 
and 3D, the total injection time is 3 s for 1D and 2D, but 2 s for 3D. The other 
parameters are the same as the previous cases. The numerical simulations agree well 
with the corresponding Green’s function solutions according to the figure, which also 
shows that, a minor part of particles diffuse from the origin (release place) backward 
to the upstream while the major are transported away along the advection direction. In 
Figure 7-2-2-2 (c), the concentration in the neighborhood of the origin is not shown. It 
is not concerned and is infinite at the origin theoretically. 
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Figure 7-2-2-2 Particle diffusion from continuous point source in advective flows 
in one-, two- and three-dimension 

7.2.3 Line source in two-dimensional advective flow 
The particle source could be a line, for an instance, in the case that the dust is released 
from a tiny gap. In the subsection, two cases of continuous line sources are considered, 
depending on the line source distributed in the advection direction or in a transverse 
direction. The two cases are shown as (I) and (II) schematically in Figure 7-2-3-1. 
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Figure 7-2-3-1 Two cases of line sources in infinite two-dimensional domain 
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By appealing to a one-dimensional delta function, the mathematical formulation about 
the particle concentration of this case can be described as, 

⎩
⎨
⎧ ∈δ

=+−+
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10    (7-2-3-1) 

where ∞<<∞− y,x , ∞<< t0 , lq  is the strength of the line source, i.e., the 
released particle number in unit time and from unit length. This is purely a source 
problem. Based on equality (6-1-8), the solution can be expressed as, 
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By looking up the Green’s functions in Table 6-3-1 and Table 6-3-2 and substituting 
them into (7-2-3-2), the solution becomes, by noting the communication law of 
convolution, 
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The analytical particle concentrations at 1s, 2s and 3s along x -axis after 
normalization are denoted as solid lines in Figure 7-2-3-2, where 10.D = cm2/s, 

2=V cm/s, 1=lq /cms, 500 .y −= cm, 501 .y = cm. If the total particle injection time 
is T , the normalized particle concentration is defined as the particle concentration 
(particle/cm2) divided by the total particle number, Tlq engthl , namely, 

Tlq
)t,y,x(u)t,y,x(u

engthl
norm = .       (7-2-3-4) 

In this case, 1=lq /cms, 101 =−= yylength cm, 3=T s, thus 3/uunorm = . The 
corresponding concentrations in the GASFLOW simulation are represented by 
different symbols in Figure 7-2-3-2. To be normalized, the particle concentration 
(particle/cm2) is also divided by the total particle number, which is indicated in the 
description of the figure. It is clear that good agreements between the two solutions 
are obtained in this case. 
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Figure 7-2-3-2 Advection diffusion from continuous particle line source 

distributed in transverse ( y ) direction in two-dimensional domain 

II. Line source in advection direction 

Analogously, the mathematical formulation about the particle concentration of this 
case can be described as, 
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where ∞<<∞− y,x , ∞<< t0 , lq  is the strength of the line source. Similar to the 
last case, the Green’s function solution can be expressed as, 

∫ ∫ ∫∫ ∫ ∫ =τξηηδτηξ=τηξτηξφτηξ=
∞

∞−

∞

∞−

∞

∞−

t x

x
l

t

ddd)()t,y,x;,,(Gqddd),,()t,y,x;,,(G)t,y,x(u
00

1

0

 ∫ ∫ ∫ ∫ ττ⋅ξτξ=τξτξ=
t x

x

t x

x
ll d)t,y;,(Yd)t,x;,(Xqdd)t,y,x;,,(Gq

0 0

1

0

1

0

00 . (7-2-3-5) 

By substituting the Green’s functions into (7-2-3-5), the solution becomes, 
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The normalized theoretical concentration distributions and the corresponding 
GASFLOW simulations are compared in Figure 7-2-3-3, where, 500 .x −= cm and 

501 .x = cm. The concentrations are along the line of, as an example, 10.y = cm, to 
avoid the singularity of the theoretical solution on the source line ( 10 xxx <<  and 

0=y ), where the concentration is infinite mathematically. Again good consistency 
between the theory and the simulation is found in the figure. 
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Figure 7-2-3-3 Advection diffusion from continuous particle line source 

distributed in advection ( x ) direction in two-dimensional domain 

7.2.4 Line source in three-dimensional advective flow 
Like in 2D, two kinds of line sources are considered. One is in a transverse direction, 
the other in the advection direction, as shown in Figure 7-2-4-1. 
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Figure 7-2-4-1 Two cases of line sources in infinite three-dimensional domain 

I. Line source in transverse direction 
By using a two-dimensional delta function, the mathematical equation of the particle 
concentration is formulated as, 
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where ∞<<∞− z,y,x , ∞<< t0 . In terms of the GFM, Green’s functions are like 
building blocks, and the higher dimensional solutions can be created easily on the 
basis of lower dimensional ones. Let’s take this problem as an example. Based on the 
equality (7-2-3-2), the 3D solution can be obtained simply by using the product rule 
and appending a factor of the Green’s function in z -direction, and by utilizing the 
property of delta function, 
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By bringing the Green’s functions into the above equality and making a little 
simplification, the solution becomes, 
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The normalized solution and the numerical simulation are presented in Figure 7-2-4-2 
for comparison, where 500 .y −= cm and 501 .y = cm. It is obvious that GASFLOW 
can reproduce numerically the particle diffusion in a good way. 
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Figure 7-2-4-2 Advection diffusion from continuous particle line source 

distributed in transverse ( y ) direction in three-dimensional 
domain 

II. Line source in advection direction 
Similarly, the solution of this case can be obtained based on the two-dimensional 
solution (7-2-3-5) or (7-2-3-6). The equation and its solution are listed here for 
completeness. 
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where ∞<<∞− z,y,x , ∞<< t0 .The solution is, 
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If 500 .x −= cm and 501 .x = cm, the theoretical curves and the GASFLOW simulation 
points are shown in Figure 7-2-4-3, where the concentrations distribute along the line 
of 10.zy == cm instead of the x -axis. According to the figure, the simulating points 
fit the analytical curves in a satisfactory way. 
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Figure 7-2-4-3 Advection diffusion from continuous particle line source 

distributed in advection ( x ) direction in three-dimensional 
domain 

7.2.5 Area source in two-dimensional advective flow 
As shown in Figure 7-2-5-1, a square of particle source is released in a 2D plane with 
advective flow. The particle diffusion problem is formulated as, 
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where ∞<<∞− y,x , ∞<< t0 , aq  denotes the released particle number in unit 
area and in unit time. 

 
Figure 7-2-5-1 Area source in infinite two-dimensional plane 

According to the GFM, the solution is expressed as, based on equality (6-1-8), 
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By substituting the Green’s functions found in Table (6-3-1) and Table (6-3-2), the 
solution is obtained as, 
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The mathematical solutions are compared with the GASFLOW simulations at 5=t s 
and 10=t s in Figure 7-2-5-2, where 5000 .yx −== cm and 5011 .yx == cm. In this 
case the sensitivity of the numerical simulations on the grid sizes is analyzed. 
According to the figure, a rough grid size of 1 cm is too big, while a grid with a cell 
size of 0.2 cm is refined enough to reproduce the theoretical solution. The three 
simulations show the converging of the numerical simulations to the Green’s function 
solution from a bigger cell size to a smaller one. 
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Figure 7-2-5-2 Advection diffusion from continuous particle area source in two-

dimensional domain 

7.2.6 Area source in three-dimensional advective flow 
Two cases of area sources are studied in 3D domain, as shown in Figure 7-2-6-1, 
depending on the spatial relationship between the area and the advection direction. 
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(I)                                                                 (II) 

Figure 7-2-6-1 Area source in infinite three-dimensional domain 

I. Area source perpendicular to advection direction 
The governing equation about the particle concentration is given as, 
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where ∞<<∞− z,y,x , ∞<< t0 , aq  denotes the released particle number in unit 
area and in unit time. 

According to the GFM and applying the property of delta function, the solution is in 
the form as, 
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The solid curves based on the formula, as shown in Figure 7-2-6-2, stand for the 
normalized particle concentrations along the x -axis at 1=t s and 2=t s, respectively, 
if 5000 .zy −== cm and 5011 .zy == cm. The different symbols are the GASFLOW 
simulating points, which are coincident with the theoretical curves except slight 
deviations on some points caused by statistical effects. 
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Figure 7-2-6-2 Advection diffusion from continuous particle area source 

distributed in transverse ( zy − ) plane in three-dimensional 
domain 

II. Area source parallel to advection direction 
For completeness, the equation and the solution are directly given as, 
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where ∞<<∞− z,y,x , ∞<< t0 . The solution can be obtained simply, 
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As an example, the concentration distributions along the line of 10.zy == cm at 
different times are compared between the theory and the GASFLOW calculations, as 
shown in Figure 7-2-6-2, where 5000 .yx −== cm and 5011 .yx == cm. The figure 
shows good consistency between the solid lines and the simulating symbols expect 
slight statistical deviations at some numerical points. 
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Figure 7-2-6-3 Advection diffusion from continuous particle area source 

distributed in yx −  plane in three-dimensional domain 

7.2.7 Volumetric source in three-dimensional advective flow 
As the last case, the advection diffusion from a cube of particle source in a 3D domain 
is considered, as shown in Figure 7-2-7-1. 

 
Figure 7-2-7-1 Volume source in infinite three-dimensional domain 
The mathematical description of the problem is, 
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where ∞<<∞− z,y,x , ∞<< t0 , vq  stands for the number of particles released in 
unit volume and in unit time. The solution is expressed as, according to the GFM, 
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Figure 7-2-7-2 depicts the comparison between the Green’s function solution and the 
GASFLOW simulations, while 50000 .zyx −=== cm and 50111 .zyx === cm. As 
can be seen from the figure, the concentrations along the x -axis, i.e., the advection 
direction, agree to each other between the theory and the numerical calculation at the 
different times. 
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Figure 7-2-7-2 Advection diffusion from continuous particle volume source in 

three-dimensional domain 
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8. Conclusions 
The Green’s function method has been applied to solve the one- and multi- 
dimensional advection diffusion partial differential equations in infinite, semi-infinite 
and finite domains with the Dirichlet (first type), the Neumann (second type) and/or 
the Robin (third type) boundary conditions. A novel image system (Figure 4-3-1) for 
an advection diffusion problem is created to solve the Green’s function solution in the 
case of semi-infinite domain with the Dirichlet boundary condition, and an extended 
image system (Figure 4-4-1) is made in the case with the Neumann or the Robin 
boundary condition. The obtained Green’s functions are proofed to be the right 
solutions mathematically. The eigenfunction method is utilized to solve the Green’s 
function when the advection diffusion problem is defined in a finite domain. In 
solving the problem, a coordinate transform based on a “reversed” time scale, a 
Laplace transform and an exponential transform (details in Section 5.3) are performed 
sequentially to adapt the original Green’s function problem to a standard Sturm-
Liouville problem, which is necessary to apply the eigenfunction method. The 
Green’s function in the case is found to be a sum of an infinite sequence of 
eigenfunctions with certain coefficients, which vary on the prescribed boundary 
conditions of the bounded domain. The advection diffusion Green’s function 
problems are solved with nine different boundary condition combinations. A small 
library of one-dimensional Green’s functions for advection diffusion problems in 
different domains with different boundaries is summarized in form of tables (Table 6-
3-1 through 6-3-3), to supply “building blocks” to construct the multi-dimensional 
Green’s function solutions of any other linear advection diffusion problems, based on 
the product rule of the Green’s function method in a Cartesian coordinate system. 
Initial value problems and source problems are not formulated separately, because an 
arbitrary initial value and/or an arbitrary source distribution are default configurations 
in the boundary value problems presented in the report. 

The mathematical Green’s function solutions have been utilized to validate the two 
diffusion models of gas species in a continuous phase and aerosol particles in a 
discrete phase in the GASFLOW computer code. As for the gas diffusion model, it is 
found that the second-order van Leer numerical scheme can produce more accurate 
results than the first-order. The validation calculations indicate that the diffusion 
equations are solved numerically in a right way in GASFLOW, therefore, that high 
consistencies between the GASFLOW simulations and the Green’s function solutions 
are obtained in one- and multi-dimensional cases. The particle model in GASFLOW 
is verified systematically in cases of 1D, 2D and 3D, diffusing from instantaneous 
and/or continuous point, line, area and/or volume sources of particles in prescribed 
advective and/or stagnant flows. The numerical solutions about the normalized 
particle concentration distributions in the GASFLOW simulations are compared to the 
corresponding Green’s function solutions. It is very interesting that agreements are 
obtained between the numerical solutions about the diffusion of discrete particles and 
the mathematical solutions about the diffusion of continuous media, if the drag force 
of the conveying gas flow on the moving particles satisfies the Stokes’ law for 
resistance. The assumption is true when the Reynolds number based on the particle 
diameter in microns is much less than unit so that the particle inertia effects can be 
neglected. The series of validations manifest that the particle diffusion model can 
reproduce numerically the physical process of the particle movement. Meanwhile, the 
high consistencies of the comparisons between the numerical simulations and the 
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Green’s function solutions have also proved the correctness of the particle transport 
model in GASFLOW apart from the particle diffusion model itself. 

The Green’s function solutions of the advection diffusion problems accommodate a 
host of benchmark test cases for validating CFD computer codes like GASFLOW. It 
should be mentioned that the Green’s function method can do much more than what it 
does in the report. The Green’s function method is a powerful mathematical tool and 
being widely used in many other fields like neutron transport, wave propagation and 
so on. 
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