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Towards the Formulation of a Realistic 3D Model for

Simulation of Magnetron Injection Guns for Gyrotrons

(A Preliminary Study)

Abstract

Numerical experiments based on adequate, self-consistent physical models implemented in
simulation codes are widely used for computer-aided design (CAD), analysis and optimization
of the electron optical systems (EOS) of the gyrotrons. An essential part of the physical model
is the emission model, i.e., the relations that govern the value of the beam current extracted
from the emitter as well as its energy spectrum, spatial and angular distribution. In this paper,
we present a compendium of the basic theory, the most essential formulas and discuss the
most important factors responsible for the nonuniformity of the emission and velocity spread.
We also review the emission models realized in various ray-tracing and Particle-In-Cell (PIC)
codes and present a general formulation of a 3D emission model based on the principle of
decomposition of the region near the cathode to a set of equivalent diodes. It is believed that
the information summarized in this compendium will be helpful for the development of novel
modules for calculation of the initial distribution in both the available 2D computer programs
that are being upgraded now and in the novel 3D simulation tools development of which is in
progress now.



Fortschritte in der Formulierung eines realistischen

3D-Modells für die Simulation von Elektronenkanonen

für Gyrotrons
(Eine vorläufige Studie)

Zusammenfassung

Numerische Experimente, die auf adäquaten, selbst-konsistenten physikalischen Modellen
basieren, werden in einem breiten Umfang für das computerunterstützte Design (CAD), die
Analyse und Optimierung von elektronenoptischen Systemen von Gyrotrons eingesetzt.

Ein wesentlicher Teil des benötigten physikalischen Modells ist das Emissionsmodell, d.h.
die Beschreibung des vom Emitter erzeugten Strahlstroms sowie die Energieverteilung und die
räumliche und winkelabhängige Verteilung der emittierten Elektronen.

In dieser Arbeit präsentieren wir eine Zusammenfassung der grundlegenden Theorie, die
wesentlichen Formeln und eine Diskussion der wichtigsten Faktoren für die Inhomogenität der
Emission und der Geschwindigkeitsstreuung. Zusätzlich wird ein Überblick über die in verschie-
denen Ray-Tracing und Particle-In-Cell (PIC) Codes eingesetzten Emissionsmodelle geliefert
und eine allgemeine Formulierung eines dreidimensionalen Emissionsmodells präsentiert, das
auf der Zerlegung der kathodennahen Region durch eine Anzahl entsprechender Diodensegmen-
te basiert.

Wir glauben, dass diese Zusammenfassung bei der Entwicklung neuer Programm-Module
zur Berechnung der Elektronen-Anfangsverteilung sehr hilfreich sein wird. Damit können so-
wohl bereits existierende zweidimensionale Computerprogramme, als auch neu zu entwickelnde
dreidimensionale Simulationswerkzeuge ausgestattet werden.
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1 Introduction

Numerical codes for simulation of the electron-optical systems (EOS) of gyrotrons are indispens-
able tools for analysis, computer aided design (CAD) and optimization of high-performance de-
vices. Currently, most of the available programs are based on 2D self-consistent physical models.
At the same time, work on the development of novel numerical packages employing 3D physical
models is in progress now (Sabchevski, Zhelyazkov, Thumm, Illy, Piosczyk, Tran, Hogge, and
Pagonakis 2007). The emission model implemented in any such code is of critical importance for
the adequacy of the simulations as a whole. While the rest of the model (relativistic equations
of motion coupled with an appropriate boundary value problem for the self-consistent electro-
magnetic fields, including the self fields of the space-charge flow) is almost standardized and
considered as an essential component of the paradigm of modelling and simulation of magnetron
injection guns (MIG) for gyrotrons, the emission model itself is often highly idealized or even
neglected. In most of the available computer ray tracing and PIC codes this model is known as
“a zero initial emittance of the electron beam” since the macro-particles representing the beam
are emitted with zero initial velocities and perpendicular to the cathode and carry equal space
charge. Even if in codes where the possibility to specify more realistic initial conditions is left
to the user, as a rule the simulations are performed for uniform distribution with zero initial
energies. One reason for this is that the straightforward tracing of a large ensemble of particles
with distributed initial conditions increases considerably the required computational resources.
Many recent studies have shown that such idealization excludes significant physical factors from
the numerical experiments. Among them are the nonuniformity of the emission (due to varia-
tions of: the surface temperature of the emitter; the work function, the local extracting electron
field etc.), energy spectrum of the emitted electrons, time dependence of the emission character-
istics of the cathode, surface roughness, magnetic field of the heating filament, and edge effects.
The importance of these factors has been demonstrated in a number of numerical simulations
and experimental investigations. Here we intend to provide a comprehensive review of the lit-
erature on this topic and to collect the most relevant formulas and relations in a compendium
which could be useful in the numerical implementation of various emission models in both the
currently used codes and the novel codes that are under development at present.

The review is organized as follows. In the next section we recall the well-known theory of the
thermionic emission. Some recent contributions to this classical field are also mentioned briefly.
In Sec. 3 we present the current status of the technology for manufacturing efficient cathodes
for gyrotrons. The sources of the emission nonuniformity and velocity spread in the extracted
electron beams are discussed in Sec. 4. The influence of the azimuthal beam nonuniformity and
the velocity spread on the overall performance of the tube is considered in Sec. 5. It should be
mentioned that there is vast literature on the latter topic. Here we do not try to be exhaustive
in reviewing it but rather present the main arguments that substantiate the necessity to take
into account these factors in the numerical simulations. Different emission models and their
numerical implementation in various computer codes are presented and discussed in Sec. 6. The
focus in this section is on the variety of the approaches. That is why we review not only the most
advanced and/or widely known codes but also the programs that exploit original or sometimes
simply interesting approaches. In the case however, that some model is realized in a series of
codes only the most characteristic (or widely known) is presented. In Sec. 7 we outline the
prospective general formulation of an emission model that is pertinent for 3D and 2D models.
Some conclusions and an outlook are presented in Sec. 8.

1



A comment about notation seems to be in order here. Whenever possible the original
notations of the cited papers are preserved. As a result most of them are locally defined in the
corresponding sections. At the same times, if some notation is used through several sections it
is described only after its first appearance. In order to be as close as possible to the original
formulations given by the authors of the reviewed papers they are cited literally in many cases
although this is not always indicated implicitly by quotation marks.

2 Basic theory of the emission models

Assumption of a Fermi–Dirac distribution of the carriers in the emitting materials leads to the
well-known relations for various emission mechanisms (Hawkes and Kasper 1989). The governing
relation for the saturated current of the thermionic emission is the Richardson–Laue–Dushman
equation

Jsat =
4πmek2

BT
2

h3
e−ϕ/kBT e

√
eE/πε0/kBT = AT 2e−ϕ/kBT e

√
eE/πε0/kBT , (1)

where T is the absolute temperature in Kelvin, ϕ is the work function in eV, E is the applied
external electric field in V cm−1, kB = 8.617× 10−5 in eV K−1 is Boltzmann’s constant,

A =
4πmek2

BT
2

h3
= 120.1735 A cm−2K−2

is Richardson’s constant, e is the elementary electric charge, m is the mass of an electron, h
is Planck’s constant, and ε0 is the permittivity of vacuum. With these constants taken into
account the above equation can be rewritten in a form that is more convenient for calculations

Jsat = 120T 2e−11605ϕ/T e4.4
√
E/T . (2)

The second exponential term in these equations accounts for the enhancement of the thermionic
emission by the electric field known as the Schottky effect. For the usual conditions at which
the thermionic cathodes in MIG for gyrotrons are applied this effect is not significant (for
example, large external fields of the order of 1 V µm−1 are required to increase the emission
about 1.5 times) for smooth surfaces. Surface roughness however could lead to high local field
enhancement for which this effect could increase the emission dramatically.

In order to study the energy spectrum and the angular distribution of the emitted electrons
it is convenient to introduce polar coordinates in momentum space according to the relations

px =
√

2mE sin γ cos θ,

py =
√

2mE sin γ sin θ, (3)

pz =
√

2mE cos γ.

Here px, py, and pz are the components of the momentum in a Cartesian coordinate system, E
is the total energy of the emitted electron, γ is the angle of emission with respect to the outer
normal to the cathode surface, and θ is the azimuthal coordinate. Accordingly, the elementary
volume in the momentum space has the form

d3p = p2 dpdΩ = m
√

2mE sin γ dEdγdθ, (4)
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where dΩ = sin γ dγdθ is the element of solid angle. This yields for the elementary current
density in polar coordinates

d3J =
4em

h3
E exp

(
−E + ϕ

kBT

)
sin γ cos γ dEdγdθ. (5)

An integration over all possible angles of emission (0 6 θ 6 2π, 0 6 γ 6 π/2) gives for the
distribution of energies

dJ = AE exp

(
−E + ϕ

kBT

)
dE. (6)

It should be noted that the mean energy of the emitted electrons is 〈E〉 = 2kBT with dispersion

∆E =
(
〈E2〉 − 〈E〉2

)1/2
=
√

2kBT . Another characteristic value (which should not be misinter-
preted as a certain mean value) is the most probable energy Em = kBT corresponding to the
maximum of the distribution.

Analogously, integrating over all positive energies at constant values of the emission angle,
one can obtain a Lambert-type law for the angular distribution of the emitted current density

B(γ) =
dJ

dΩ
=

1

π
J cos γ. (7)

Recently a general electron emission equation has been derived, which accounts for both
thermal and field emission (Jensen and Cahay, 2006). In a more compact form it can be written
in the following way

J(T,Eo, βT , βF ) = ARLDT
2N(n, s, u). (8)

where ARLD ≡ A = 120.1735 A cm−2K−2 is Richardson’s constant,

N(n, s, u) = n

∫ u

−∞

ln
[
1 + en(z−s)]
1 + ez

dz, (9)

βT is the inverse temperature 1/(kBT ), βF being analogous to βT is a slope factor that depends
on the applied electric field, and Eo is an expansion point of the energy component Ex directed
at the emission barrier (i.e., Ex = p2

x/2m, where px is the x component of the momentum).
The arguments of N(n, s, u) are given by n = βT/βF , s = βF (Eo − µ), and u = βFEo, where
µ is the chemical potential (equal to the Fermi energy at zero temperature) of the emitting
material measured with respect to the bottom of the conduction band. For a typical dispenser
cathode ns ≈ βT

(
ϕ−
√

4QF
)
≡ βTφ ≈ 16 at conditions for thermionic emission (T = 1150 ◦C,

ϕ = 2.1 eV, F = 0.01 eV nm−1), where Q = e2/16πε0 = 0.359 991 eV nm, and φ is the height of
the potential barrier above the chemical potential µ. The above formulation goes beyond the
well-known generalization for the current density

J = ARLD(T + cF )2 exp[−B(T + cF )], (10)

where F , as above, is the product of the electron charge and the applied electric field, and c, B
are constants.

An advantage of the novel general equation is that different regimes are naturally distin-
guished according to the parameter n = βT/βF (rather than T + cF ), notably n > 1 for
field emission and n < 1 for thermal emission. Accordingly, the “revised” Fowler–Nordheim

3



(FN) and Richardson–Laue–Dushman (RLD) formulas for the field dominated emission and for
temperature dominated emission are given as follows:

JFN ⇒ ARLD(kBβF )−2

[
1 +

π2

6

(
βF
βT

)2

+
7π4

360

(
βF
βT

)4
]

exp [βF (µ− Eo)] (11)

and

JRLD ⇒ ARLD(kBβT )−2

[
1 +

π2

6

(
βT
βF

)2

+
7π4

360

(
βT
βF

)4
]

exp [βT (µ− Eo)] , (12)

respectively. It is crucial to emphasize in Eqs. (11) and (12) that the term Eo is a function of
both the field and temperature, and that Eo(n < 1) is not the same as Eo(n > 1). These two
equations definitely give a better insight into the connection (symmetry) between the thermionic
and field emission.

Keeping only the leading terms, Eq. (12) takes the form

Jemission(F, T ) = ARLDT
2

(
1 +

π2

6
n2

)
exp[−(ϕ−

√
4QF )/kBT ], (13)

where n(F, T ) = (2/π)(h2/2m)1/2(F 3/Q)1/4/kBT .
In the case of space charge limited (SL) emission a potential minimum (virtual cathode)

forms in close proximity to the emitting surface with a potential Vmin. It acts as an energy filter;
thus only those electrons that have velocity normal to the cathode greater than

√
2eVmin/m can

pass the plane of potential minimum and proceed to the anode. Electrons which are emitted
with smaller velocities return to the cathode. As a result the actual current density JSL is less
than the saturation current density [also known as temperature limited (TL) current density]
JTL and is given by

JSL = JTL exp (eVmin/kBT ) = JTL exp
(
11.6× 103Vmin/T

)
. (14)

The value of the potential minimum with respect to the cathode is

Vmin = −kBT

e
ln

(
JTL

JSL

)
. (15)

Ignoring the initial velocities of emitted electrons and the edge effects (i.e., considering a
1D model of a diode with two infinite parallel electrodes) one can easily re-derive analytically
Child’s law for the cathode current density in a planar diode which is

JSL =
4ε0

√
2e/m

9
V 3/2/d2 = 2.335× 10−6V 3/2/d2, (16)

where d is the distance between the cathode and the anode.
More detailed solution, which takes into account the initial velocities of the electrons, was

obtained by Langmuir and Compton (1931). It can be found in both tabulated form as well
as in the form of approximate series expansions. It gives for the current density the following
relation (Amboss 1993):

JSL = 2.335× 10−6 (V − Vmin)3/2

(z − zmin)2

{
1 + 2.865

[
kBT

e(V − Vmin)

]1/2
}
. (17)
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It should be noted that Child’s law is derived assuming zero electric field at the emitter. If
the cathode is heated at elevated temperatures for which the electrons are produced at a greater
rate than can be drawn off, a small retarding field develops and then the above equation holds.
If, however, the cathode does not emit enough electrons, an accelerating field is produced which
increases the emission (Schottky effect). The condition of zero electric field at the cathode
corresponds to the case where the space charge limited emission current density JSL just equals
the temperature limited JTL value. The critical operating temperature To can therefore be
computed from the relationship

2.335× 10−6V 3/2
a,o /d

2 = 120 exp(−11.6× 103a)T 2
o exp(11.6× 103ϕ/To), (18)

given the diode spacing d, anode voltage of the diode Va,o, and the work function ϕo of the
emitter. Here a is the constant in the temperature dependence of ϕ, e.g., ϕ = ϕo + aT .

Figure 1: Electric field Ec normalized to the space-charge free electric field, Va/d, as a function
of the voltage Va on the anode normalized to the voltage Va,o [from (Amboss 1993)].

Figure 2: Schottky emission current density JSCH normalized to the temperature limited emis-
sion current density, JTL, as a function of the normalized anode voltage [from (Amboss 1993)].
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If the anode voltage Va is increased above Va,o, an electric field Ec appears at the cathode,
which increases the emission density from JTL to JSCH (Schottky effect)

JSCH = JTL exp(0.4E1/2
c /To). (19)

In this case, the electric field can be calculated from the relation (obtained by integrating the
Poisson equation with JSCH in its RHS)[

V 1/2
a +

1

B2

E2
c

JSCH

]3/2

− 3

B2

E2
c

JSCH

[
V 1/2

a +
1

B2

E2
c

JSCH

]1/2

+
2

B3

E2
c

J
3/2
SCH

=
3

4
B J

1/2
SCHd (20)

for the anode potential at z = d.
The above equation can be solved for Va for a specific diode configuration given the voltage

Va,o and work function parameters, by assuming a number of Ec values. Figure 1 is a plot of
Ec (when the space charge is absent) normalized to the uniform electric field Va/d as a function
of Va normalized to Va,o [for the parameters at which the calculations are made, see Amboss
(1993)]. It shows that space charge still affects the electric field of the cathode even when Va

exceeds Va,o by a factor of 5.
Figure 2 is a plot of the current density as a function of the normalized anode voltage. One

can see that the curve follows the 3/2-power law below Va/Va,o = 1. In real cathodes there is
always some variation of the work function over the surface of the emitter. The exponential
dependence of the temperature limited emission on the work function translates a relatively small
spread in the work function into large emission density variations. The effect of this emission
density variation is a departure from the 3/2 power law for space charge limited operation since
some portions of the cathode become temperature limited while others are still space charge
limited. An illustrative example is shown in Fig. 3.

Figure 3: Departure from the 3/2 power law (lower curve) due to portions of the cathode
progressively becoming temperature limited owing to work function variations [from (Amboss
1993)].

Recently Longo (2003) proposed an improved interpolation for the transition region between
the space charge limited and temperature limited emission

1

Jα
=

1

JαSL

+
1

JαTL

, (21)
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where α is a shape factor (see Figs. 4 and 5).

Figure 4: Sensitivity of the emission curve, Eq. (21), to the shape factor α. The work function
and current loading (i.e., the space charge current) are the same for each curve [from (Longo
2003)].

Figure 5: Change of the emission curves due to aging of the cathode [from (Longo 2003)].

As already mentioned, a MIG usually operates in the TL regime. Utilization of the SL mode
however is possible and, moreover, it is an appealing alternative, which could solve some of
the problems pertaining to the TL emission. This possibility was studied in detail by Lawson,
Raghunathan, and Esteban (2004) and by Raghunathan and Lawson (2005). It has been demon-
strated that using a space-charge-limited (SCL) MIG it is possible to eliminate the azimuthal
current nonuniformity. It has been demonstrated that a comparable beam quality parameters
as in a TL MIG could be obtained at the cost of increased peak electric field and emitted cur-
rent density (cathode loading). Since in a SCL mode the beam current cannot be controlled by
varying the cathode temperature, additional control electrodes are introduced for this purpose.
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3 Cathodes used in the MIG for gyrotrons

Most often, the emitters used in a MIG for gyrotrons are tungsten dispenser cathodes (En-Qiu
1985) produced by compressing and sintering a tungsten powder into cylindrical billets from
which a conical emitting section is manufactured. The porous tungsten matrix is impregnated
with a mixture consisting of barium oxide (BaO), calcium oxide (CaO), and aluminium oxide
(Al2O3). The composition of these components in a proportion 5:3:2 is known as B-type and
in a proportion 4:1:1 as S-type. In so-called M-type dispersion cathodes an additional coating
with Os, Ir or Re is used to lower further the work function. The heating of the cathode during
its operation causes migration of the barium towards the emitting surface where it lowers the
work function.

Early in the life of the cathode, the barium diffusion rate towards the surface can exceed
what is required for monolayer coverage. If more than a monolayer of barium atoms builds
on the surface of a dispenser cathode, bulk evaporation occurs and is a thermally regulated
phenomenon. Removal of Ba from the surface is due to evaporation and ion bombardment (see
Fig. 6). Both factors determine the lifetime of the cathode. It was found that initial activation
of the barium cathode requires only several hours but in the first 1000 h of life after activation,
significant changes occur. The surface itself resembles a porous metal matrix, in which the grains
average 4–5 µm in diameter. The pores from which the barium atoms emerge are approximately
an average of 2 µm in diameter, and the pore-to-pore separation is approximately 6 µm (Jensen,
Lau, and Levush 2000).

It is well known, however, that the main factor that affects the lifetime of the emitter is the
cathode loading. Therefore, there is always a trade off between the extracted current and the
lifetime (Fig. 7).

Although M-type cathodes coated with Os/Ru or Ir have superior emission characteristics
compared to B-type and S-type they are more susceptible to gas poisoning. For such high
current emitters emission cooling effects can occur, which lower the temperature of the emitter
(Isagawa, Higuchi, Kobayashi, Miyake, Ohya, and Yoshida 1999).

One of the latest advanced cathodes is the so-called Control Porosity Dispenser (CPD)
cathode in which a thin (20–30 µm) tungsten film is used. In this film regularly arranged
holes several millimeters in diameter are drilled by a laser beam. While the work function of a
standard CPD cathode is around 2.0 eV, when covered by Os/Ru it is reduced to about 1.8 eV.

Another very promising (though not yet widely available) novel type of cathode is the Scan-
date cathode, which offers saturated current density as high as several hundred amperes per
square centimeter. The Barium Scandate cathode employs scandium oxide (Sc2O3) to lower the
work function of the emissive surface. As a result, this emitter may be operated at lower tem-
peratures than the standard dispenser cathode for the same current density. Since the Barium
Scandate mix is homogeneous throughout the tungsten matrix, it is free of many of the problems
associated with thin film coated emitters. One distinct advantage over thin film types such as
the M-cathode is the ability of the Barium Scandate cathode to withstand much greater levels
of ion bombardment before surface sputtering becomes a problem. Other advantages of the
Barium Scandate cathode include excellent resistance to possible surface abrasions encountered
during inspection, packaging, jigging and general handling, as well as increased resistance to
exposure to moisture (HeatWave Labs, Inc. 2001).

Both the design and the machining of the cathode should secure: (i) a smooth emitting
surface, (ii) a uniform work function, (iii) uniform heating (within few degrees over the entire

8



Figure 6: Schematic of cathode surface. The large blocks are tungsten grains of average size
4.5 µm. The separation between pores averages 6 µm, and the pore diameter averages 2–3
µm. In the “Thermal Desorption” regions barium evaporates from the surface. In the “Ion
Bombardment” regions barium is sputtered off [from (Jensen, Lau, and Levush 2000)].

Figure 7: Lifetime of the cathode and a trade-off between lifetime and extracted current [from
(Gilmour 1986)].
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surface), (iv) thermal stability that prevents a temperature drift of the configuration (distortions,
buckling and creasing) and parameters of the emitter with time, and (v) uniform distribution
of the electric field over the emitter. The first two requirements cannot be satisfied easily due
to the porosity. The later can be controlled to a certain extent by the initial grain size of
the tungsten powder. Care must be taken during the final machining not to contaminate the
emitter smearing the pores with the metal particles from the cutting tool. Another promising
alternative is to create more regular pores by sintering tungsten wires as proposed by Ives and
Falce (2006). The third and the forth requirements necessitate a careful 3D thermal design not
only of the emitting part but also of the heater, supporting structure, shielding parts and so on.
The last requirement calls for a careful design of the electrodes of the MIG.

Despite the progress in improving the quality of the dispenser cathodes through improved
design reported by Ives and Falce (2006), as well as using novel materials and improved man-
ufacturing technologies in practice, nonuniformity of the emission is always present and should
be taken into account when CAD of the EOS is being carried out.

Completely different from the thermionic cathodes are ferroelectric cathodes (FEC) (Hayashi,
Flechtner, and Hotta 2002). In FEC the charge separation and emission are achieved by rapid
switching of the spontaneous, ferroelectric polarization. Polarization switching can be induced
by applying an electric field, mechanical pressure or thermal heating by laser radiation. Emitted
current densities are of the order of 100 A cm−2 and pulse lengths are shorter than the excitation
pulses. There are many advantages of using a ferroelectric cathode, such as room temperature
operation, control of the emission by an external trigger pulse and, most importantly, high-
electron current emission. Several applications of such emitters in MIGs for gyrotrons have
been reported. Here however we are interested mainly in cathodes operating in powerful gy-
rotrons generating in the CW regime and will not discuss the latter class of cathodes.

A comprehensive review of the fundamental physics and technology of different emitters of
electrons can be found in (Kuznetsov 1997, Yamamoto 2006).

4 Sources of emission nonuniformity and velocity spreads

A comprehensive discussion of the beam quality parameters can be found in (Tsimring 2007),
where the main sources of the velocity and energy spread are analyzed (see Part II, Chap. 10.8.5
in this monograph) and their influence on the gyrotron performance are evaluated. It is em-
phasized that even a small energy spread ∆E/E � 1/N (where N is the number of cyclotron
rotations) can have considerable adverse effect on gyrotron operation. As main sources of en-
ergy and velocity spread the following factors are listed: (i) spread of initial electron velocities;
(ii) roughness of an emitting surface; (iii) nonuniform distribution of electric and magnetic field
determined by the geometry of electrodes and magnets; (iv) nonuniform distribution of an emis-
sion current on the cathode; (v) space-charge field in the beam; (vi) convective instabilities in
the beam; (vii) global instabilities in the beam. Five out of these seven factors are related to
the emission of the electrons from the cathode. All these demonstrate clearly the importance
of the physical phenomena that take place on and near the emitting surface and necessitate the
use of an adequate emission model which takes them into account.

One of the sources of the emission spread is the cathode work function distribution (WFD).
A recent study by Miram, Ives, Read, Wilcox, Cattelino, and Stockwell (2004) of various oxide-
coated and dispenser thermionic cathodes has shown that the effects of WFD are significant
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throughout the entire temperature limited (TL) emission region and cannot accurately be rep-
resented by a constant value or a narrow WFD.

One of the causes of the nonuniformity is surface roughness (micro relief). The emitting
surface of the cathode of a MIG for gyrotrons must be machined carefully in order to ensure
smoothness on a micron level scale (Ives and Falce 2006). In practice, however, the machining
tools are never perfect and always leave some marks on the cathode surface. For example, the
profilimetry measurements by Jensen, Law, and Jordan (2006) show that the usual treatment
of the cathode (which is accompanied by a slight wobble about the axis and ellipticity of the
cathode cross section) produces parallel micron-scale ridges along the surface. As a result,
for the conical cathodes that are usually used in gyrotrons, an angular variation of the field
enhancement factor is observed. This means that each ridge (or more generally each area with
enhanced field) provides additional emission current on an otherwise uniform cathode. The
model shows that large-scale angular variations in the emission current (when the currents in
adjacent quadrants differ, for example, by a factor of 2) can be explained by the angular variation
of the field enhancement factor. In other words, the dependence of the field enhancement
parameter β(θ) on the azimuthal angle θ is transformed into an azimuthal variation of the
current I1(θ) = I0[1 + α(θ)], where I0 is the current on a smooth cathode, and α is the local
increase in the current density due to the presence of parallel ridges with mean separation ∆
and width δ given by

α =
δ

∆

[
J(F, T )

J(F0, T )
− 1

]
.

Here, F0 is the macroscopic electric field, and F = βF0 is the locally enhanced field on the
ridges. For the specific case when the field enhancement is caused by off-axis rotation and an
ellipsoidal cross-section of the cathode cone its azimuthal dependence is

β(θ) ≈ β0 + β1 cos(θ + ϕ1) + β2 cos(2θ + ϕ2), (22)

where the second term corresponds to off axis rotation and the third one to the elliptical char-
acteristics, respectively. The constants in the above equation depend on the shape of the ridges.
Typical values considered in (Miram, Ives, Read, Wilcox, Cattelino, and Stockwell 2004) are
β0 = 76.0, β1 = 17.6, β2 = −13.6, ϕ1 = 0.9◦, and ϕ2 = −45.67◦. For this particular example,
when β is of the order of 60 and α is on the order of unity, the azimuthal variation is 2:1.

Assuming that the work function distribution is Gaussian with a mean value φ0 and standard
deviation σ, the current density is given by (Anderson, Korbly, Temkin, Shapiro, Felch, and
Cauffman 2002, Anderson, Temkin, and Shapiro 2005)

J =
κV 3/2

2

[
1 + erf

(
φT − φ0

σ
√

2

)]
+ ARLDT

2

[
1− erf

(
φT − φ0 + eσ2/kBT

σ
√

2

)]
exp

[
− e

kBT

(
φ0 −

√
eE

4πε0

− eσ2

2kBT

)]
,

(23)

where κ is is the perveance of the beam (dependent on cathode geometry). E is the electric field
which contributes to the Schottky effect. The transitional work function φT is the work function
at the threshold voltage where the space-charge limited current is equal to the temperature-
limited current.
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In the framework of this model a distinction is made between the global and local work
function spreads. Such approach is justified by the well-known observation showing that small
areas of the cathode (of the order of 500 µm2) may have an internal variation of the work
function. This variation occurring on a microscopic area is denoted as a “local.” At the same
time, different regions of the emitter, separated by distances of the order of several centimeters,
may have different local mean values of the work function. Therefore, the latter variation is
referred to as a “global” spread in work function. Statistically, when these two spreads are
uncorrelated the total spread is given by

σ2
total = σ2

global + σ2
local. (24)

The local spread can be caused by distribution of the barium coverage, which on turn depends
on the pore sizes. Experimentally the local spread can be determined measuring the current
over small locations of the cathode. Alternatively, one can first determine the global spread and
then calculate the local spread from the above relation.

In (Anderson, Temkin, and Shapiro 2005) is stated that “Emission nonuniformity due to a
temperature distribution for a gyrotron cathode has been shown, both from theory and direct
measurement (Anderson, Korbly, Temkin, Shapiro, Felch, and Cauffman 2002), to be small
compared to nonuniformities caused by a spread in the cathode’s work function for most MIGs.”

The effects of the roughness of the cathode surface on the emittance of an electron beam in
a gyrotron gun were investigated by (Borie and Horcher 1997).

The model of a single bump on the cathode surface is shown schematically in Fig. 8. In a

Figure 8: Bump on the emitting surface modelled by a hemisphere.

MIG for gyrotrons the surface roughness is h ≈ 5–20 µm and h/D � 1. The electric field for
this geometry is calculated using a conformal mapping with the following transformation:

u+ iv = z +
h2

z
, (25)
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where where z = x+ iy. This yields

u = x

(
1 +

h2

x2 + y2

)
,

(26)

v = y

(
1− h2

x2 + y2

)
.

For this transformation, the lower electrode with the bump corresponds to v = 0. The electric
field components accordingly are

Ex = −2E0
xyh2

(x2 + y2)2
,

(27)

Ey = −E0

[
1− h2(x2 − y2)

(x2 + y2)2

]
.

where E0 is the unperturbed electric field in a parallel plate capacitor. Electric field lines and
equipotential surfaces near the bump are shown in Fig. 9.

Figure 9: Electric field lines and equipotential surfaces near the bump.

The starting points of the trajectories (x0 and y0) are found from the conformal mapping,
by varying u0 with v0 = 0. All particles start with zero initial velocities. The magnitude of the
electric field E0 was varied from 1 kV mm−1 to 5 kV mm−1; that region corresponds to values
of the field near the emitter in a typical MIG. The height of the bump was varied from 0.002
mm to 0.02 mm, also corresponding to physically realistic values. The size of the computational
region was adjusted to correspond approximately to the size of an emitter cell in a calculation
with BFCPIC/BFCRAY. When computing averages, the contributions of the electrons starting
from a point on the bump are weighted with the ratio of the area of the bump to that of
the entire emitting surface. The data obtained from ray-tracing experiments indicate that the
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spread in emission angle resulting from a hemispherical bump having a height h between 2 µm
and 20 µm is somewhere between 2◦ and 20◦. The influence of the bump is most pronounced
in the first ten percent of the emitting cell. A reasonable model for the emitter surface in a
gyrotron gun would be randomly distributed surface irregularities with heights between 5 µm
and 20 µm. Another conclusion made in (Borie and Horcher 1997) is that including a randomly
distributed initial pitch angle varying from 6◦ and 20◦ with respect to the perpendicular should
approximately simulate the spread in initial angle due to surface roughness. In (Krasilnikov
2006) the configuration of the two-dimensional bump (Fig. 10) is given by

Figure 10: Model of a single bump. The upper curve corresponds to a/b = 100.

Figure 11: Electric field lines near the aforementioned bump.

z

b
=

√
1 +

a2

b2 + x2
− 1, (28)
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where the parameters a and b are constants depending on the depth and the width of the
roughness, respectively. The conformal transformation which maps the field of a plane capacitor
onto the field of the surface (28) is

u+ iv =
√

[x+ i(y + b)]2 + a2 − ib. (29)

Using this mapping, the electric field can be obtained in the following form:

Ex + iEy =
−iE0[x− i(y + b)]√
[x− i(y + b)]2 + a2

. (30)

The electric field lines of the single bump (28) are shown in Fig. 11.

5 Influence of the emission nonuniformity and velocity

spread on the gyrotron performance and the necessity

to take into account these factors in numerical simula-

tions

It is generally accepted that the beam quality parameters and eventually the overall gyrotron
performance depend critically on the nonuniformity of the emission. Some of the known and
experimentally observed adverse effects that are spurred by the nonuniformity of the current
extracted from the emitting part of the cathode in the gyrotrons are: mode competition, mode
hopping, efficiency degradation, and severe local heating in the collector region (Anderson, Kor-
bly, Temkin, Shapiro, Felch, and Cauffman 2002; Jensen, Feldman, and O’Shea 2004; Anderson,
Temkin, and Shapiro 2005).

A quasilinear theory of mode interaction in gyrotrons with azimuthally inhomogeneous elec-
tron emission was developed by Nusinovich and Botton (2001). The results of this theory
predict that at low currents the inhomogeneity may cause excitation of additional modes at the
frequency of the operating one. At higher currents, one can observe the onset of phase-locked
triplets with an equidistant frequency spectrum. As the inhomogeneity increases, this enhances
the beating effects in such triplets, e.g., the mode amplitudes exhibit some oscillations whose
period is inversely proportional to their frequency separation and whose modulation increases
with the inhomogeneity in the beam current. The analysis performed in (Nusinovich and Bot-
ton 2001) shows that the inhomogeneity causes additional coupling between modes which are
orthogonal in the absence of the inhomogeneity. In gyrotrons with a quasi-equidistant spectrum
of mode frequencies this causes the formation of stable triplets, in which the ratio of intensities
of the satellites to the intensity of the central mode increases with the emission inhomogene-
ity. This additional coupling also causes fast oscillations in the mode amplitudes, which are
especially well seen for those modes whose amplitudes are small.

Numerical simulations (Nusinovich, Vlasov, Botton, Antonsen, Cauffman, and Felch, 2001)
with the MAGY code demonstrate that the azimuthal inhomogeneity of the emission may cause
the appearance of pulsating satellites in the vicinity of a high-order operating mode. In the
case of typical nonuniformity of the emission and typical dependence of the velocity spread on
the beam current, the efficiency can be 2%–3% lower than in gyrotrons with ideally uniform
emission.
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The influence of the azimuthal nonuniformity of the emission on the beam quality parame-
ters has been studied experimentally by Glyavin, Goldenberg, Kuftin, Lygin, Postnikova, and
Zapevalov (1999). The method used is based on the analysis of the transition region between
space charge limited emission and temperature limited emission on the measured current–voltage
(I–V ) characteristic of the cathode. It is assumed that different regions of the emitter can op-
erate in different regimes and that with increasing applied voltage the total area of regions
emitting in the space charge limited regime grows while that of temperature limited extraction
shrinks. The transition voltage for each elementary section of the cathode area depends on
its emitting properties, and the more homogeneous the cathode is in terms of emission, the
narrower the transition zone. Density distribution function F (J) is evaluated as the second
derivative of the I–V characteristic of the cathode

F (J) = − 1

p2

d2I

dx2
, (31)

where p is the perveance and x = V 3/2.
The results of the experiments show significant deterioration of the gyrotron efficiency with

increasing inhomogeneity of the emission (Fig. 12).

Figure 12: Dependence of the efficiency on the emission nonuniformity measured by
the parameter σ which is equal to the standard deviation of the normal distribution
F (J) = (1/

√
2πσ) exp[−(1− x)2/2σ2] that approximates the measured one [from (Glyavin,

Goldenberg, Kuftin, Lygin, Postnikova, and Zapevalov 1999)].

The results of experimental and numerical studies in (Louksha, Piosczyk, Sominski, Thumm,
and Samsonov 2006) show that the observed increase of the low-frequency oscillations in the
case of inhomogeneous emission is due to the corresponding increase of the velocity spread in
the electron beam.

The evolution of an electron beam with azimuthal density nonuniformity in a cylindrical
beam tunnel has been studied by Pagonakis and Vomvoridis (2004). It has been found that
the azimuthal nonuniformity causes effects clearly associated with E×B-drifts. The numerical
results show, however, that these effects are too small to affect the performance of gyrotrons.
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6 Emission models implemented in the ray tracing and

PIC simulation tools

6.1 Emission model of the EGUN code

The well-known SLAC Electron Trajectory Program (EGUN) (Herrmannsfeldt 1988) is one of
the best-known codes for numerical simulation of electron guns, including space charge, Child–
Langmuir and Fowler–Nordheim starting routines and 3D relativistic trajectory calculation in
2D rectangular or axially symmetric electric and magnetic fields.

The electric field and potential are held to zero on the starting surface, and the iteration
proceeds. The current filaments act on one another in a reasonable approximation, and magnetic
focusing is incorporated taking into account the azimuthal component of the self magnetic field,
which is superimposed on the external magnetic field. It should be mentioned that such an
approach is realized in the most of the known codes described below, but will not be repeated
again. To simulate initial velocities effects in the beam, each filament is subdivided into rays
of varying strength and they are emitted at specified angles from the normal to the starting
surface. These filaments are quickly curved back toward the direction of the normal, as no
crossing of the filaments is allowed in the calculation.

There are several possibilities to specify the emission model of the cathode:
(i) “GENERAL” cathode in which electrons are started assuming that Child’s law holds

near a surface designated as the cathode. This surface can be of any arbitrary shape and may
include holes and shadow grids.

(ii) “SPHERE” for a spherical cathode (cylindrical in rectangular coordinates) in which
the electrons are assumed to be emitted at right angles to the surface defined by a radius of
curvature and a radial limit. Child’s law for space-charge limited current is again used.

(iii) “CARDS” in which the specific starting conditions for each ray are specified.
(iv) “GENCARD” which combines the versatility of “CARDS” with the assumptions of

Child’s law from “GENERAL.” This is especially useful for cases involving a very nonuniform
current emission.

In order to simulate the effect of thermal velocities, each ray can be divided into two or more
rays with any desired fraction of the current in each ray such that the total is 100%. The initial
angle can then be varied differently for the different rays to simulate thermal noise on the beam.

The program accepts the beam temperature in Kelvin and calculates a radial increment to
be added and subtracted from particles that start from the initial coordinates of each “ideal”
particle; before adding the thermal energy (Herrmannsfeldt 1994). There are three models, using
two, three, and five particles, respectively, for each initial particle. The two-particle model is the
most satisfactory because it includes a random number generator to give the statistical sense
to the thermal processes (Herrmannsfeldt 1994).

It is important to note that the three methods for initiating a space-charge limited flow all
include a Busch’s theorem calculation to account for the magnetic flux through the cathode.

6.2 Emission model of the CIELAS2 code

The emission model for a thermionic cathode implemented in the CIELAS2 code (Edgcombe
1995) can treat both space charge limited and temperature limited emission. The density of
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emitted current is set by the choice of the temperature and thermionic properties of the cathode.
The starting point for each trajectory is a small fraction of a mesh, spacing from the cathode,
in the region where the potential can be estimated using thermal velocity theory. The charge
density deposited up to a short distance beyond the minimum potential is that appropriate
to thermally-distributed velocities. The resulting estimates of the electric field at the cathode
surface are expected to be more accurate than those found by programs which start trajectories
at a greater distance from the cathode (Edgcombe 1995). The number of emission points and
number of trajectories started at each point can be varied to provide 240 trajectories or more.
At any point, rays can be started with chosen numbers of initial directions, both in angle to the
normal and in azimuth. For any point and direction, rays can be emitted with more than one
value of the initial energy. This capability has allowed the velocity spread arising from these
initial variations to be compared with that due to other causes. The magnitudes of currents are
assigned by use of a simple cosine model for the distribution of emitted current density.

The results of numerical experiments indicate that initial velocity spreads at the cathode
appear to be less important in determining the final velocity spread than the effect of nonuni-
formity of the electric field over the emitter surface, at least in the limit of temperature limited
emission.

6.3 Emission model of the BFCPIC, BFCRAY and ESRAY codes

The emission model realized in the BFCPIC and BFCRAY codes can be described as follows
(Borie and Horcher 1997): (i) new particles are emitted from each emitter cell (randomly located
within each cell) at each time (or iteration) step. (ii) The charge on each macroparticle is
adjusted to maintain the given total current and is given by Q = I∆t/nnew, where the number
of new emitted particles is user defined. If uniform emission over the emitter is assumed, then
the number of particles emitted at each time step should be equal to the number of grid cells
on the emitter, or an integral multiple thereof. (iii) All emitted particles have the appropriate
physical charge to mass ratio. A typical value of Q for a macroparticle is about 10−11 C,
corresponding to about 108 electrons.

In the initial version of this model the kinetic energy of the emitted particles is set equal
to zero, since the kinetic energy of the emitted particles is typically much smaller than the
energy acquired in crossing one cell near the emitter. In order to ensure that the space charge
distribution is modelled by a reasonably smooth function, the location of the newly emitted
particles is varied randomly, but uniformly over the emitter surface. The fields must be correctly
interpolated to the actual particle position and a sufficiently large number of particles must be
emitted at each iteration step.

The basic emission model described above has been modified in order to take into account
the initial velocity spread modelled by an effective scatterer in initial pitch angle. As a starting
point, one assumes a smooth emitter surface that emits particles perpendicular to it. At a
fixed distance from the emitter (almost always equal to 0.01×cell height), the additional spread
in pitch angle is included (see Fig. 13). The initial pitch angles are denoted by RTHET (the
angle in the X1–X2-plane), and RPHI (the angle perpendicular to the X1–X2-plane, i.e., the
azimuthal angle). The starting point (RX) along the emitter is determined randomly. Then the
electrostatic potential φ at point P is computed from the potential differences between the cell
corners. The magnitude of the initial velocity is then determined from the energy conservation
law, mv2/2 = eφ.
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Figure 13: Emitting cell on the cathode [from (Borie and Horcher 1997)].

The slope ε of the cathode determines the components vx1 and vx2 of the initial velocity
(see Fig. 14) in the directions of X1 and X2. The additional angle RTHET is added to or
subtracted from in order to simulate the spread in pitch angle resulting from surface roughness.
An azimuthal velocity component V X3 pointing into or out of the page and is determined by
the angle RPHI. It is possible to vary RTHET and RPHI independently between user-defined
limits.

Figure 14: (a) Emission without scatter in pitch factor, and (b) with scatter (RHTET is added
to the emission angle) [from (Borie and Horcher 1997)].

In the case of space charge limited emission each emission cell is considered as a planar
diode and the extracted current density JCL is calculated from Child’s law (Borie, Illy, and
Westermann 1997). More specifically, assuming that the distances d1 and d2 (see Fig. 15) are

19



Figure 15: Emission cell for calculation of the extracted current from Child’s law.

small and averaging the current densities for the left and right edges one gets

JCL =
4

9
ε0

√
2e

m

1

2

[
(φ3 − φ1)

3/2

d2
1

+
(φ4 − φ2)

3/2

d2
2

]
. (32)

Once the current density is determined in each cell, the emitted charge is determined by

Qemit = JCLA∆t, (33)

where A is the emitting area and ∆t is the time step. In practice JCL is calculated in this way
only in the PIC version (BFCPIC), using a shorter calculation region without the beam tunnel.
The resulting current density in each cell could be read in for ray tracing.

6.4 Emission model of the EPOS-V code

It was already mentioned that the initial velocity spread is due to the presence of inhomogeneous
axially-symmetric fields at the cathode, determined by the geometry of electrodes and of the
magnetic system, to the thermal velocity spread and to the roughness of the emitting surface of
the cathode. Taking into account the specific formation of the oscillatory velocities in a MIG,
the developers of the EPOS-V code (Lygin 1995) proposed to replace the joint influence of these
factors by an appropriately chosen azimuthal initial velocity, vϕ0. The initial velocities in other
directions are assumed to be zero, since they affect the velocity distribution only slightly.

In the numerical simulation the electron beam is replaced by a set of current tubes, each
of which is divided into several velocity groups with various values of the current dI and the
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azimuthal velocity, vϕ0. The latter should, in principle, be calculated from the initial velocity
distribution, dI/dvϕ0. But since this distribution is not known, it is approximated by a normal
one. The parameters of the normal (approximating) distribution are chosen in such a way for
I ≈ 0 as to coincide with the experimentally measured one.

A version of the EPOS-V code (Lygin, Manuilov, and Tsimring 1999) which is based on a
non-stationary physical model that can account for the reflected electrons uses the following
procedure to simulate the emission.

At each instant of time ti = i∆τ (i = 1, 2, . . .) NzNv particles start from the emitter (Nv

is the number of the velocity groups with different vϕ0 and corresponding values of particle
charge calculated according to the initial velocity distribution dI/dvϕ0 on the cathode, Nz is
the number of elementary rings with areas Sk). The charge of the starting particle is obtained
as Jdt Skf(vϕ0).

6.5 Emission model of the GPT and PARMELA codes

The initial particle distribution in the General Particle Tracker (GPT) code (van der Geer
2001) is essential for correct simulation results because it defines the boundary conditions for
the ODE solver. Creating this 6D phase-space consisting of all 3D position and 3D momentum
coordinates of the initial particles can be quite challenging. GPT, just like PARMELA, has the
capability to read the initial particle distribution from a file. As a result both programs are
capable of starting any possible distribution.

PARMELA (Young 1996) uses one routine that can be used to start the electron bunches.
This distribution is based on the Courant-Snyder parameters without detailed control over the
underlying distributions. This is very inflexible because for example a hollow beam, a cosine or
linear particle density distribution and a square beam must all be created externally.

6.6 Emission model of the GUN-EBT and GUN-MIG/CUSP codes

Although the emitter in a MIG for gyrotrons most often operates in a temperature limited mode,
in the GUN-MIG/CUSP code (Sabchevski, Mladenov, and Idehara 1999) Langmuir’s theory is
included in the physical model in order to extend the applicability of the code to cases where
the whole area of cathode or some regions of it are operating in a space charge limited regime.
According to this approach, it is assumed that the region near the emitter can be divided into a
number of small virtual diodes in which the current is governed by the potential distribution and
initial velocities of the thermoelectrons. It is also assumed that in each virtual diode Langmuir’s
theory holds and the technique described in (Sabchevski, Mladenov, Titov, and Barbarich 1996)
is applied for computation of the extracted currents.

It is based on the fact that the initial velocities of electrons in the beam are determined by
the temperature of the emitter and usually correspond to energies less than 1 eV. As a result, the
space-charge density in the vicinity of the cathode is high and significantly affects the potential
distribution. Moreover, usually a space-charge cloud forms which produces a potential minimum
in the vicinity of the emitter. A fraction of the emitted electrons does not have sufficient energy
to surmount the potential barrier and returns to the cathode. It is important to note that in
reality various cathode regions can function under different operating conditions. For instance,
if there is no potential minimum in front of a particular cathode area all emitted electrons will
be extracted by the accelerating field and will take part in the beam formation. This regime
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is called the saturation or temperature limited mode of operation. At the same time, other
cathode regions in front of which emitted electrons face a retarding electric field will work in
the space charge limited mode. In the former case the current density is given by

J = Jsat, (34)

while in the latter
J = Jsat exp(φmin/kBT ), (35)

where Jsat is is the temperature limited current density (also called “saturated current density”)
calculated from the Richardson–Dushman equation and φmin is the potential minimum.

In order to take into account both the initial thermal velocities of the electrons leaving
the cathode and variations of the potential near the emitter, the cathode surface is divided
into a number of small annular regions. The extracted current density in each annular region
is calculated by considering it as a small planar diode and by applying Langmuir’s theory.
Langmuir’s solution for a planar diode relates the dimensionless potential

η =
e

kBT
(φ− φmin), (36)

and the dimensionless distance
ζ = χ(z − zmin), (37)

where zmin is the distance between the potential minimum and the emitting surface, χ = cT−3/4J1/2,
and c is a constant. The dependence between η and ζ is available in tabular form as well as in
the form of approximations [η = F1(ζ) and ζ = F2(η)], adapted to represent the tabular data
with the required accuracy.

In calculations there are three known quantities for each elementary diode, namely: cathode
temperature, anode potential φa and anode-to-cathode distance da. In order to obtain the
extracted current density Ja, an iterative procedure is used to solve the transcendental equation

φ(Ja)− φa = 0, (38)

taking advantage of the following relations:

φmin = −kBT

e
ln(J/Ja), (39)

ηc = −eφmin/kBT, (40)

ζc = F2(ηc), (41)

ζa = ζc + χda, (42)

φ(Ja) = (kBT/e)(ηa − ηc). (43)

Using the technique described above, the current density as well as the location and depth of the
potential minimum for each cathode region can be calculated. The entire area of the boundary-
value problem can be divided in two partially overlapping regions. The first one is the region
between the cathodes and the anodes of the elementary diodes. The second region begins at the
potential minimum and extends to the end of the area. Thus, the potential minimum is used
as a boundary condition for the solution of Poisson’s equation in the second region in order to
obtain a self consistent solution.
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6.7 Emission model of the MICHELLE code

MICHELLE 3D (Petillo, Eppley, Panagos, Blanchard, Nelson, Dionne, DeFord, Held, Chernyakova,
Krueger, Humphries, McClure, Mondelli, Burdette, Cattelino, True, Nguyen, and Levush 2002)
is a finite-element gun and collector modelling code developed by that incorporates a steady-
state Particle-In-Cell (PIC) algorithm with conformal structured or unstructured mesh elements.
It is a full three-dimensional code that includes relativistic self-fields calculations.

There are three basic emission models implemented in the MICHELLE code, namely: (i)
temperature limited emission, (ii) space charge limited emission, and (iii) secondary elec-
tron emission. The first one assumes that the extracted current density is governed by the
Richardson–Dushman equation.

The model of space-charge limited emission realized in MICHELLE exploits the Child–
Langmuir law for a planar diode but with a correcting coefficient G, i.e.,

J =
4

9
ε0

√
2
e

m

V 3/2

s2
G. (44)

Here s is the inter-electrode distance of the diode and

G = GTGRGC , (45)

where GT is a temperature correction factor, GR is a correction factor for relativistic diodes,
and GC is a correction factor that takes into account the departure of the planar diode from
the real geometrical configuration (spherical, cylindrical, conical or toroidal).

According to pioneering works of Langmuir, the temperature correction for the low-voltage
region close to the emitting surface can be approximated by

GT
∼= 1 + 0.02468(T/V )1/2 − 0.00197(T/V )3/4. (46)

It should be noted however that this approximation is inaccurate for voltage levels below 10 V.
The relativistic correction factor is calculated from the following series expansion

GR = 1− 0.107u+ 0.02418u2 − 0.007u3 + 0.002307u4 − 0.0008229u5 + · · · , (47)

where u = eV/m0c
2 = γ − 1.

The geometrical correction factor GC for a planar diode inferred from the Langmuir–Blodget
spherical diode analysis will be denoted by GS. It may be expressed in terms of the normalized
distance parameters, s± = ±(r − rc), as

GS± = (s±/rα±)2 = {(s±/rc) [(1± s±/rc)α±(u±)]}2 , (48)

where rc is the cathode spherical radius of curvature, u± = ± ln(1±s±/rc). Here the parameter
α is calculated from the series expansion

α± = u± ∓ 0.3u2
± + 0.075u3

± ∓ 0.01432u4
± + 0.00216u5

± ∓ 0.00035u6
±.

In the above equations the plus and minus signs correspond to r > rc and r 6 rc, respectively.
As shown in Fig. 16, the Child’s law calculations are applied and averaged at a locus of equally
spaced points distributed over a few mesh cells. In such a way the interpolated potentials are
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Figure 16: Integration path for the Child–Langmuir law along a surface normal direction on an
arbitrary mesh cross section [from (Petillo et al. 2002)].

smoothed. Evaluating the current density along a distribution of points one can calculate an
averaged value

J =
4

9
ε0

√
2e/m0

N

N∑
n=1

V
3/2
n

s2
n

{
1 + 3

[
(π/4)kBT

eVn

]1/2
}
G(eVn/m0c

2)GC . (49)

In the above equation the summation spans only those points that have positive interpolated
potential values greater than some user-determined minimum value, V1. The starting point s1

is calculated from Child’s law
s1
∼= (A/J)1/2V 3/4, (50)

using the potential V from the previous iteration (time step). Here A = 2.3332× 10−6.
Macroparticle launch energies and directions from a thermionic surface are generated using

a Maxwellian energy distribution form, modified to account for the region beyond the potential
well near the emission surface where no returning particles are encountered. In spherical coor-
dinates, the combined energy and angular distribution function, governing thermionic emission,
is separable and may be expressed in normalized form by

f(u, θ, φ)du sin θ dθdφ = f(u)g(θ)du sin θ dθdφ, (51)

where g(θ) =
1

π
cos θ, f(u) = ue−u, and

N(u) =

∫ u

0

ue−udu = 1− e−u(1 + u). (52)
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The energy of the emitted particles normalized to u = mv2/2kBT is calculated from

ūi =
(u2

i+1 + 2ui+1 + 2)e−ui+1 − (ui2 + 2ui + 2)e−ui

(ui+1 + 1)e−ui+1 − (ui + 1)e−ui
, i = 1, 2, . . . , Nu, (53)

using standard distribution-based averaging. The energy values ui bound the Nu energy zones
of equal probability. Illustration of the particle energy partitioning for equal launch probability
when Nu = 5 is shown in Fig. 17.

Figure 17: Illustration of average particle energies assignments for the case of five equally divided
probability zones. Dashed lines correspond to the average energy centered over the indicated
equal probability zones [from (Petillo et al. 2002)].

The corresponding angular distribution of emitted particles is isotropic about any point of
emission. The angular distribution integral is

G(θ) =

∫ θ

0

g(θ) sin θ dθ

∫ 2π

0

dφ = sin2 θ. (54)

The integration of G(π/2) over the entire interval is normalized to unity. If the number of the
azimuthal launch direction is Np, the number of inclination angles θ is Ni and the surface normal
direction index Nk (0 – no launch, 1 – launch), then the total number of unique launch angles
is given by

Ni = NpNi +Nk. (55)

The bounding probability fractions for each nth inclination cluster (see Fig. 18) are calculated
from

βn = arcsin
(
{[Ni +Np(m− 1)]/Ni}1/2

)
, m = 1, . . . , Ni + 1. (56)

The zone-averaged angle of inclination θ̄n for the nth zone is evaluated using a closed form
solution

θ̄n =
1

2
(sin 2βn+1 − sin 2βn − 2βn+1 cos 2βn+1 + 2βn cos 2βn)/(cos 2βn − cos 2βn+1). (57)
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Figure 18: Cross section of discrete particle launch directions computed for a nine-particle
launch case (Ni = 2, Np = 4, Nk = 1, Nt = 9) [from (Petillo et al. 2002)].

The azimuthal angles of the macroparticles, emitted with equal probability are calculated
from

φm = (m− 1)2π/Np, m = 1, . . . , Np. (58)

An example that illustrates this algorithm is shown in Fig. 18. Only five rays are visible in the
cross-sectional view since four rays are located in the orthogonal plane, rotated 90◦ about the
surface normal.

Since the secondary electron emission will be discussed elsewhere, we do not review the
secondary emission model of MICHELLE in the present study. We note, however, that secondary
electron emission is also being built into the ESRAY code.

6.8 Emission model of the BOA code

The Beam Optics Analysis (BOA) code simulates electron trajectories in 3D electromagnetic
fields and geometries (Ives, Bui, Vogler, Nelson, Read, Shephard, Bauer, Datta, and Beal 2006).

The program supports several emission options, including thermionic, secondary, and in-
jected beams. For thermionic cathodes, the user can specify cathode temperature and work
function. Each emitter can operate with different parameters. According to (Ives, Bui, Vogler,
Nelson, Read, Shephard, Bauer, Datta, and Beal 2006) the future versions will allow variation
of work function or temperature over a cathode surface.

6.9 Emission model of the MAGIC code

MAGIC is a user-configurable code that solves Maxwell’s equations together with the Lorentz
equation of motion for particles (Goplen, Ludeking, Smithe, and Warren 1995). A variety of
2D, finite-difference electromagnetic algorithms and 3D Particle-In-Cell algorithms may be com-
bined in problem-specific ways to provide fast, accurate, steady-state and transient calculations.
MAGIC has a fully 3D counterpart called SOS. Programs exist to connect these analysis’ tools
to parametric and CAD input from an integrated design environment.
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Macroparticles are created in the simulation either by an emission process or by entering
through a boundary. They may also be populated in the simulation as an initial condition. The
creation of macroparticles is inherently statistical in nature. Other options, common to all of
the emission processes, control other aspects of creation. For example, an initial spacing option
allows uniform, random, or weighted macroparticle placement, both transverse and normal to
the emission surface.

Field emission, in which the energy required to overcome a material work function is supplied
by an electric field, is described by the Fowler–Nordheim equation. In the case of thermionic
emission the current density is calculated from the Richardson–Dushman equation. The beam
injection model specifies a beam to be emitted from an emitting surface. It is used when the time
and spatial profile of the incident current density is known, or to model a beam created outside
the simulation space. It is also used in conjunction with the secondary emission calculations.

6.10 Emission model of the Gun3p code

Figure 19 presents the main parameters involved in the emission model of the Gun3p code

Figure 19: Emission model used in Gun3p (Prudencio et al. 1995).

(Prudencio, Candel, Ge, Kabel, Ko, Lee, Li, Ng, and Schussman 2008). The emission positions
are assigned during initialization and do not vary through cycles. Here x0 indicates emission
position at the cathode and n̂ indicates the outward unit normal at x0. Using a user defined
distance d (e.g., d = 100 µm) from the cathode, one finds from conservation of energy that at
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xd = x0 − dn̂,
m0v

2
d

2
= −eφd, (59)

where m0 is the particle rest mass, vd is the speed of an electron at distance d from the cathode,
and φd is the electric potential at the position xd. Gun3P emits a particle at x0 with constant
velocity

v0 = −2

3
vdn̂ (60)

and associates to it a current density Jcathode according to the Child–Langmuir law

Jcathode =
4

9
ε0

√
2e

m0

φ
3/2
d

d2
.

Once the particle reaches xd, its velocity is set to

vd = vd
eEd

‖eEd‖
(61)

(with Ed = −∇φd) and its trajectory is computed through the relativistic Lorentz equation

m0
d(γv)

dt
= e(E + v ×B), (62)

where γ is the relativistic mass factor. The Boris algorithm (Burdsall and Langdon 1985) is
used as in the BFCPIC, BFCRAY and ESRAY codes for integration of Eq. (62). Currently
Gun3P does not model any thermal effects at the cathode.

7 General formulation of an adequate 3D emission model

The main principles that we follow in formulating a general emission model are the principle of
decomposition and the principle of an equivalent diode. Accordingly, the emitting surface ΩS is
divided into a number NS of small non-overlapping regions ΩSi , i.e., ΩS = ∪ΩSi , ΩSi ∩ ΩSj = 0,
and diam(ΩSi) � 1, where i = 1, 2, . . . , NS. Then each elementary region is considered as the
cathode of an equivalent diode. The anode of this virtual elementary diode (usually a parallel
plate diode) is either a surface obtained by translating the cathode surface in the direction of its
normal or more practically an appropriate (close to the emitter) equipotential surface obtained
from the current solution of the boundary-value problem for the electrostatic potential. In any
case, the distance between the cathode and the anode of the equivalent diode should be much
less than the transverse extent of the electrodes. Then for each elementary diode one can apply
one or another of the physical models for space-charge limited or temperature limited emission
discussed above. Such a formulation takes into account the fact that in practice different cathode
regions can operate under different conditions (different local temperature, different local work
function of the emitter, different local electric and magnetic fields and so forth). Although
the elementary equivalent cathodes need to be small enough, usually their extent is covered by
several elementary cells of the computational grid. This makes it possible to introduce local
spatial variations of the initial conditions inside each equivalent diode in order to take into
account the surface roughness, for example.
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On each elementary cathode the range (distribution) of the initial energies Ei corresponding
to a given cathode temperature is divided into NE groups. The initial velocities of the particles
belonging to the group i (i = 1, 2, . . . , NE) is calculated from the relation

vi =

√
2Ei
m

. (63)

The total current extracted from jth elementary cathode is

Itoti = J0Aj = eAj(n1v1 + n2v2 + · · ·+ nNEvNE), (64)

where Aj is the emitting area, J0 is the averaged current density over it and the total number
of the emitted particles is

Ntot =

NE∑
i=1

ni.

The number of particles in each energy group can be calculated from (Freeman 2001)

ni =
2Ntot√
π

∫ ηmax

ηmin

√
ηe−ηdη, (65)

where η = Ei/ET (with ET = kBT/e) is the normalized energy and ni is rounded to the closest
integer number.

Once the number of particles for each energy group ni is calculated, it must be divided
into Nθ angles of emission. Denoting by nij the number of particles from the ith energy group
emitted at the jth emission angle, θj, we have

ni =

Nθ∑
j=1

nij. (66)

The method used to calculate nij must correspond to the angular distribution of the emission
according to Lambert’s law, and, additionally, comply with the statistical characteristics of par-
ticle distribution according to the Maxwell–Boltzmann distribution. Such a method is proposed
by Freeman (2001). It implies that

nij = ni1 cos θj, (67)

where
ni1 =

ni∑Nθ
j=1 cos θj

.

Here θ1 = 0 and it corresponds to the emission in the direction of the normal to the emitting
surface. Such a procedure complies with the well-known statistical relation (Freeman 2001),
notably that the normal energy of the particles is twice its tangential value when calculated
over the ensemble [see Eq. (1-15) in (Freeman 2001)].
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8 Conclusion and outlook

In this summary the basic relations governing electron emission from thermionic cathodes used
in the magnetron injection guns (MIGs) of modern gyrotrons, as well as some of the most
characteristic implementations of various emission models in several ray-tracing and PIC codes
have been presented. In their entirety they take into account the most important physical
factors and phenomena that take place in the cathode region of the gun and which affect the
beam quality parameters. Although the level of idealization is different for different codes it can
be concluded that there is no simulation package that treats all emission problems of practical
interest. It seems that an attempt to incorporate more emission models in the existing available
codes as a part of their upgrade could involve more physics in the simulations and will make
them more realistic. The realization of adequate (physics-rich) emission models in the next
generation of 3D simulation tools that are under development now is mandatory. In fact, since
in reality most of the distributions depart from the axial symmetry the need to treat them
adequately is among the main motivations for the development of 3D codes.

It is believed that this summary contains the most important equations, formulas and meth-
ods (or references to them) that are necessary for programming implementation of the reviewed
emission models. The next important task is to select the most efficient models, taking into
account the necessary computational resources and the additional computational load on the
codes in which such models will be incorporated.
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de Recherches en Physique des Plasmas at École Polytechnique Fédérale de Lausanne (CRPP-
EPFL). One of us (S. Sabchevski) would like to express his gratitude to the IHM-FZK for the
stimulating atmosphere, nice working conditions and productive discussions during his stay in
Karlsruhe under the Mobility scheme.

This work supported by the European Communities under the contract of Association be-
tween EURATOM and Forschungszentrum Karlsruhe, was carried out within the framework of
the European Fusion Development Agreement. The views and opinions expressed herein do not
necessarily reflect those of the European Communities.

30



References

Amboss, K. A.: 1993, A review of the theory of space charge limited operation, Proceedings
of the Conference on Electron Beam Melting and Refining State of the Art 1993, Reno, NV,
November 3–5, pp. 117–126.

Anderson, J. P., Korbly, S. E., Temkin, R. J., Shapiro, M. A., Felch, K. L., and Cauffman,
S.: 2002, Design and emission uniformity studies of a 1.5-MW gyrotron electron gun, IEEE
Trans. Plasma Sci. 30, 2117–2123.

Anderson, J. P., Temkin, R. J., and Shapiro, M. A.: 2005, Experimental studies of local and
global emission uniformity for a magnetron injection gun, IEEE Trans. Electron Dev. 52,
825–828.

Borie, E. and Horcher, U.: 1997, Effect of surface roughness on the velocity spread in electron
guns for gyrotrons, Int. J. Infrared and Millimeter Waves 18, 577–594.

Borie, E., Illy, S., and Westermann, T.: 1997, Use of the BFCPIC and BFCRAY to describe
space charge limited emission in electron guns for gyrotrons, Int. J. Infrared Millimeter Waves
18 1–22.

Birdsall, C. K. and Langdon, A. B.: 1985, Plasma Physics via Computer Simulation, McGraw-
Hill Book Company, New York.

Edgcombe, C. J.: 1995, Sources of velocity spread in electron beams from magnetron injection
guns, Int. J. Infrared and Millimeter Waves 16, 83–97.

En-Qiu, Zh.: 1985, Thermionic emission from dispenser cathodes, Int. J. Electronics 58, 141–
149.

Freeman, J.C.: 2001, Preliminary Study of Electron Emission for use in PIC Portion of MAFIA,
NASA/TM-2001-210890, pp. 1–67.

Gilmour, A. S.: 1986, Microwave Tubes , Artech House Publishers, Boston, MA.

Glyavin, M. Yu., Goldenberg, A. L., Kuftin, A. N., Lygin, V. K., Postnikova, A. S., and Zape-
valov, V. E.: 1999, Experimental Studies of Gyrotron Electron Beam Systems, IEEE Trans.
Plasma Sci. 27, 474–483.

Goplen, B., Ludeking, L., Smithe, G., and Warren, G.: 1995, User-configurable MAGIC for
electromagnetic PIC calculations, Computer Phys. Communications 87 54–86.

Hawkes, P. W. and Kasper, E.: 1989, Principles of Electron Optics , Vol. 1, Academic Press,
London & San Diego.

Hayashi, Y., Flechtner, D., and Hotta, E.: 2002, Characteristics of electron emission from PZT
ferroelectric cathode under strong accelerating field, J. Phys. D: Appl. Phys. 35, 281–286.

HeatWave Labs, Inc.: 2001, Emission characteristics for scandium type dispenser cathodes,
Technical Paper TB-119 – available online at: http://www.cathode.com/pdf/TB-119.pdf.

31



Herrmannsfeldt, W. B.: 1988, EGUN—An Electron Optics and Gun Design Program, SLAC
Report-331, Stanford Linear Accelerator Center.

Herrmannsfeldt, W. B.: 1994, Developments in the Electron Gun Simulation Program, EGUN,
SLAC Report-6726, Stanford Linear Accelerator Center.

Isagawa, S., Higuchi T., Kobayashi K., Miyake S., Ohya K., and Yoshida M.: 1999, Application
of M-type cathodes to high-power cw klystrons, Appl. Surface Sci. 146, 89–96.

Ives, R. L., Bui, T., Vogler, W., Nelson, J., Read, M., Shephard, M., Bauer, A., Datta, D.,
and Beal, M.: 2006, Beam Optics Analysis - an advanced 3D trajectory code, reported on
the HIGH ENERGY DENSITY AND HIGH POWER RF: 7th Workshop on High Energy
Density and High Power RF, AIP Conf. Proc. 807, pp. 292–298.

Ives, R. L. and Falce, L.: 2006, Improved dispenser cathodes, reported on the HIGH ENERGY
DENSITY AND HIGH POWER RF: 7th Workshop on High Energy Density and High Power
RF, AIP Conf. Proc. 807, pp. 158–166.

Jensen, K. L. and Cahay, M.: 2006, General thermal-field emission equation, J. Appl. Lett. 88,
154105-1–3.

Jensen, K. L., Feldman, D. W., and O’Shea, P. G.: 2004, The quantum efficiency of dispenser
photocathodes: Comparison of theory to experiment, Appl. Phys. Lett. 85, 5448–5450.

Jensen, K. L., Law, Y. Y., and Jordan, N.: 2006, Emission nonuniformity due to profilimetry
variation in thermionic cathodes, Appl. Phys. Lett. 88, 164105-1–3.

Jensen, K. L., Law, Y. Y., and Levush, B.: 2000, Migration and escape of barium atoms in a
thermionic cathode, IEEE Trans. Plasma Sci. 28, 772–781.

Krasilnikov, M.: 2006, Impact of the cathode roughness on the emittance of an electron beam,
Proceedings of Free Electron Lasers (BESSY, Berlin, Germany, 2006) pp. 583–586 [modelled
as proposed in Lau, Y.: 1987, Effects of cathode roughness on the quality of electron beams,
J. Appl. Phys. 61, 36–44].

Kuznetsov, G. I.: 1997, Cathodes for electron guns, Phys. Scr. T71, 39–45.

Langmuir, I. and Compton, K. T.: 1931, Electrical discharges in gases Part II. Fundamental
phenomena in electrical discharges, Rev. Mod. Phys. 3, 191–257.

Lawson, W., Raghunathan, H., and Esteban, M.: 2004, Space-charge limited magnetron injec-
tion guns for high-power gyrotrons, IEEE Trans. Plasma Sci. 32, 1236–1241.

Longo, R. T.: 2003, Physics of thermionic dispenser cathode aging, J. Appl. Phys. 94, 6966–
6975.

Louksha, O. I., Piosczyk, B., Sominski, G. G., Thumm, M. K., and Samsonov, D. B.: 2006,
On potentials of gyrotron efficiency enhancement: Measurements and simulations on a 4-mm
gyrotron, IEEE Tran. Plasma Sci. 34, 502–511.

32



Lygin, V. K.: 1995, Numerical simulation of intense helical electron beams with the calculation
of the velocity distribution functions, Int. J. Infrared Millimeter Waves 16, 363–376.

Lygin, V. K., Manuilov, V. N., and Tsimring, Sh. E.: 1999, Non-stationary simulation of the
gyrotron intense helical electron beams, Nucl. Instrum. Meth. A 427, 41–45.

Miram, G., Ives, L., Read, M., Wilcox, R., Cattelino, M., and Stockwell, B.: 2004, Emission
spread in thermionic cathodes, Vacuum Electronics Conference, 2004. IVEC 2004. Fifth IEEE
International Volume issue 27–29 April 2004, pp. 303–304.

Nusinovich, G. S. and Botton, M.: 2001, Quasilinear theory of mode interaction in gyrotrons
with azimuthally inhomogeneous electron emission, Phys. Plasmas 8, 1029–1035.

Nusinovich, G. S., Vlasov, A. N., Botton, M., Antonsen, T. M., Cauffman, S., and Felch, K.:
2001, Effect of the azimuthal inhomogeneity of electron emission on gyrotron operation, Phys.
Plasmas 8, 3473–3479.

Pagonakis, J. Gr. and Vomvoridis, J. L.: 2004 Evolution of an electron beam with azimuthal
density nonuniformity in a cylindrical beam tunnel, IEEE Trans. Plasma Sci. 32, 890–898.

Petillo, J., Eppley, K., Panagos, D., Blanchard, P., Nelson, E., Dionne, N., DeFord, J., Held,
B., Chernyakova, L., Krueger, W., Humphries, S., McClure, T., Mondelli, A., Burdette,
J, Cattelino, M., True, R., Nguyen, K. T., and Levush, B.: 2002, The MICHELLE three-
dimensional electron gun and collector modeling tool: theory and design, IEEE Trans. Plasma
Sci. 30 1238–1264.

Prudencio, E., Candel, A., Ge, L., Kabel, A., Ko, K., Lee, L., Li, Z., Ng, C., and Schussman,
G.: 2008, Parallel 3D Finite Element Numerical Modelling of DC Electron Guns, SLAC
Report-13097, Stanford Linear Accelerator Center, pp. 1–10.

Raghunathan, H. and Lawson, W.: 2005, The design of space-charge limited magnetron injection
guns with control electrodes for gyroklystron applications, IEEE Trans. Plasma Sci. 33, 1366–
1371.

Sabchevski, S. P., Mladenov, G. M., and Idehara, T.: 1999, Modelling and simulation of mag-
netron injection guns for submillimeter wave gyrotrons, Int. J. Infrared and Millimeter Waves
20 1019–1035.

Sabchevski, S. P., Mladenov, G. M., Titov, A., and Barbarich, I.: 1996, Modelling and simulation
of beam formation in electron guns, Nicl. Instrum. Meth. Phys. Res. A 381 185–193.

Sabchevski, S., Zhelyazkov, I., Thumm, M., Illy, S., Piosczyk, B., Tran, T.-M., Hogge, J.-Ph.
and Pagonakis, J. Gr.: 2007, Recent evolution of the simulation tools for computer aided
design of electron-optical systems for powerful gyrotrons, Computer Modeling in Engineering
and Sciences 20, 203–220.

Tsimring, Sh. E.: 2007, Electron Beams and Microwave Vacuum Electronics, Wiley InterScience,
Hoboken, NJ.

33



van der Geer, S. B.: 2001, The General Particle Tracer Code: Design, Implemen-
tation and Application, PhD Thesis (Technische Universiteit Eindhoven); see also:
http://www.pulsar.nl/gpt.

Yamamoto, S.: 2006, Fundamental physics of vacuum electron sources, Rep. Prog. Phys. 69,
181–232.

Young, L. M.: 1996, PARMELA, Report LA-UR-96-1835 (Revised April 22, 2003), Los Alamos
National Laboratory.

34


	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	2 Basic theory of the emission models
	3 Cathodes used in the MIG for gyrotrons
	4 Sources of emission nonuniformity and velocity spreads
	5 Influence of the emission nonuniformity and velocity spread on the gyrotron performance and the necessity to take into account these factors in numerical simulations
	6 Emission models implemented in the ray tracing and PIC simulation tools
	6.1 Emission model of the EGUN code
	6.2 Emission model of the CIELAS2 code
	6.3 Emission model of the BFCPIC, BFCRAY and ESRAY codes
	6.4 Emission model of the EPOS-V code
	6.5 Emission model of the GPT and PARMELA codes
	6.6 Emission model of the GUN-EBT and GUN-MIG/CUSP codes
	6.7 Emission model of the MICHELLE code
	6.8 Emission model of the BOA code
	6.9 Emission model of the MAGIC code
	6.10 Emission model of the Gun3p code

	7 General formulation of an adequate 3D emission model
	8 Conclusion and outlook
	References

