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Abstract 

Bubble train flow (or Taylor flow) is a common flow pattern in gas-liquid flows through 

narrow channels. It consists of a sequence of elongated bubbles that fill almost the entire 

channel cross section, move with similar axial velocity and are separated by liquid slugs. 

Bubble train flow is of practical importance, e.g. for micro bubble columns and multiphase 

monolith reactors. For both devices, the knowledge of the liquid phase residence time 

distribution (RTD) is of great importance since the RTD provides information about the flow 

and mixing behaviour of reaction components and thus determines the yield and selectivity of 

the chemical reactor. 

In the present study, the liquid phase RTD in laminar bubble train flow through a square 

mini-channel driven by a pressure gradient and buoyancy is evaluated from numerical 

simulations. The simulations with the volume-of-fluid method consider perfect bubble train 

flow where the hydrodynamics is fully described by a single unit cell consisting of one bubble 

and one liquid slug. The numerically evaluated unit cell RTD is approximated by an analytical 

model which has been proposed recently but is improved here to be valid for both co-current 

upward and co-current downward flow. The model RTD for n  identical unit cells in series is 

obtained from the unit cell RTD model by an ( 1)n − -fold convolution procedure. While the 

developed model reasonably fits the numerically evaluated RTD curve of a single unit cell for 

different flow conditions, the agreement of the convolution-based model for multiple unit cells 

is less satisfactory and should be improved in future. 
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Zusammenfassung 

Numerische Untersuchung und analytische Modellierung der Verweilzeitvertei-

lung der Flüssigkeit bei Taylorströmung in einem quadratischen Minikanal 

Die Zweiphasenströmung eines Gases und einer Flüssigkeit in kleinen Kanälen erfolgt 

häufig in Form der sogenannten Taylor-Strömung. Diese Strömungsform ist charakterisiert 

durch eine Folge langgestreckter Blasen, die den Querschnitt des Kanals nahezu ausfüllen, 

sich mit ähnlicher Geschwindigkeit entlang des Kanals bewegen und durch 

Flüssigkeitspropfen getrennt sind. Von praktischer Bedeutung ist die Taylor-Strömung z.B. 

für Mikro-Blasensäulen und Monolith-Reaktoren mit Gas-Flüssig-Strömung. Für beide 

Apparate ist die Verweilzeitverteilung der Flüssigkeit von Interesse. Die Verweilzeitverteilung 

liefert Informationen über das Mischungsverhalten von Reaktionskomponenten und ist von 

großer Bedeutung für den Umsatz und die Selektivität des Reaktionsapparates. 

In der vorliegenden Studie wird die Verweilzeitverteilung der flüssigen Phase aus 

numerischen Simulationen der laminaren Taylor-Strömung in einem vertikalen Mini-Kanal 

ausgewertet. Die numerischen Simulationen mit der Volume-of-Fluid Methode erfolgen für 

eine perfekte Taylor-Strömung, bei der die Hydrodynamik vollständig durch eine 

Einheitszelle bestehend aus einer Blase und einem Flüssigkeitspropfen beschrieben ist. Die 

aus den numerischen Simulationen ausgewertete Verweilzeitverteilung einer Einheitszelle 

wird analytisch durch ein für aufwärts gerichtete Taylor-Strömung vorgeschlagenes Modell 

beschrieben, das hier verbessert und für abwärts gerichtete Strömung erweitert wird. Die 

Verweilzeitverteilung von n  identischen Einheitszellen in Serie wird über die ( 1)n − -fache 

Faltung der Verweilzeitverteilung der Einheitszelle modelliert. Während das entwickelte 

analytische Modell die numerisch bestimmte Verweilzeitverteilung für eine Einheitszelle gut 

approximiert, ist das auf der Faltungsoperation basierende Modell für mehrere Einheitszellen 

in Serie nicht voll zufriedenstellend und sollte zukünftig weiter verbessert werden. 
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1. Introduction 

Segmented gas-liquid flow is a common two-phase flow pattern in narrow channels. It is also 

denoted as Taylor flow or bubble train flow (BTF) and consists of a sequence of elongated 

bubbles which almost fill the entire channel cross section (Taylor bubbles). The individual 

bubbles move along the channel while they are separated by liquid slugs. Bubble train flow is 

of technical relevance, e.g. for miniaturized multiphase reactors (Jähnisch et al., 2000; Burns 

& Ramshaw, 2001; Günther et al., 2004, Haverkamp et al., 2006) and for multiphase mono-

lith reactors (Roy et al., 2004; Kreutzer et al., 2005b, Bauer et al., 2005). While in an indus-

trial scale monolith reactors with Taylor flow are only used for production of H2O2 (Edvinson 

Albers et al., 2001) they find increasing interest for potential use for Fischer-Tropsch synthe-

sis (De Deugd et al., 2003; Bradford et al., 2005; Güttel et al., 2008, Liu et al., 2009). 

In real Taylor flow, the length of the liquid slugs and the size of individual bubbles 

underlies variations. The variation of the bubble size results in a variation of the translational 

velocity of individual bubbles. This may lead to coalescence and thus a further change of the 

bubble size and slug length distribution. A useful abstraction of real bubble train flow is 

perfect bubble train flow, where the bubbles are assumed to have identical size, shape and 

velocity and where the length of all liquid slugs is the same. Then, the hydrodynamics of BTF 

is fully described by a unit cell (UC) which consists of one bubble and one liquid slug. 

An important characteristic of any chemical reactor is its residence time distribution 

(RTD), since the RTD provides information about the flow and mixing behaviour of reaction 

components (Levenspiel, 1999; Martin, 2000; Nauman, 2008). The knowledge of the RTD 

and the kinetics of the chemical reaction is the basis for the design of any chemical reactor 

since both determine the yield and selectivity of the reactor. This gives the motivation to 

develop simple but yet reliable models that are able to predict the RTD in bubble train flow 

from fluid properties and known integral flow parameters such as the superficial velocities of 

the phases. Of major interest is the RTD of the continuous liquid phase, since the variation of 

the residence time of the gas phase is small and its mean value can be computed by dividing 
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the length of the channel by the bubble velocity. Desirable is a plug flow behaviour of the 

liquid phase with a narrow RTD. 

For the design and optimization of micro-structured reactors for process intensification 

the ability to reliably predict the RTD is of great importance. Sun et al. (2008) recently 

investigated the influence of the RTD on the synthesis of biodiesel in capillary micro-reactors 

operated with Taylor flow. They found that the RTD in the micro-channel reactor was 

remarkably decreased compared to the RTD which is required in batch systems to obtain a 

high yield under the same reaction conditions. However, the RTD of the micro-reactors had 

to be controlled to avoid the saponification of the biodiesel. Though this example 

demonstrates the practical importance of the RTD, there are, unfortunately, only very few 

experimental data on the liquid phase RTD available in literature for multiphase micro-

structured reactors such as monolith reactors. This may be attributed on one hand to the 

difficulties of performing local measurements of the RTD in narrow channels and on the other 

hand to the only recently increasing interest in this topic. As a consequence, reliable and 

validated general models for the RTD in micro-structured reactors are missing. This is in 

particular true for channels of non-circular cross-section, which are quite common in 

monoliths and other micro-structured reactors. In rectangular channels, the film thickness at 

the circumference of the bubble is not constant. As a consequence, a so-called corner flow 

exists which makes the application of RTD models for circular channels invalid and requires 

the development of refined models. 

In experiments the residence time distribution is often measured by a stimulus-response 

technique, where a specific quantity of a tracer (e.g. fluorescent substance, radionuclide, 

solution of salt, etc.) is introduced at the system inlet as a short duration pulse or a step 

function and where the time variation of the tracer concentration is recorded at the outlet. 

The tracer particles injected at the inlet are assumed to follow the same paths through the 

system as the original fluid particles they replaced. Thus, the tracer particles will have the 

same distribution of residence times as the original fluid particles. By recording the times 

when particles leave a histogram can be constructed. For a large sampling size this 
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histogram converges to the differential residence time distribution function. This single-phase 

flow approach can be applied to gas-liquid two-phase flows as well. The main difference is 

that the system has now usually two inlets (one for the gas phase and one for the liquid 

phase), while there is still one common outlet. To measure the residence time distribution of 

the liquid phase in a gas-liquid flow, the tracer pulse is injected at the liquid inlet only. 

The stimulus-response measurement technique is well suited for macro-reactors, where 

the reactor volume is much larger than the volume of the tracer measurement device. 

However, for micro-structured reactors, the reactor volume is usually smaller than the volume 

of the measuring unit. This means that the residence time response of the tracer may already 

be influenced by the measurement configuration itself. Measurements of liquid phase RTD 

for two-phase flow through narrow channels are reported by Thulasidas et al. (1999) for 

bubble-train flow in single straight channels (using a conductiometric technique), by Patrick 

et al. (1995) for a monolith froth reactor (measuring the tracer concentration at the outlet with 

a spectrometer), by Heibel et al. (2005) for film flow in a monolith reactor (using a dye tracer 

and a spectrometer), by Yawalkar et al. (2005) and Kreutzer et al. (2005a) for bubble-train 

flow in a monolith reactor (using a dye tracer and a spectrometer), by Bakker et al. (2005) for 

a novel ‘open wall’ monolith reactor, by Kulkarni et al. (2005) for Taylor flow in a monolith 

reactor (using a KCl tracer solution and a conductivity probe), and by Günther et al. (2004) 

and Trachsel et al. (2005) for bubble-train flow in micro-fluidic channel networks of 

rectangular cross-section (using a fluorescently labelled tracer pulse and a fluorescence 

microscope). The latter authors showed that the residence time distribution of bubble-train 

flow is very narrow as compared to single phase flow, which is a distinct advantage. Just 

recently, Lohse et al. (2008) presented a novel method for determining the RTD in an 

intricately structured micro-reactor, which employs a tracer ‘injection’ using the optical 

activation of a caged fluorescent dye. 

An alternative way to determine the RTD is by means of computational fluid dynamics 

(CFD). There exist in principle two options to determine the residence time distribution from 

CFD methods. The first one is the numerical simulation of the stimulus-response experiment, 
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i.e. setting a short concentration pulse at the inlet of the computational domain, computing 

the unsteady concentration field of the tracer within the computational domain and evaluating 

it at the outlet. This approach has been used in a modified form by Salman et al. (2005, 

2007) to determine the reactor residence time for Taylor flow in a circular micro-channel from 

the residence time distribution of a single unit cell by using a convolution procedure. The 

second possibility is the particle tracking method. Here, virtual particles are released at the 

inlet and their trajectories are computed from the known velocity field of the CFD calculation. 

A notable difference between the two methods is that in the particle method convective 

properties of the flow are only monitored, while by evaluation of the unsteady concentration 

field diffusive transport is additionally taken into account. The relative importance of 

convective and diffusive transport is characterized by the Bodenstein number. For bubble-

train flow, it can be defined as B h tracer/Bo U D D≡ , where BU  is the bubble velocity, hD  is the 

hydraulic diameter of the channel and tracerD  is the molecular diffusion coefficient of the 

tracer in the liquid phase. For a particle tracking method, no diffusion of the tracer is taken 

into account. The RTD obtained by a particle tracking method is therefore representative for 

an infinite value of the Bodenstein number. 

To predict the residence time distribution for Taylor flow, Salman et al. (2004) developed 

a numerical model valid for low values of the Bodenstein number. This model does not 

account for the direction of gravity and assumes liquid slugs of uniform concentration and 

liquid films around the bubble that can be adequately described by a one-dimensional 

convection-diffusion equation. For large values of the Bodenstein number ( 10Bo > ) the 

model can be simplified and an analytical solution is derived, which corresponds to the 

representation of a unit cell by a tank-in-series model, consisting of a plug flow reactor (PFR) 

and a continuous stirred tank reactor (CSTR). In a more recent paper, Salman et al. (2007) 

numerically evaluated RTDs for a wide range of Bodenstein numbers (respectively Peclet 

numbers) and compared it with predictions from three literature models (CSTR-PFR model, 

two-region model of Pedersen & Horvath (1981), and the model of Thulasidas et al. (1999)). 

They found that the shape of the RTD and the performance of the different models depend 
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strongly on the parameter B film tracer/U d D , where filmd  is the thickness of the liquid film 

between the gas bubble and the channel wall. 

Recently, Wörner et al. (2007) developed a new CFD-based method for evaluating the 

liquid phase residence time distribution of bubble-train flow using data from direct numerical 

simulations (DNS). The numerical simulations are performed for perfect bubble-train flow. 

The method developed for evaluation of the RTD is a particle method and relies on the 

uniform introduction of virtual particles in the volume occupied by the liquid phase within a 

single flow unit cell. The residence time distribution is obtained by statistical evaluation of the 

time required by virtual particles to travel axially the length of the unit cell, and by an 

appropriate weighting procedure which takes into account the axial velocity at the initial 

particle position. Residence time curves have been evaluated from DNS data of co-current 

upward bubble-train flow in a square mini-channel of 2 mm × 2 mm cross section for values 

of the capillary number in the range B L / 0.2 0.25Ca U μ σ≡ = − , where Lμ  is the liquid 

viscosity and σ  is the coefficient of surface tension. The RTD curves obtained can be fitted 

well by a simple exponential relationship, which has been developed on the basis of a 

compartment model consisting of two tanks in series, the first tank being a plug flow reactor 

and the second being a continuous stirred tank reactor. This model may be considered as 

generalization of the model of Salman et al. (2004) which was developed for circular 

channels, but cannot be applied adequately for square channels because of the corner flow. 

Both, the model of Salman et al. (2004) and of Wörner et al. (2007) are derived for the 

RTD of a unit cell. In practice, a single channel with bubble-train flow contains tens or 

hundreds of unit cells depending on the length of the unit cell and the length of the channel. 

Salman et al. (2007) computed the residence time of the capillary from the residence time of 

the unit cell by means of a convolution method. Usually, a micro-structured reactor consists 

of a large number of parallel channels. If the flow is evenly distributed across the different 

channels, the RTD of the reactor is equal to that of a single channel. However, in practice the 

flow rates through the different channels of the monolith reactor differ (Mantle et al., 2002), 
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so that it is necessary to take this maldistribution effect into account when estimating the 

reactor RTD from the single channel RTD. 

The objective of the present report is twofold. First, we want to refine the unit cell RTD 

model of Wörner, Ghidersa, Onea (2007) (the WGO model) for co-current upward bubble 

train flow and develop a more general unit cell RTD model which is also valid for co-current 

downward bubble train flow. Second, we want to develop a procedure to predict the RTD of 

an arbitrary number of unit cells in series (i.e. the RTD of a single channel with perfect 

bubble train flow) from the RTD of a single unit cell. In this report we investigate in how far 

this can be done by a convolution procedure. 

This report is organized as follows. In section 2 we introduce some fundamental aspects 

and definitions of RTD theory. In section 3 we discuss issues related to the numerical 

simulation of bubble train flow and to the numerical evaluation of the RTD. Section 4 is 

devoted to the analytical modelling of the RTD for bubble train flow, namely the development 

of a refined unit cell model and a model for multiple unit cells. In section 5 we present the 

conclusions. 
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2. Fundamentals of residence time theory 

In this section we give a short introduction into fundamental aspects and definitions re-

lated to the concept of residence time distribution. Some passages in this section are 

adopted from the English Wikipedia page for “residence time distribution” (accessed June, 

2009). For further details we refer to text books, e.g. Fogler (1986) and Levenspiel (1999). 

2.1. The residence time distribution 

The residence time distribution (RTD) of a chemical reactor is a probability distribution 

function that describes the amount of time that fluid elements spend inside the reactor. The 

distribution of residence times is represented by an exit age distribution ( )E t . The function 

( )E t  has unit of time-1 and underlies the restriction 

0

( )d 1E t t
∞

=∫  (1) 

The fraction of the fluid that spends a given duration t  inside the reactor is given by ( )dE t t , 

while the fraction of fluid that leaves the reactor with an age less than 1t  is 

1

0

( )d
t

E t t∫  (2) 

The mean or average residence time is given by the first moment of the age distribution 

0

( )dt t E t t
∞

≡ ⋅∫  (3) 

If there are no stagnant zones within the reactor then t  will be equal to the mean hydrody-

namic residence time hτ , which is the residence time calculated from the total reactor vol-

ume V  and the volumetric flow rate Q  of the fluid 

h
V
Q

τ ≡  (4) 

The second central moment indicates the variance of the RTD and is given by 
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2 2

0

( ) ( )dt t E t tσ
∞

≡ −∫  (5) 

The variance represents the square of the spread of the distribution as it passes the vessel 

exit and has units of (time)2. It is particularly useful for matching experimental curves to one 

of a family of theoretical curves (Levenspiel, 1999). 

2.2. Measurement of the RTD 

As discussed in the introduction of this report, residence time distributions are measured 

by introducing a non-reactive tracer signal at the inlet and by measuring the time-dependent 

tracer concentration at the outlet. The selected tracer should not modify the physical charac-

teristics of the fluid (equal density, equal viscosity) and the introduction of the tracer should 

not modify the hydrodynamic conditions. In general, the tracer signal at the inlet will either be 

a pulse or a step. Other functions are possible, but they require additional calculations to de-

convolute the RTD curve, ( )E t . 

The pulse method requires the introduction of a very small volume of concentrated tracer 

at the inlet of the reactor, such that it approaches the Dirac delta function. Although an 

infinitely short injection cannot be produced, it can be made much smaller than the mean 

residence time of the reactor. In the pulse method the RTD curve can be computed from the 

measured time dependent tracer concentration ( )C t  at the reactor outlet by the relation 

0

( )( )
( )d

C tE t
C t t

∞=

∫
 (6) 

In the step method, the concentration of tracer at the reactor inlet is changed abruptly 

from 0  to 0C . The concentration of tracer at the outlet is normalized to obtain the non-

dimensional curve  

0

( )( ) C tF t
C

=  (7) 

which increases monotonically from 0 to 1. The value of the mean residence time and the 

variance can be computed from the function ( )F t  by relations 
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[ ]
0

1 ( ) dt F t tτ
∞

= = −∫  (8) 

[ ]2 2

0

2 1 ( ) dt F t t tσ
∞

= − −∫  (9) 

The step- and pulse-responses of a reactor are related due to 

0

( ) ( )d
t

F t E t t= ∫  (10) 

and 

d ( )( )
d
F tE t

t
=  (11) 

A step experiment is often easier to perform than a pulse experiment, but it tends to smooth 

over some of the details that a pulse response could show. It is easy to numerically integrate 

an experimental pulse response to obtain a very high-quality estimate of the step response, 

but the reverse is not the case because any noise in the concentration measurement will be 

amplified by numeric differentiation. 

2.3. RTD of ideal reactors 

The residence time distribution of a real reactor can be used to compare its behavior to 

that of two ideal reactor models: the plug-flow reactor (PFR) and the continuous stirred-tank 

reactor (CSTR). In an ideal PFR there is no mixing and the fluid elements leave in the same 

order they arrived. Therefore, fluid entering the reactor at time t  will exit the reactor at time 

PFRt τ+ , where PFR PFRtτ =  is the mean residence time of the plug-flow reactor. The residence 

time distribution function is therefore a Dirac delta function 

( )PFR( )E t tδ τ= −  (12) 

The variance of an ideal plug-flow reactor is zero. 

An ideal CSTR is based on the assumption that the flow at the inlet is completely and 

instantly mixed into the bulk of the reactor. The reactor and the outlet fluid have identical 
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homogeneous compositions at all times. An ideal CSTR has an exponential residence time 

distribution 

CSTR
CSTR CSTR

1( ) exp tE t
τ τ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (13) 

Here, CSTR CSTRtτ =  is the mean residence time of the continuous stirred-tank reactor. The 

variance of the CSTR is 2 2
CSTR CSTRσ τ= . The RTD for a cascade consisting of n∈  identical 

CSTRs in series is 

1

CSTR
CSTR CSTR

( ) exp
( 1)!

n

n n

t tE t
n τ τ

− ⎛ ⎞
= −⎜ ⎟− ⎝ ⎠

 (14) 

2.4. Non-dimensional RTD 

For comparing different reactors it is useful to introduce a non-dimensional RTD curve 

( ) ( )E t E tθ θ ≡ ⋅  (15) 

which is a function of a dimensionless time 

t
t

θ ≡  (16) 

The non-dimensional mean value of Eθ  is then 

0 0 0

1 1( )d ( ) d ( )d 1tE t E t t t E t t
t t tθθ θ θ θ

∞ ∞ ∞

≡ ⋅ = ⋅ ⋅ = ⋅ =∫ ∫ ∫  (17) 

while the non-dimensional variance is 2 2 2/ tθσ σ= . 

For a single CSTR it is 

CSTR ( ) exp( )E θ θ= −  (18) 

and 2
,CSTR 1θσ = . The mean residence time for a series of n  identical CSTRs is 

CSTR CSTRn nτ τ= . With definition of the non-dimensional time 

CSTR
CSTR CSTR

n
n

t t
n

θ
τ τ

≡ =  (19) 

we can write Eq. (14) in the non-dimensional form 
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( )
1

CSTR
CSTR CSTR CSTR

( )( ) exp
( 1)!

n
n

n n n
n nE n

n
θθ θ

−

= −
−

 (20) 

The non-dimensional variance of a series of n  identical CSTRs is 

2 1
nθσ =  (21) 

For real reactors, often the mean residence time τ  and the variance 2σ  are measured and 

the reactor RTD is modelled as a series of n  CSTRs, where n  is computed from Eq. (22) 

2

2 2

1n
θ

τ
σ σ

= =  (22) 

2.5. Definitions for the unit cell RTD in bubble train flow 

We now introduce some definitions for the RTD in bubble train flow, which we will need 

later in this report. We consider a perfect bubble train flow consisting of a cascade of n  iden-

tical unit cells in series featuring RTD UC ( )nE t . The mean residence time of this RTD is 

UC UC UC
0

( )dn n nt t E t tτ
∞

≡ = ⋅∫  (23) 

and the variance is 

2 2
UC UC UC

0

σ ( ) ( )dn n nt t E t t
∞

= −∫  (24) 

We define the non-dimensional time 

D D
UC

nUC UC
n

t n t n
n

τ τθ
τ τ
− −

≡ =  (25) 

Here, Dτ  is the delay time which will be defined later and UCτ  is the mean residence time of 

a single unit cell. We define the non-dimensional form of the RTD UC ( )nE t  as 

, UC UC UC UC( ) ( )n n nE n E tθ θ τ≡  (26) 

The mean hydrodynamic residence time for a series of n  unit cells in bubble train flow is 

UC
h

L

n
n

V
Q

τ =  (27) 
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Here, UC UC chnV nL A=  is the volume of a domain with n  unit cells of length UCL , L L chQ J A=  is 

the liquid volumetric flow rate, LJ  is the liquid superficial velocity and chA  is the cross-

sectional area of the channel. Therefore, Eq. (27) gives 

UC
h

L
n

nL
J

τ =  (28) 
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3. Numerical simulation of bubble train flow 

In this section, we first give a short overview on the numerical method and the computer 

code used to perform the direct numerical simulations of the bubble-train flow. We then de-

scribe the simulation set-up and give the physical and numerical parameters of the simula-

tions. Finally, we shortly present the method for evaluation of the RTD from the DNS data 

and present some visualizations of the local residence time field. 

3.1. Numerical method 

The direct numerical simulations are performed with the in-house computer code TUR-

BIT-VOF (Sabisch 2000, Sabisch et al. 2001), which solves the single-field Navier-Stokes 

equations with surface tension term for two incompressible immiscible fluids under assump-

tion of constant fluid properties (i.e. density, viscosity, surface tension). The single-field for-

mulation automatically accounts for the proper momentum jump conditions across the gas-

liquid interface. The governing equations are written in non-dimensional form, see Ghidersa 

et al. (2004) and Öztaskin et al. (2009). For normalization, a reference length scale refL  and 

reference velocity scale refU  are used, which need to be specified. The solution strategy is 

based on a projection method, where the resulting Poisson equation for the pressure is 

solved by a conjugate gradient solver. Time integration of the single field Navier-Stokes  

equation is done by an explicit third order Runge-Kutta method. Discretization in space is 

based on a finite volume method, where a regular Cartesian staggered grid is used. All de-

rivatives in space are approximated by second order central differences. 

For computing the evolution of the deformable interface, which separates the two 

immiscible fluids, the volume-of-fluid (VOF) method is used. In any mesh cell that 

instantaneously contains both phases, the interface is locally approximated by a plane. The 

orientation and location of the plane is reconstructed from the discrete distribution of the 

volumetric fraction f  of the continuous fluid. Note that - for a certain instant in time - we 

have 1f =  for mesh cells entirely filled with liquid, 0f =  for mesh cells entirely filled with 

gas, and 0 1f< <  for mesh cells that contain both phases. The evolution of f  is governed 
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by an advection equation, which expresses the mass conservation of the continuous phase. 

To avoid any smearing of the interface, this f -equation is not solved by a difference 

scheme. Instead, the flux of f  across the faces of any interface mesh cell is calculated in a 

geometrical manner, depending on the location and orientation of the plane representing the 

interface. For further details about the numerical method we refer to Sabisch et al. (2001) 

and Öztaskin et al. (2009). We also note that a comprehensive code-to-code comparison 

exercise of TURBIT-VOF with three major commercial CFD codes was performed for bubble-

train flow in a square mini-channel, see Özkan et al. (2007). 

3.2. Simulation set-up 

The set-up of the simulations is described in detail in Ghidersa et al. (2004) and Wörner 

et al. (2007) and is therefore only shortly repeated here. We consider a computational do-

main and co-ordinate system as displayed in Fig. 1. No-slip boundary conditions are applied 

at the four side walls of the square channel, while in (vertical) axial direction ( y ) periodic 

boundary conditions are used. The length of the computational domain in axial direction is 

axL . This length may represent one unit cell as displayed in Fig. 1, or may represent ucN  unit 

cells, where ucN  is a positive integer. The flow can be co-current upward or downward, de-

pending on the sign of the specified driving axial pressure drop across the computational 

domain. The simulations start from fluid at rest with a bubble placed in the centre of the com-

putational domain. They are continued in time until the bubble velocity and the mean liquid 

velocity within the computational domain obey constant terminal values. 

3.3. Simulation parameters 

In the present report five different cases are considered. For all cases the following pa-

rameters are used: h x z ref 2mmD L L L= = = = , liquid density 3
L 957 kg/mρ = , gas density 

3
G 11.7 kg/mρ = , liquid viscosity L 0.048 Pa sμ = ⋅ , gas viscosity G 0.184 mPa sμ = ⋅ , coeffi-

cient of surface tension 0.02218 N / mσ = , reference velocity ref 0.0264m/sU = , reference 

time scale ref ref ref/ 0.0757st L U≡ =  and gas holdup in the computational domain 33%ε ≈ . 
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Fig. 1: Sketch of computational domain and co-ordinate system. 

 

The cases differ with respect to the length of the unit cell, UCL , the number of unit cells in 

the domain, ucN , and the flow direction, see Tab. 1. For cases A1, B1 and C the 

computational domain contains one unit cell only, while it contains two unit cells for cases A2 

and B2. Case A1 and B1 correspond to case A2 and E, respectively, in Wörner et al. (2007). 

Cases A2 and B2 correspond to case A1 and B1, respectively, in Öztaskin et al. (2009). 

While in all these cases the flow is co-current upward, it is co-current downward for case C, 

which is otherwise similar to case G in Wörner et al. (2007). Further data given in Tab. 1 are 

the time step width tΔ  and the number of computes times steps tN . In all cases a uniform 

grid of mesh size ref / 48x y z LΔ = Δ = Δ =  is used. 
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Tab. 1: Numerical parameters of the simulations 

Case Domain Grid ax ref/L L  UCN  ε  tN  refΔ /t t  

A1 1×1×1 48×48×48 1.0 1 0.3307 40 000 52.5 10−×

A2 1×2×1 48×96×48 2.0 2 0.3307 50 000 52.5 10−×

B1 1×1.5×1 48×72×48 1.5 1 0.3303 50 000 52.5 10−×

B2 1×3×1 48×144×48 3.0 2 0.3303 70 000 52.5 10−×

C 1×1.75×1 48×84×48 1.75 1 0.3303 45 000 51.5 10−×  

 

In Tab. 2 for each case terminal values of characteristic velocities and bubble dimensions as 

well as the bubble Reynolds number B L h B L/Re D Uρ μ≡  and capillary number 

L B /Ca Uμ σ≡  are given. For all cases the bubble is axi-symmetric, i.e. its cross-section at 

any axial position is circular. 

Tab. 2: Terminal values of velocities, bubble dimensions, mean hydrodynamic res-

idence time, bubble Reynolds number and capillary number for the different cases. 

Case B ref/U U L ref/U U  ref/J U B h/D D  S h/L D  h ref/ tτ  BRe  Ca  

A1 3.66 1.20 2.02 0.809 0.064 1.245 3.86 0.21 

A2 3.66 1.20 2.02 0.809 0.064 1.245 3.86 0.21 

B1 3.86 1.37 2.19 0.849 0.292 1.635 4.06 0.22 

B2 3.96 1.37 2.22 0.843 0.280 1.635 4.17 0.23 

C -3.25 -1.53 -2.09 0.891 0.480 1.708 3.42 0.19 

3.4. Procedure for numerical evaluation of the RTD from DNS data 

The procedure for the numerical evaluation of the RTD of the liquid phase within a unit 

cell of the bubble train flow is described in detail in Wörner et al. (2007). Here, we give a 

short overview on key issues of this evaluation procedure. The method relies on data for the 

instantaneous three-dimensional velocity and volume fraction field within a unit cell which 

have to be obtained in advance by a direct numerical simulation (DNS). The evaluation 



Numerical simulation of bubble train flow 

 17 

procedure is only useful for fully developed bubble train flow, where the translational velocity 

of the bubble is constant and the bubble shape is steady. The method to evaluate the RTD 

from the DNS data is a particle tracking method and relies on the uniformly spaced 

introduction of virtual particles in the volume occupied by the liquid phase within a single flow 

unit cell. The position of each particle within the given flow field is tracked by a first order 

Euler scheme, in which the velocity field at the particle position is obtained from linear 

interpolation from the staggered DNS grid. The residence time distribution is obtained by a 

statistical evaluation of the time needed by virtual particles to travel an axial distance 

equivalent to the length of the unit cell, and by an appropriate weighting procedure which 

takes into account the axial velocity at the particle’s initial position. 

There exist three numerical parameters for evaluation of the RTD. The first one is the 

particle Courant-Friedrich-Levy (CFL) number 

p p
p

t
CFL

x
Δ

≡
Δ

u
 (29) 

which is used to determine the time step width ptΔ  for the particle tracking. Here, the CFL 

number is 0.2 for all cases. The second parameter is the number of particles per unit length 

pN . This parameter defines the initial positions of the particle set, as it constitutes the dis-

tance between neighbouring particles in the three coordinate directions. Here, we use 

p 48N =  for all cases. The third parameter is classΔt . It is used to subdivide the time axis in 

certain intervals of size classΔt . Each time interval is denoted as a class. The RTD is obtained 

by sorting the residence time of all particles in classes and by subsequent normalization of 

the resulting histogram. In Fig. 2 a) we illustrate the influence of the choice of classtΔ  on the 

numerically evaluated RTD. Three different values of classtΔ  are used for evaluation of the 

RTD for case C, namely class D / 3t τΔ = , D / 2τ  and Dτ . It appears that values of classtΔ  may 

result in quite different values of E  in neighbouring classes while large values of classtΔ  lead 

to smoother curves but have a coarser resolution. In Fig. 2 a) one may also recognise that 

the area of the first three classes with class D / 3t τΔ = , the area of the first two classes with 

class D / 2t τΔ =  and the area of the first class for class Dt τΔ =  are all equal. However, the choice 
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of classtΔ  has a large influence on the height of the peak of the RTD at Dt τ≈ . This makes a 

comparison of models for the RTD with the numerical evaluated RTD difficult. 

A particle that leaves the computational domain through one of its two faces with periodic 

boundary conditions re-enters it through the opposite face. Thus a particle may travel an ax-

ial distance that is larger than the axial size of the computational domain axL . We denote the 

the axial distance that any virtual particle must travel before its residence time is recorded by 

travelL  and define cross travel ax/N L L≡ . Thus, crossN  allows evaluating the RTD of a series of mul-

tiple virtual unit cells. To test if this procedure is adequate to determine the RTD of multiple 

unit cells we applied it to cases A1 and A2. Both cases have an identical unit cell. However, 

in case A1 the computational domain contains one unit cell while it contains two unit cells in 

case A2. In Fig. 2 b) we compare the RTD for case A1 and cross 2N =  with the RTD for case 

A2 and cross 1N = . The differences between both RTDs are very small. Therefore we con-

clude that the RTD for a number of n  unit cells in series can be determined from simulation 

results with one unit cell in the computational domain by setting crossN  equal to n . 

3.5. Analysis of local residence time field 

From evaluation of the three-dimensional direct numerical simulation data the three-

dimensional field of the local residence time in the liquid phase of the bubble train flow is 

obtained. Fig. 3 shows a visualization of this field for case B1 and also displays the 

computed bubble shape (note the periodic boundary conditions in axial direction). In this 

figure, the local residence time in the computational domain is shown for two different planes, 

once for a mid-plane in vertical axial direction ( y ) and once for a horizontal channel cross-

section. The different values of the residence time are represented by a colour code. The 

figure indicates that fluid elements in the central region of the liquid slug have the shortest 

residence time, i.e. travel fastest along the channel. In general, the residence time is small 

for liquid fluid elements close to the bubble and is large for liquid fluid elements close to the 

solid walls. As expected, the highest values of the residence time are found in the four 

corners of channel. 
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Fig. 2: a) Illustrations of influence of Δtclass on the numerically evaluated RTD curve. b) 

Comparison of RTD curves for two unit cells, obtained from case A1 with Ncross=2 and from 

case A2 with Ncross=1. 
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Fig. 3: Visualization of the bubble shape and contour plot of the local non-dimensional resi-

dence time ref/t t  in two different planes for case B1. 
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4. Modelling the RTD for bubble train flow 

4.1. The RTD for a single unit cell 

4.1.1. The WGO model 

The RTD curves in Fig. 2 show a characteristic behaviour. For small values of t  the RTD 

is zero. At the so called “delay time” Dτ  the RTD becomes positive. The delay time of the 

RTD may thus be modelled by a plug flow reactor. For Dt τ>  the RTD strongly increases to 

the highest value and then slowly decays. The sudden increase of the RTD from zero to the 

highest value corresponds to the residence time of the fastest fluid particles, i.e. the liquid 

slug region in Fig. 3. The semi-logarithmic scale of the inset graphics shows that the slope of 

the RTD at small and medium time is almost constant. This suggests that this part of the 

RTD curve may be approximated by an exponential relationship. Thus, the RTD curve may 

be approximated by a (single-phase flow) compartment model consisting of two tanks in 

series. The first tank is a plug flow reactor (PFR) which represents the delay time and the 

second tank is a continuous stirred tank reactor (CSTR) which represents the exponential 

decay, see Fig. 4. The delay time is determined by the minimum time of fluid elements to 

pass the channel, whereas the height of the peak and the slope of the exponential decay are 

determined by the ratio of flow rate to tank volume /Q V  (see Fig. 12.1 in Levenspiel, 1999). 

This PFR-CSTR in series concept has already been adopted by Salman et al. (2004) to 

develop an analytical model for predicting axial mixing during Taylor flow in micro-channels 

at low Bodenstein numbers. However, this model was developed for circular channels where 

the film thickness is uniform and showed deficiencies for non-circular channels where the film 

thickness is not uniform (Wörner et al., 2007). 

For co-current upward bubble train flow in a square channel, Wörner et al. (2007) 

proposed two slightly different models. The first model denoted as JE  is given by 

UC B

J UC UC
UC B

UC UC B

0 for  /

( )
exp for  /

t L U

E E t LJ J t t L U
L L U

<⎧
⎪

⎡ ⎤= = ⎛ ⎞⎨ − ≥⎢ ⎥⎜ ⎟⎪
⎝ ⎠⎣ ⎦⎩

 (30) 
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In this model, the CSTR corresponds to the liquid slug region, which is well mixed because of 

the fluids recirculating motion (Thulasidas et al., 1997). The mean velocity in the liquid slug is 

equal to the total superficial velocity J  which is given by G L B L(1 )J J J U Uε ε≡ + = + − . 

Here, LU  is the mean liquid velocity and ε  is the gas volume fraction in the unit cell. The 

mean residence time of the CSTR is, therefore, in this model given by CSTR S UC /L Jτ τ= = . 

The model 
LUE  is obtained from Eq. (30) by replacing the superficial velocity J  by the mean 

liquid velocity LU . In the following we will consider only model JE  and denote it as WGO 

model (Wörner, Ghidersa, Onea 2007). 

 

 

Fig. 4: Compartment representation of the WGO model. QL is the volumetric flow rate of the 

liquid phase and VPFR and VCSTR are the volume of the plug flow reactor and the continuous 

stirred tank reactor, respectively. 
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In the WGO model, the delay time is taken to be the bubble break-through time 

B UC B/L Uτ ≡ , which is the time the bubble needs to move an axial distance equivalent to 

UCL . The mean residence time of the CSTR representing the liquid slug is S UC /L Jτ ≡ . With 

these definitions one can write Eq. (30) in the compact form 

B B
J UC

S S

( )( ) expτ τ
τ τ

⎛ ⎞− −
= = −⎜ ⎟

⎝ ⎠

H t tE E t  (31) 

Here, 

0 for  0
( )

1 for  0
x

H x
x
<⎧

= ⎨ ≥⎩
 (32) 

is the Heaviside step function. The argument of this discontinuous function determines the 

delay time of the RTD, i.e. the time needed by the fastest particles to cross the reactor. The 

integral of Eq. (31) from zero to infinity is unity and thus satisfies the necessary conditions of 

any RTD, see Appendix A.1.1. 

In Tab. 3 we list the values of Bτ  and Sτ  which are used in the WGO model for the dif-

ferent cases. Also given are the values for class refΔ /t t  that will be used for each case. 

 

Tab. 3: Values of parameters for unit cell RTD models. 

Case refB / tτ  refS / tτ  act
L,max ref/U U  th

L,max ref/U U  λ  refD / tτ  class refΔ /t t

A1 0.273 0.497 3.66 4.22 0.867 0.273 0.133 

A2 0.273 0.497 3.64 4.22 0.863 0.275 0.133 

B1 0.389 0.684 4.02 4.59 0.876 0.373 0.186 

B2 0.379 0.674 4.08 4.66 0.876 0.367 0.183 

C 0.539 0.836 -3.89 -4.39 0.879 0.450 0.225 
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4.1.2. The PD and PDD model 

In this section, we develop two improved models for the RTD of a unit cell. The new 

models will refine the WGO model with respect to the delay time and with respect to the 

slope of the RTD at high values of t  (i.e. the “tail” of the RTD). 

4.1.2.1. Delay time 

In Fig. 5 we compare the unit cell RTD model with the numerically evaluated RTD curves 

for case A1 and case C. In the figure, the shaded area represents the numerically evaluated 

RTD and the solid line the approximation by the WGO model. The dashed vertical lines de-

note the bubble break-through time. From Fig. 5 (a), where the dashed line agrees with the 

delay time of the RTD, we see that no fluid particles are moving faster than the bubble and 

most of the fluid particles are moving with a velocity that is only slightly smaller than the bub-

ble velocity. However, for downward flow we see from Fig. 5 (b) that some particles need 

less time than the bubble to pass the channel. This means that the velocity of some fluid par-

ticles is higher than the bubble velocity. To investigate the reason for this we analyze next 

the local flow field in upward and downward bubble train flow. 

Fig. 6 shows visualisations of the computed bubble shape and velocity fields for co-

current upward flow (case G in Wörner et al., 2007) and for co-current downward flow 

(present case C). In the left half of the figure the velocity field in the vertical axial mid-plane is 

shown in the fixed frame of reference, while in the right half it is displayed in the frame of 

reference moving with the bubble (i.e. BU  is subtracted from the vertical velocity 

component). For both cases, the velocity in the liquid film region is almost zero as indicated 

in the fixed frame of reference. In the moving frame of reference, the velocity is almost zero 

in the rear part of the bubble for the upward case. These blank regions, which are visible in 

the right half of Fig. 6 a), indicate that part of the liquid slug that is moving approximately with 

the bubble velocity BU . Hence, to consider the bubble velocity as representative for the 

fastest tracer particles and to use the bubble break-through time in the unit cell RTD model is 

reasonable for this upward flow case. 
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Fig. 5: Comparison of numerically evaluated unit cell RTD with the WGO model for (a) case 

A1 and (b) case C. The dashed vertical line indicates the bubble break-through time for 

each case. 
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   a)    b) 

  

Fig. 6: Computed bubble shape and velocity field in vertical mid-plane z = 1 mm for fixed 

frame of reference (left half) and for frame of reference linked to the bubble (right half) for (a) 

co-current upward flow (case G in Wörner et al., 2007) and (b) co-current downward flow 

(case C). 

 

However, for the downward case C the velocity vectors in the liquid slug behind the 

bubble have a finite length in the moving frame of reference; see the right half of Fig. 6 b). 

This indicates that the velocity of that part of the liquid slug is higher than the bubble velocity, 

which is consistent with the RTD displayed in Fig. 5 (b). This behaviour can be explained by 

the buoyancy force, which accelerates the bubble relative to the liquid for co-current upward 

flow but retards it for co-current downward flow. Thus, in the downward flow regime liquid 

fluid elements may be faster than the bubble. In the RTD model, therefore, in Eq. (30) the 

bubble velocity should be replaced by the maximum velocity in the liquid slug in order to 

obtain a more general model which is also valid for downward flow. 
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For any fully developed laminar flow through a straight channel there exists a linear 

relationship between the mean and maximum velocity, i.e. mean cs maxU C U= . The value of the 

constant csC  depends only on the shape of the channel cross-section and is cs 0.5C =  for a 

circular channel and cs 1/ 2.0962 0.477C = =  for a square channel (Shah and London, 1978). 

In bubble train flow, the mean liquid velocity within the liquid slug is given by L,meanU J= . 

Thus, if the liquid slug is long enough to be fully developed, we have th
L,max cs/U J C= . For 

shorter liquid slugs the actual maximum velocity in the liquid slug may be smaller, say 

act th
L,max L,maxU Uλ=  where λ  is in the range 0 1λ< ≤ . 

 

 

Fig. 7: Wall-normal profiles of magnitude of axial velocity in a horizontal cross-section 

through the middle of the liquid slug for case A1, B1, and C. For each case the velocity pro-

file is normalized by the respective bubble velocity. The horizontal lines denote the normal-

ized maximum velocity of a fully developed Poiseuille profile for each case. 
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In Fig. 7 we show the profile of the magnitude of the axial velocity in the middle of the 

liquid slug for case A1, B1 and C. In this figure, the horizontal lines denote the maximum 

velocity in a fully developed laminar flow with the same flow rate for each case. Fig. 7 shows 

that in the present simulations the liquid slug is too short to become fully developed. I.e. the 

profiles are not parabolic but rather flat for all cases. This supports the experimental finding 

of Thulasidas et al. (1997) and Tsoligkas et al (2007). The latter authors investigated the 

liquid velocity profiles in the centre of the liquid slug of a co-current downward Taylor flow in 

a square mini-channel and found that short liquid slugs with S hL D<  exhibited a flat axial 

velocity profile while long slugs with S hL D>  have a parabolic one. Obviously, in short slugs 

the velocity field is not fully developed. Thulasidas et al. (1997) found that in their 

experiments the Poiseuille profile within the liquid slug is fully developed for S h/ 1.5L D ≥ . 

Therefore, λ  must increase with increasing slug length and asymptotically approach unity 

when the flow is fully developed. The values of act th
L,max L,max/U Uλ =  in the present simulations 

are given in Tab. 3. For all cases λ  is in the range 0.86−0.88. 

Fig. 7 also shows that for case A1, by incident, the maximum velocity act
L,maxU  just equals 

the bubble velocity. For case B1, where the liquid slug is somewhat longer than in case A1, 

the maximum velocity act
L,maxU  is somewhat larger than BU . For case C with a co-current 

downward flow, act
L,maxU  is clearly higher than BU . Additionally, the velocity profile tends to 

become more parabolic. These results also elucidate the relation between the bubble break-

through time and the delay time. To use the bubble break-through time as delay time may be 

reasonable only for upward flow with very short liquid slug lengths like case A1 and A2, 

where act
L,max BU U≈ . This is, however, not valid for case C, where act

L,maxU  is much larger than 

BU , and therefore Bτ  is larger than Dτ . Thus, it is necessary to refine the WGO model with 

respect to the delay time, to yield a more general and consistent model for any flow direction 

and any length of the liquid slug. 

To refine the WGO model for co-current downward bubble train flow with an arbitrary 

length of the liquid slug we replace in Eq. (30) the bubble velocity BU  by 

act th
L,max L,max cs/U U J Cλ λ= = . This yields the following model: 
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cs UC

UC cs UC
cs UC

UC

0 for  / ( )
( )

exp for  / ( )

λ

λ
λ

<⎧
⎪= ⎛ ⎞⎨ − ≥⎜ ⎟⎪ ⎝ ⎠⎩

t C L J
E t C LJ t t C L J

L J
 (33) 

This revised WGO model is more general since it takes the velocity of the fastest fluid parti-

cles to compute the delay time instead of the bubble velocity. Here, the delay time is 

uc uc cs uc cs
D Sact th

L,max L,max

L L C L C
U U J

τ τ
λ λ λ

≡ = = =  (34) 

The revised WGO model for a single unit cell can then be written in the compact form 

csD D D
UC

S S S S

( ) ( )( ) exp exp CH t t H t tE t τ τ τ
τ τ τ λ τ

⎛ ⎞ ⎛ ⎞− − −
= − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (35) 

In the following, we denote this model as PD model. Here P stands for “peak” and D for “de-

cay”. This name reflects that the RTD consists of one peak followed by an exponential de-

cay. In the PD model λ  is unknown yet. However, λ  is a function of S h/L D  and should ap-

proach unity for large values of S h/L D . Here, we take the values of λ  as given in Tab. 3 

while the development of a suitable relationship for S h( / )L Dλ λ=  will be a future task for us. 

For the mean residence time of the RTD in Eq. (35), we obtain the result 

cs
UC UC UC D S S

0

( )d 1Ct tE t tτ τ τ τ
λ

∞ ⎛ ⎞≡ = = + = +⎜ ⎟
⎝ ⎠∫  (36) 

(see Appendix A.1.2). The variance is given by 

2 2
UC Sσ τ=  (37) 

(see Appendix A.1.3). Introducing the non-dimensional time 

D
UC

UC

t τθ
τ
−

≡  (38) 

we can write Eq. (35) in the compact non-dimensional form 

( )

UC UC
,UC UC UC UC UC UC

S S

D S D S
D S UC UC

S S

( ) ( ) exp

( ) exp

E E t H

H

θ
τ ττ τ θ θ
τ τ

τ τ τ ττ τ θ θ
τ τ

⎛ ⎞
≡ = −⎜ ⎟

⎝ ⎠
⎛ ⎞+ +

= + −⎜ ⎟
⎝ ⎠

 (39) 
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4.1.2.2. Tail of the RTD 

The tails of the RTDs in Fig. 5 correspond to the flow in the liquid film which is almost 

stagnant (see velocity profiles in the left half of Fig. 6). The inset graphic in Fig. 5 shows the 

numerical and modelled RTD in a semi-logarithmic representation. This allows for an easy 

visual comparison of the slopes of both RTDs. The numerical RTD shows two slopes, a 

steeper one for ref/ 4t t <  and flatter one for ref/ 4t t < . In contrast, the slope of the WGO 

model is constant and the tail of the RTD is not accurately represented by this model. In 

Wörner et al. (2007), the steeper RTD slope for ref/ 4t t <  is better fitted by model JE  since 

residence times ref/ 4t t <  correspond mainly to fluid elements in the liquid slug, where the 

mean velocity is equal to J . However, the flatter slope for ref/ 4t t >  is better approximated 

by model 
LUE . This is because residence times ref/ 4t t >  correspond to fluid elements in the 

four corners of the channel. There, the mean liquid velocity is smaller than J  and may be 

approximated by the mean liquid velocity in the unit cell LU . Though 
LUE  is a better 

approximation for ref/ 4t t > , the slope of this model is still too steep for high residence times 

(see Fig. 8 a in Wörner et al., 2007). Hence, an even lower mean liquid velocity should be 

chosen for the corner flow to cause a flatter slope for high residence times. 

Considering these ideas, the WGO model respectively the PD model shall be developed 

further towards a model which yields two different slopes for small and large times in order to 

represent the tail of the RTD more accurately. For this purpose, Wörner et al. (2007) sug-

gested the three tank compartment model as displayed in Fig. 8. This model consists of a 

PFR that is in series with two CSTRs in parallel. The RTD of this compartment model is cha-

racterized by a peak which is followed by the superposition of two exponential decays with 

different slopes (see Fig. 12.1 in Levenspiel, 1999). We will, therefore, denote this model as 

PDD model (peak-decay-decay). In the PDD model one CSTR corresponds to the liquid 

slug, while the second corresponds to the flow in the liquid film and the corners. Since both 

CSTRs are in parallel, the resulting RTD is the sum of two exponentials. The slopes of both 

exponentials are determined by the mean residence time of the liquid slug Sτ  and by the 

mean residence time of the CSTR representing the liquid film /corner flow, respectively. 
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Fig. 8: Compartment representation of the PDD model. QL is the volumetric flow rate of the 

liquid. VPFR is the volume of the plug flow reactor while VS and VF denote that of the continu-

ous stirred tank reactor, respectively. The subscripts ‘S’ and ‘F’ correspond to the liquid slug 

and the liquid film / corner flow, respectively. 

 

A relation for L,FQ  can be obtained from a liquid mass balance in a frame of reference 

moving with the bubble. We consider a control volume that consists of an axial portion of the 

channel where one end is in the liquid slug and the other end is in the bubble region. Then a 

balance of the liquid inflow and outflow flow rates yields 

( )B ch L,film B ch B( )( )J U A U U A A− = − −  (40) 

so that 

( ) ch
L,film B B

ch B

AU U U J
A A

= − −
−

 (41) 
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In this equation, L,film L,film ( )U U y=  and B B ( )A A y=  represent the mean axial liquid velocity 

and bubble cross-sectional area, respectively. The position y  denotes the control volume 

outlet and is variable. The liquid volumetric flow rate in the outflow cross-section of the con-

trol volume is then given by  

( ) ( ) ( )ch
L,film L,film ch B B B ch B ch B B

ch B

AQ U A A U U J A A JA U A
A A

⎡ ⎤
= − = − − − = −⎢ ⎥−⎣ ⎦

 (42) 

As pointed out by Abiev (2008), the sign of L,filmU  and L,fQ  can be positive or negative. 

For an axi-symmetric bubble with local cross-sectional diameter B ( )d y  one obtains from 

Eq. (41) the result 

( )
12

B
L,film B B

h

1
4

dU U U J
D

π
−

⎡ ⎤⎛ ⎞
⎢ ⎥≡ − − − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (43) 

This relation is very sensitive to the value of Bd . Here, we are interested in the mean liquid 

velocity in the axial cross-section where the bubble diameter is largest. Thus, we take 

B Bd Dβ=  and compute the mean liquid velocity in the liquid film / corner region from relation 

( )
12

B
F B B

h

1
4

DU U U J
D
βπ

−
⎡ ⎤⎛ ⎞
⎢ ⎥≡ − − − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (44) 

In the sequel, we consider two different values for β , namely 1β =  and 0.97β = . In Tab. 4 

we list the values of FU  that are obtained from this equation for the different cases for both 

values of β . Our RTD model is only reasonable if FU  has the same sign as J , i.e. is posi-

tive for upward flow and negative for downward flow. Then, the mean residence time of the 

CSTR representing the liquid film is computed from F UC F/L Uτ ≡  while that of the CSTR 

representing the liquid slug is the same as in the WGO and PD model, namely S UC /L Jτ ≡ . 

For the moment, we define the relation between the flow rates L,SQ  and L,FQ  in the two 

CSTRs by a weighting factor L,S L,S L,F/ ( )Q Q Qα = + . This weighting factor is in the range 

0 1α< ≤  and will be determined later. In section 4.2 where we consider multiple unit cells, 

we always assume that all unit cells are identical so that the value of α  is the same. 
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The RTD of the three tank compartment model is then given by 

UC ( ) 0E tα =  (45) 

for act
UC L,max/<t L U , and by 

UC UCF F
UC act act

L,max L,maxUC UC UC UC
( ) exp (1 ) expL LU UJ JE t t t

L L U L L U
α α α

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
= − + − −  (46) 

for act
UC L,max/≥t L U . Introducing the delay time act

D uc L,max/L Uτ ≡  according to Eq. (34), as well 

as Fτ  and Sτ  we can write the PDD model in the compact form 

D D
UC D

S S F F

1( ) ( ) exp expα τ τα ατ
τ τ τ τ
⎡ ⎤⎛ ⎞ ⎛ ⎞− −−

= − − + −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎣ ⎦

t tE t H t  (47) 

As required, the integral of Eq. (47) from zero to infinity is unity, see Appendix B.1.1. 

For the mean residence time we obtain the result 

UC UC UC D S F
0

( )d (1 )α α ατ τ ατ α τ
∞

≡ = = + + −∫t tE t t , (48) 

see Appendix B.1.2., and for the variance 

[ ]22 2 2
UC S F S Fσ 2 2(1 ) (1 )α ατ α τ ατ α τ= + − − + − , (49) 

see Appendix B.1.3. Introducing the non-dimensional time 

D D
UC

UC D S F(1 )
α

α

τ τθ
τ τ ατ α τ
− −

≡ =
+ + −

t t  (50) 

we can write the PDD model in the form 

,UC UC UC

UC UC UC UC
UC uc UC UC

S S F F

( ) ( )

exp (1 ) exp ( )

α α α
θ

α α α α
α α α α

θ τ

τ τ τ τα θ α θ τ θ
τ τ τ τ

=

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − + − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎣ ⎦

E E t

H
 (51) 

When the flow rate of the liquid film region is zero we have 1α =  and the PDD model of 

Eq. (47) becomes equal to the PD model in Eq. (35). Furthermore, the right hand sides of Eq. 

(48), Eq. (49) and Eq. (51) reduce to those of Eq. (36), Eq. (37) and Eq. (39), respectively. 
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We now determine a suitable value for α  and consider two possible choices. In the first 

one, we compute α  from relation 

L,tot L,film
Q

L,tot

Q Q
Q

α α
−

= ≡  (52) 

With L,tot L chQ J A=  and Eq. (42) we obtain from Eq. (52) the result 

L ch ch B B G ch B B B ch B B B B
Q

L ch L ch L ch L ch

J A JA U A J A U A U A U A U A
J A J A J A J A

εα ε
⎛ ⎞− + − + − +

= = = = −⎜ ⎟
⎝ ⎠

 (53) 

From the mean residence time of the RTD model given by Eq. (48) we obtain 

cs B B B B
UC D S F S S F

L ch L ch

cs UC UCB B B B

L ch L ch F

(1 ) 1

1

C U A U A
J A J A

C L LU A U A
J A J J A U

ατ τ ατ α τ τ ε τ ε τ
λ

ε ε
λ

⎡ ⎤⎛ ⎞ ⎛ ⎞
= + + − = + − + − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞

= + − + − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 (54) 

where FU  is given by Eq. (41).The problem of this choice for α  is that in general the mean 

residence time according to Eq. (54) differs from the hydrodynamic residence time of the unit 

cell given by Eq. (28). In Tab. 4 we list the values of Qα  for both values of β . Also given are 

values of the relative deviation of the mean residence time from the hydrodynamic residence 

time. For 1β =  the relative error is typically about 4 - 9%, whereas it is only about 1 - 7% for 

0.97β = . For both values of β , the relative error is larger for the downward flow case C 

than for the cases with upward flow. While a relative error in the mean residence time below 

7% may be acceptable for some cases, we nevertheless disregard this approach for deter-

mining α . 

In the second approach to determine α , we demand instead that the mean residence 

time of the model is equal to the mean hydrodynamic residence time. Thus, we set UC h
ατ τ=  

and obtain from Eq. (48) the following relation 

D F h
h

F S

τ τ τα α
τ τ
+ −

= ≡
−

 (55) 

The corresponding values of hα  for all cases are listed in Tab. 4. We note that for all cases 

the differences in the values of hα  and Qα  are small in general. 
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In Fig. 9 and Fig. 10 a) and b), we compare the PD and PDD model with the numerically 

evaluated RTD curves for case C, A1 and B1. In these figures, the shaded area represents 

the numerical evaluated RTD curve (with the values of classtΔ  as given in Tab. 3) while the 

lines represent the PD model and the PDD model for two different values of β , respectively. 

The linear plots in Fig. 9 and Fig. 10 b) show that for case C and B1 the peaks of the models 

are clearly lower than the peak of the numerically evaluated RTD. However, as noted before 

the peak of the numerically evaluated RTD may change depending on classtΔ , see the dis-

cussion of Fig. 2 a) above. 

 

Tab. 4: Values of Fτ  and α  for the PDD model. 

 1β =  0.97β =  

Case 
ref

FU
U

 
ref

F

t
τ  Qα  

Q
UC h

h

ατ τ
τ
−  hα  

ref

FU
U

 
ref

F

t
τ  Qα  

Q
UC h

h

ατ τ
τ
−  hα  

A1 0.274 3.65 0.834 3.8% 0.849 0.473 2.12 0.696 1.4% 0.706

A2 0.274 3.65 0.834 4.0% 0.850 0.473 2.12 0.696 1.5% 0.707

B1 0.019 78.0 0.991 7.7% 0.993 0.294 5.10 0.850 5.2% 0.869

B2 0.037 40.6 0.982 7.2% 0.985 0.309 4.85 0.840 4.6% 0.858

C -0.193 9.07 0.929 9.4% 0.949 -0.465 3.76 0.812 7.4% 0.855
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Fig. 9: Comparison of numerically evaluated RTD for case C with the PD model and the PDD 

model for β = 1 and β = 0.97. 

 

For all three cases, the curves of the PDD model intersect that of the PD model and 

exhibit a flatter slope at high residence times. This can be seen more clearly in the inset 

graphics with semi-logarithmic representation of the data. Fig. 9 and Fig. 10 a) and b) show 

that the slope of the PDD model changes at ref/ 4t t ≈ . For larger residence times the slope 

becomes less steep. The figures show that the slope of the PDD model at large values of t  

depends on the value of β . For case C and A1 1β =  seems to give better results, while for 

case B1 it appears that 0.97β =  may be more appropriate. With the present PDD model the 

slope of the RTD at large values of t  is also much better approximated than by the model 

LUE  of Wörner et al. (2007). In conclusion the present PDD model with the delay time 

computed from Eq. (34) and FU  computed from Eq. (44) with 0.97 1β≤ ≤  is a reasonably 

good fit to the numerically evaluated RTD, both at small and large residence times, and both, 

for co-current upward and downward Taylor flow. 
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Fig. 10: Comparison of numerically evaluated RTD curves for case A1 (a) and B1 (b) with 

the PD model and the PDD model for β = 1 and β = 0.97. 
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4.1.3. Steps to determine the parameters of the PD and PDD model 

In this subsection we list the sequence of steps which are necessary to determine the 

parameters of our RTD model. We assume that the following quantities are given: 

• Viscosity of continuous phase Lμ  

• Interfacial tension σ  

• Superficial liquid velocity L L ch/J Q A=  

• Superficial gas velocity G G ch/J Q A=  

The individual steps to determine the RTD are then as follows: 

1. Compute the capillary number J L /Ca Jμ σ=  where G LJ J J= +  

2. Compute the bubble velocity BU  from an empirical correlation, e.g. of drift flux 

model type or of the form B B J( )U U Ca= , see e.g. Angeli and Gavriilidis (2008). 

3. Compute the capillary number L B /Ca Uμ σ=  

4. Compute the bubble diameter from an empirical correlation B B ( )D D Ca= , see e.g. 

the review by Angeli and Gavriilidis (2008). 

5. Estimate the length of the unit cell UCL  and the length of the liquid slug SL  either 

from experimental data or from empirical correlations, see e.g. Angeli and Gavriilidis 

(2008) and Fries and von Rohr (2009). 

6. Determine S UC /L Jτ =  

7. Determine cs mean max/C U U= , estimate an appropriate value for λ  and compute the 

delay time D cs S /Cτ τ λ= . This defines all parameters of the PD model. The PDD 

model requires additionally the following two steps. 

8. Estimate FU  from Eq. (44) (with an appropriate value for β , e.g. 0.98) and 

determine F UC F/L Uτ = . 

9. Determine the hydrodynamic residence time of one unit cell from relation 

h UC L/L Jτ =  and compute the values of α  from Eq. (55). 
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4.2. The RTD for multiple unit cells 

In section 4.1 we developed the PD and PDD model for the RTD of a single unit cell. 

Since Taylor flow consists of a sequence of a large number of unit cells, the single unit cell 

RTD model is at first of limited practical value. The overall goal is, therefore, to develop a 

model for the RTD of Taylor flow consisting of n  identical unit cells. In this section we inves-

tigate in how far this multiple unit cell RTD model can be obtained from the single unit cell 

RTD model by a convolution procedure. 

4.2.1. Convolution procedure 

The RTD has the property to transfer any reactor input signal in ( )C t  into a unique output 

signal out ( )C t . Mathematically, this transfer is described by the convolution integral 

out in
0

( ) ( ) ( )
t

C t C t t E t dt′ ′ ′= −∫  (56) 

(see e.g. Levenspiel 1999). Eq. (56) can be written symbolically as 

out inC C E= ∗  (57) 

Here outC  is the convolution of E  with inC . Thus, in passing through the vessel the input 

signal is modified to give an output signal outC , see Fig. 11 top. The kind of this modification 

is determined by the RTD. 

 

 

Fig. 11: Schematic representation of convolution procedure for a general case (top) and for 

a unit cell of bubble train flow (bottom). 
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We now consider a bubble train flow consisting of n  identical unit cells and assume that 

the input signal for the first unit cell is an ideal Dirac delta pulse. In this case the output signal 

of the first unit cell is equal to UC ( )E t . Since this RTD is the input signal for the second unit 

cell, the output signal for the second unit cell is given by the convolution UC UCE E∗ . Since the 

input signal for this convolution is an RTD, the output signal has also the properties of an 

RTD. It can be considered as an approximation for the residence time distribution of unit cell 

2, i.e. 2UC UC UCE E E= ∗ . Assuming that the RTD of the unit cell can be described by the PDD 

model UCEα , we obtain for unit cell n  the result 

UC ( 1)UC UC ( 1)UC UC
0

( ) ( ) ( ) ( ) ( )d
t

n n nE t E t E t E t t E t tα α α α α
− − ′ ′ ′= ∗ = −∫  (58) 

(see Fig. 11 bottom). Therefore, we can compute the RTD for a series of n  unit cells from 

the RTD of a single unit cell by successive evaluation of 1n −  convolutions integrals. Next we 

present the results of these convolutions both for the PD model and for the PDD model and 

refer to the Appendices for mathematical details. 

4.2.2. PD model and PDD model for multiple unit cells 

4.2.2.1. RTD for two unit cells 

To evaluate Eq. (58) for 2n =  we have to solve the convolution integral 

2UC UC UC UC UC
0

( ) ( ) ( ) ( ) ( )d
t

E t E t E t E t t E t tα α α α α′ ′ ′= ∗ = −∫  (59) 

As shown in Appendix B.2.1.1, this yields the result 

2 2

D D
2UC D D

S S F F

D D

S F S F

2 21( ) ( 2 ) ( 2 ) exp exp

2 22 (1 ) exp exp

t tE t H t t

t t

α τ τα ατ τ
τ τ τ τ

τ τα α
τ τ τ τ

⎧ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −−⎪ ⎢ ⎥= − − − + −⎨ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎪ ⎣ ⎦⎩

⎫⎡ ⎤⎛ ⎞ ⎛ ⎞− −− ⎪+ − − − ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠ ⎪⎣ ⎦⎭

 (60) 

By setting 1α =  we obtain from Eq. (60) the RTD for two unit cells of the PD model 
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D D
2UC D2

S S

2 2( ) exp ( 2 )t tE t H tτ τ τ
τ τ

⎛ ⎞− −
= − −⎜ ⎟

⎝ ⎠
 (61) 

(see also Appendix A.2.1.1). 

As shown in Appendix B.2.1.2, the mean residence time for two unit cells is 

2UC 2UC 2UC D S F UC
0

( )d 2 (1 ) 2t tE t tα α α ατ τ ατ α τ τ
∞

⎡ ⎤≡ = = + + − =⎣ ⎦∫  (62) 

For 1α =  we obtain the result (see also Appendix A.2.1.2) 

2UC D S2( )τ τ τ= +  (63) 

The non-dimensional time for two unit cells is defined as 

D
2UC

UC

2
2

tα
α

τθ
τ
−

≡  (64) 

Then, the RTD for two unit cells can be written in the non-dimensional form 

( )

2UC UC 2UC

2 2

UC UC UC UC
2UC 2UC 2UC

S S F F

UC UC UC
2UC 2UC UC

S F S F

( ) 2 ( )

2 2 2 2exp 1 exp

4 2 2(1 ) exp exp (2

E E t

H

α α α
θ

α α α α
α α α

α α α
α α α

θ τ

τ τ τ τθ α θ α θ
τ τ τ τ

τ τ τα α θ θ τ
τ τ τ τ

=

⎧ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎢ ⎥= − + − −⎨ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎪ ⎣ ⎦⎩

⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎪+ − − − − ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠ ⎪⎣ ⎦⎭

,

2UC )αθ

 (65) 

For 1α =  we obtain 

2

UC UC
,2UC 2UC 2UC UC 2UC

S S

2 2( ) exp (2 )E H
α α

α
θ

τ τθ θ θ τ θ
τ τ

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (66) 

We now compare the RTD for two unit cells obtained by this convolution procedure with 

the numerically evaluated RTD curves. Fig. 12 a) and b) show the results for cases A2 and 

B2 both for the PD model and the PDD model (for two different values of β ). Comparing the 

model RTDs for two unit cells in Fig. 12 a) and b) with those in Fig. 10 a) and b) for one unit 

cell shows one apparent difference. Namely, for one unit cell the RTD is zero for Dt τ< , 

jumps to it maximum value at Dt τ=  and decreased monotonically to zero for values Dt τ> . 
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Instead, for two unit cells the model RTD is zero for Dt τ≤ , increases till a maximum value is 

obtained and finally decreases toward zero. The maximum value of the RTD is always higher 

for the PD model than for the PDD model, both for the single unit cell and for two unit cells. 

Fig. 12 a) and b) show that for the PDD model the maximum value of the RTD is very 

sensitive to the value of β . We recall, as noted before, that the maximum value of the 

numerically evaluated RTD is sensitive to the value of classtΔ . In all cases, the RTD curve of 

the PDD model intersects that of the PD model, giving lower values of the RTD at low values 

of t  and higher values of the RTD at large values of t  as compared to the PD model. Due to 

this behaviour the PDD model provides a better fit to the long tails of the numerical RTD for 

two unit cells, see Fig. 12 a) and b). Interestingly, in the numerical RTD there appears a 

second peak at ref/ 4.3t t ≈  for case A2 and for ref/ 6t t ≈  for case B2. The inset graphics in 

Fig. 12 a) and b) show, that at high values of t  the slope of the numerical RTD is well 

approximated by the PDD model with a value of 1β =  for case A2, and 0.97β =  for case 

B2. 
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Fig. 12: Comparison of numerically evaluated RTD curves for case A2 (a) and B2 (b) with 

the PD model and the PDD model. The dashed vertical lines correspond to the delay time 

for each case. 
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4.2.2.2. RTD for three unit cells 

For the PD model, the output signal for three unit cells is given by 

3UC 2UC UC 2UC UC
0

( ) ( ) ( ) ( ) ( )d
t

E t E t E t E t t E t t′ ′ ′= ∗ = −∫  (67) 

The evaluation of this convolution integral yields the result 

2
D D

3UC D3
S S

( 3 ) 3( ) exp ( 3 )
2

t tE t H tτ τ τ
τ τ

⎛ ⎞− −
= − −⎜ ⎟

⎝ ⎠
, (68) 

see Appendix A.2.2.1. The mean residence time is 

3UC 3UC 3UC S D UC
0

( )d 3( ) 3t tE t tτ τ τ τ
∞

≡ = = + =∫ , (69) 

see Appendix A.2.2.2. The non-dimensional time for three unit cells is defined as 

D
3UC

UC

3
3

t τθ
τ
−

≡  (70) 

so that Eq. (68) can be written in the following non-dimensional form 

32
3UC UC UC

,3UC UC 3UC 3UC UC 3UC
S S

3 ( ) 3 exp 3 (3 )
2

E E t Hθ
θ τ ττ θ τ θ

τ τ
⎛ ⎞ ⎛ ⎞

≡ = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (71) 

For the PDD model, the RTD 3UC ( )E tα  for three unit cells becomes very complicated so 

that the convolution integral is evaluated by Laplace transformation. The result can be found 

at the end of Appendix C and is not repeated here.  

In Fig. 13 we compare the RTD of the PD and PDD model for three unit cells with the 

numerically evaluated RTD curves for case A1 and B1. Similar as for two unit cells, there is a 

notable difference between the heights of the peaks. Higher residence times are not 

accurately represented by the PD model but are reasonably represented by the PDD model. 

However both for the PD model and the PDD model, the location of the maximum of the RTD 

is shifted to larger times as compared to the numerically evaluated RTD. It is expected that 

this discrepancy will even increase for larger numbers of unit cells in series. 
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Fig. 13: Comparison of numerically evaluated RTD curves for Ncross=3 with convolutions of 

the PD model and PDD model for (a) case A1 and (b) case B1. The dashed vertical lines 

correspond to the delay time for each case. 
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4.2.2.3. General RTD model 

The RTD of the PD model for four unit cells is 

3
D D

4UC D4
S S

( 4 ) 4( ) exp ( 4 )
6

t tE t H tτ τ τ
τ τ

⎛ ⎞− −
= − −⎜ ⎟

⎝ ⎠
 (72) 

see Appendix A.2.3. The mean residence time is 

4UC 4UC 4UC S D UC
0

( )d 4( ) 4t tE t tτ τ τ τ
∞

≡ = = + =∫  (73) 

As shown in Appendix C, the PD model for n  identical unit cells in series is 

1
D D

UC D
S S

( )( ) exp ( )
( 1)

n

n n

t n t nE t H t n
n

τ τ τ
τ τ

− ⎛ ⎞− −
= − −⎜ ⎟− ! ⎝ ⎠

 (74) 

The mean residence time of this RTD is 

( )UC S Dn nτ τ τ= +  (75) 

With the non-dimensional time defined in Eq. (25), the RTD of the PD model for n  unit cells 

can be written in the general form 

1
UC UC UC

UC UC UC UC UC UC
S S

( ) ( ) exp ( )
( 1)

nn
n

n n n nE n E t n n H n
nθ
θ τ τθ τ θ τ θ

τ τ

− ⎛ ⎞ ⎛ ⎞
= = −⎜ ⎟ ⎜ ⎟− !⎝ ⎠ ⎝ ⎠

,  (76) 

This RTD for a cascade of n  identical unit cells is equivalent to the RTD of a cascade of n  

identical CSTRs in series given in Eq. (20). For D 0τ =  we have UC Sτ τ=  and Eq. (76) be-

comes identical to Eq. (20). 

For the PDD model, the RTD becomes increasingly complex for an increasing number of 

unit cells, see Appendix C. Therefore, this model is hardly useful for large values of n . Thus, 

simpler models for a large number of unit cells shall be developed in future, which accurately 

represent the tail of the RTD, and, even more important, correctly predict both (i) the sharp 

increase of the RTD for values of t  slightly higher than the delay time and (ii) the location of 

the maximum value of the RTD. 
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5. Conclusions 

In this report, we used results from direct numerical simulations of a bubble train flow in a 

square vertical mini-channel to develop an analytical model for the prediction of the liquid 

phase residence time distribution from given integral flow parameters. For this purpose, the 

unit cell RTD model of Wörner, Ghidersa, Onea (2007) (the WGO model), which was 

developed for co-current upward flow and can be represented by a compartment model 

consisting of a plug flow reactor (PFR) and a continuous-stirred-tank reactor (CSTR) in 

series, was improved with respect to two aspects. First, in the peak-decay (PD) model the 

delay time of the RTD (which corresponds to the residence time of the PFR) is consistently 

formulated to be valid in both co-current upward and downward bubble train flow. Second, to 

account better for the long tails of the RTD, the compartment model was further refined and 

consists in the peak-decay-decay (PDD) model of a PFR in series with two CSTRs in 

parallel. The two CSTRs represent the liquid slug and liquid film / corner flow region, 

respectively. Both CSTRs have a different mean residence time. The resulting RTD consists 

of the superposition of two decaying exponential terms showing different slopes. It is shown 

that the PDD model accurately represents the numerically evaluated unit cell RTD for 

different flow conditions. 

In practical applications, not the RTD of the unit cell but that of a bubble train flow 

consisting of a finite number of unit cells is of interest. In this report, the RTD for n  unit cells 

in series is determined from the unit cell RTD by a ( 1)n − -fold convolution procedure. For the 

PD model these convolutions can be evaluated analytically and yield a rather simple and 

general expression. For the PDD model, however, the analytical evaluation of these 

convolution integrals is becoming increasingly complex and is - without further 

approximations – of limited practical use for 4.n >  The comparison of the convolution based 

PD and PDD models for 2n =  and 3n =  with the numerically evaluated RTD has shown, 

however, that the agreement is not satisfactory. In particular, the models overestimate the 

residence time for which the RTD has its maximum value. It appears that this discrepancy 
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even increases with increasing value of n . Thus we conclude that in future the RTD model 

for multiple unit cells should be further improved. 

Concerning the unit cell RTD, further issues that should be investigated in future are the 

consideration of numerical simulations with longer liquid slugs and the reason for the 

appearance of a second peak in the numerically evaluated unit cell RTD at the residence 

time where - in a semi-logarithmic representation - the RTD changes its slope. While 

measurements of the unit cell RTD are not available in literature, there exist experimental 

data for a single channel that should be used for validation of the RTD model for multiple unit 

cells. 
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Appendix A. Integral evaluations for PD model 
To evaluate the various integrals in this Appendix and in Appendix B we will - without fur-

ther notice - take advantage of the identity 

1 /
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− − = −∫ n z a nz e z n a  

A.1. Evaluations for one unit cell 
A.1.1. Integral of RTD 

The integral of the PD model for one unit cell is 
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A.1.2. Mean residence time 

The mean residence time of the PD model for one unit cell is 
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A.1.3. Variance 

The variance of the PD model for one unit cell is 
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We introduce the substitution Dz t τ≡ −  so that d dz t= . This gives 
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A.2. Evaluations for multiple unit cells 
A.2.1. Evaluations for two unit cells 

A.2.1.1. Convolution integral for two unit cells 

The convolution integral of the PD model for two unit cells is 
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This integral is given by  
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To evaluate the integral with the two Heaviside step functions we introduce the substitution 

Du t τ′≡ −  so that d du t′= . This gives 
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Next we introduce a second substitution D2w u t τ≡ − + −  so that d dw u= − . This gives 

[ ]

D D D D

D D

D
D

2 2

D
0 2 0

2
2

D D D D0
0

( 2 )d ( )d ( )d ( )d

( 2 ) d ( 2 ) ( 2 ) ( 2 )

t t t

t

t
t

I H t u u H w w H w w H w w

H t w H t w t H t

τ τ τ τ

τ τ

τ
τ

τ

τ τ τ τ

− − − −

− −

−
−

= − − = − = =

= − = − = − −

∫ ∫ ∫ ∫

∫
 

Thus, we obtain 
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The integral of 2UC ( )E t  is given by 
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We introduce the substitution D2z t τ≡ −  and obtain 
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A.2.1.2. Mean residence time for two unit cells 

The mean residence time for a length of two unit cells is 
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We introduce the substitution D2z t τ≡ −  and obtain 
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and thus 
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A.2.2. Evaluations for three unit cells 

A.2.2.1. Convolution integral for three unit cells 

The convolution integral of the PD model for three unit cells is 
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To evaluate the integral with the two Heaviside step functions we introduce the substitution 

Du t τ′≡ −  so that d du t′= . This gives 
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Next we introduce a second substitution D3w u t τ≡ − + −  so that d dw u= − . This gives 
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The integral of 3UC ( )E t  is given by  
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We introduce the substitution D3z t τ≡ −  and obtain 
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A.2.2.2. Mean residence time for three unit cells 

The mean residence time for three unit cells is 
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and thus 
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A.2.3. Evaluations for four unit cells 

The convolution integral for four unit cells is 
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To evaluate the integral we introduce the substitution Du t τ′≡ −  so that d du t′= . This gives 
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Next we introduce a second substitution D4w u t τ≡ − + −  so that d dw u= − . This gives 
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Appendix B. Integral evaluations for the PDD model 

B.1. Evaluations for one unit cell 
B.1.1. Integral of the PDD model 

The integral of the PDD model is 
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B.1.2. Mean residence time 

The mean residence time of the PDD model for a single unit cell is 
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B.1.3. Variance 

The variance of the PDD model for a single unit cell can be computed as follows 
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We introduce the substitution Dz t τ≡ −  so that d dz t= . This gives 
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B.2. Evaluations for the PDD model and multiple unit cells 
B.2.1. Two unit cells 

B.2.1.1. Convolution integral 

The convolution integral of the PDD model for two unit cells is 
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To evaluate this integral we introduce the substitution Du t τ′≡ −  so that d du t′= . This gives 
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Next we introduce a second substitution D2τ≡ − −w t u  so that d dw u= − . This gives 
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Thus we have 
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We introduce the substitution D2z t τ≡ −  and obtain 
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B.2.1.2. Mean residence time 

The mean residence time of the PDD model for two unit cells is 
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We introduce the substitution D2z t τ≡ −  and obtain 
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Appendix C. Evaluations by Laplace transformation 
The unit cell RTD of the PD model is given by 
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and that of the PDD model by 
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The Laplace transform of Eq. (77) is 
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Then, the Laplace transform of Eq. (78) is 
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The RTD for 2 unit cells in series is given by the convolution 

2UC UC UC( ) ( ) ( )E t E t E tα α α= ∗  

In the Laplace domain this gives 
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The RTD for n  unit cells in series is given by the convolution  
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For the PD model, it is 1α =  and Eq. (80) simplifies to  
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The backward transformation in the time domain of Eq. (81) is 
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see ID 2 (delayed nth power with frequency shift) in the Table of selected Laplace transforms 

in the English Wikipedia web site on Laplace transformation (accessed June, 2009). 

To determine the inverse of Eq. (80) we take advantage of the binomial theorem which reads 
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In the present case n  and k  are positive integers. Then, for ≥n k  the binomial coefficients 

are given by 

!
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Introducing these results in Eq. (80) gives 
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For 1=n  we have 
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which is equal to Eq. (79). For 2=n  Eq. (82) gives 
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For 3n =  Eq. (82) gives 
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For 4n =  Eq. (82) gives 
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To obtain the RTD for n  unit cells in series in the time domain we have to perform the  

inverse Laplace transformation of Eq. (82). To simplify Eq. (82) we introduce the following 

abbreviations 
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The binomial coefficients ,n kB  and the functions , ( )n kF s  are given for 1 4n = −  and 0 4k = −  

in Tab. 5 and Tab. 6, respectively. 

Tab. 5: Binomial coefficients ,n kB  for 1 4n = −  and 0 4k = − . 

 k = 0 k = 1 k = 2 k = 3 k = 4 

n = 1 1 1 - - - 

n = 2 1 2 1 - - 

n = 3 1 3 3 1 - 

n = 4 1 4 6 4 1 
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Tab. 6: Functions , ( )n kF s  for 1 4n = −  and 0 4k = − . 

 k = 0 k = 1 k = 2 k = 3 k = 4 

n=1 1 1
S( )s τ − −+  1 1

F( )s τ − −+  - - - 

n=2 1 2
S( )s τ − −+  1 1 1 1

S F( ) ( )s sτ τ− − − −+ +  1 2
F( )s τ − −+  - - 

n=3 1 3
S( )s τ − −+  1 2 1 1

S F( ) ( )s sτ τ− − − −+ + 1 1 1 2
S F( ) ( )s sτ τ− − − −+ + 1 3

F( )s τ − −+  - 

n=4 1 4
S( )s τ − −+  1 3 1 1

S F( ) ( )s sτ τ− − − −+ +  1 2 1 2
S F( ) ( )s sτ τ− − − −+ + 1 1 1 3

S F( ) ( )s sτ τ− − − −+ +  1 4
F( )s τ − −+  

 

Then Eq. (82) can be written as 

( )UC , , D
0

( ) ( ) exp
n

n k k
n n k n k

k
E s B F s n sα β γ τ−

=

= −∑  (83) 

The inverse of Eq. (83) is given by 

( ){ } ( ){ }1 1
UC , , D , , D

0 0
( ) ( ) exp ( )exp

n n
n k k n k k

n n k n k n k n k
k k

E t B F s n s B F s n sα β γ τ β γ τ− − − −

= =

= − = −∑ ∑L L  (84) 

Taking advantage of the following time shift property of the Laplace transform 

( ){ }1 ( ) exp ( ) ( )F s as f t a H t a− − = − −L  

Eq. (84) simplifies to 

UC D , , D
0

( ) ( ) ( )
n

n k k
n n k n k

k
E t H t n B f t nα τ β γ τ−

=

= − −∑  (85) 

where 

{ }1
, ,( ) ( )n k n kf t F s−≡ L  

To determine the inverse Laplace transforms we take advantage of the relations listed in 

Tab. 7. 
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Tab. 7: Inverse Laplace transforms. In the reference column the numbers refer to those in 

McCollum and Brown (1965), CB, and Roberts and Kaufman (1966), RK, respectively. 

( )F s  ( )f t  Reference 

( ) ns a −+  
1 exp( )
( 1)!

nt at
n

− −
−

 23 in CB 

1 1( ) ( )s a s b− −+ +  [ ]1 exp( ) exp( )at bt
b a

− − −
−

 14 in CB 

1 2( ) ( )s a s b− −+ +  [ ]{ }2

1 exp( ) ( ) 1 exp( )
( )

at a b t bt
a b

− + − − −
−

 27 in CB 

2 2( ) ( )s a s b− −+ +  2 3 2 3

exp( ) 2exp( ) exp( ) 2exp( )
( ) ( ) ( ) ( )

t at at t bt bt
b a b a a b a b

− − − −
− + −

− − − −
 33 in CB 

1 3( ) ( )s a s b− −+ +  
2 2

3

1 11 ( ) ( ) exp( ) exp( )
( ) 2

a b t a b t bt at
a b

⎧ ⎫⎡ ⎤− − + − − − −⎨ ⎬⎢ ⎥− ⎣ ⎦⎩ ⎭
 89 of sec-

tion 2 in RK 

 

With the above results, the inverse Laplace transforms of , ( )n kF s  for 1 4n = −  and 0 4k = −  

are as follows 

1
1,0 S( ) exp( )f t tτ −= −  

1
1,1 F( ) exp( )f t tτ −= −  

1
2,0 S( ) exp( )f t t tτ −= −  

1 1
2,1 S F1 1

F S

1( ) exp( ) exp( )f t t tτ τ
τ τ

− −
− −

⎡ ⎤= − − −⎣ ⎦−
 

1
2,2 F( ) exp( )f t t tτ −= −  

2
1

3,0 S( ) exp( )
2
tf t tτ −= −  

1 1 11
F S SF

3,1 1 1 2 1 1 2
F S F S

( ) 1 exp( )exp( )( )
( ) ( )

t ttf t
τ τ ττ

τ τ τ τ

− − −−

− − − −

⎡ ⎤− − −− ⎣ ⎦= +
− −
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1 1 11
S F FS

3,2 1 1 2 1 1 2
S F S F

( ) 1 exp( )exp( )( )
( ) ( )

t ttf t
τ τ ττ

τ τ τ τ

− − −−

− − − −

⎡ ⎤− − −− ⎣ ⎦= +
− −

 

2
1

3,3 F( ) exp( )
2
tf t tτ −= −  

3
1

4,0 S( ) exp( )
6
tf t tτ −= −  

{ }1 1 1 1 2 2 1 1
4,1 F S F S S F1 1 3

F S

1 1( ) 1 ( ) ( ) exp( ) exp( )
( ) 2

f t t t t tτ τ τ τ τ τ
τ τ

− − − − − −
− −

⎤⎡= − − + − × − − −⎣ ⎥− ⎦
 

1 1 1 1
S S F F

4,2 1 1 2 1 1 3 1 1 2 1 1 3
F S F S S F S F

exp( ) 2exp( ) exp( ) 2exp( )( )
( ) ( ) ( ) ( )
t t t t t tf t τ τ τ τ
τ τ τ τ τ τ τ τ

− − − −

− − − − − − − −

− − − −
= − + −

− − − −
 

{ }1 1 1 1 2 2 1 1
4,3 S F S F F S1 1 3

S F

1 1( ) 1 ( ) ( ) exp( ) exp( )
( ) 2

f t t t t tτ τ τ τ τ τ
τ τ

− − − − − −
− −

⎡ ⎤= − − + − × − − −⎣ ⎦−
 

3
1

4,4 F( ) exp( )
6
tf t tτ −= −  

With these results, we obtain the RTD of the PDD model for two and three unit cells from 

Eq. (85) as follows: 

{ }

2
2

2UC D 2, 2, D
0

2 2
D 2,0 2,0 D 2,1 2,1 D 2,2 2,2 D

2 2

D D
D D

S S F F

1
F S

( ) ( 2 ) ( 2 )

( 2 ) ( 2 ) ( 2 ) ( 2 )

2 21( 2 ) ( 2 ) exp exp

2

k k
k k

k
E t H t B f t

H t B f t B f t B f t

t tH t t

α τ β γ τ

τ β τ βγ τ γ τ

τ τα ατ τ
τ τ τ τ

τ τ

−

=

−

= − −

= − − + − + −

⎧ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −−⎪ ⎢ ⎥= − − − + −⎨ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎪ ⎣ ⎦⎩

+
−

∑

D D
1

S F S F

2 21 exp expt tτ τα α
τ τ τ τ−

⎫⎡ ⎤⎛ ⎞ ⎛ ⎞− −− ⎪− − − ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎪⎣ ⎦⎭

 

and 
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{
}

3
3

3UC D 3, 3, D
0

3 2
D 3,0 3,0 D 3,1 3,1 D

2 3
3,2 3,2 D 3,3 3,3 D

32
D D

D
S S

2

1 1 2
F S S

( ) ( 3 ) ( 3 )

( 3 ) ( 2 ) ( 3 )

( 3 ) ( 2 )

( 3 ) 3( 3 ) exp
2

3 1
( )

k k
k k

k

E t H t B f t

H t B f t B f t

B f t B f t

t tH t

α τ β γ τ

τ β τ β γ τ

βγ τ γ τ

τ τατ
τ τ

α
τ τ τ

−

=

− −

= − −

= − − + −

+ − + −

⎧ ⎛ ⎞ ⎛ ⎞− −⎪= − −⎨ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪⎩

⎛ ⎞
+ ⎜ ⎟− ⎝ ⎠

∑

1 1D D
F S D

F F S

2
1 1D D

S F D1 1 2
F S S F S F

32
D D

F F

3 3exp ( )( 3 ) 1 exp

3 33 1 exp ( )( 3 ) 1 exp
( )

( 3 ) 31 exp
2

t tt

t tt

t t

τ τα τ τ τ
τ τ τ

τ τα α τ τ τ
τ τ τ τ τ τ

τ τα
τ τ

− −

− −
− −

⎡ ⎤⎛ ⎞⎛ ⎞− −− ⎡ ⎤− + − − − −⎢ ⎥⎜ ⎟⎜ ⎟ ⎣ ⎦
⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞− −− ⎡ ⎤+ − + − − − −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎣ ⎦− ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞− −−
+ −⎜ ⎟ ⎜

⎝ ⎠ ⎝

⎫⎪
⎬⎟
⎠⎪⎭

 

The expression for 4UC ( )E tα  can also be obtained from the above results. However, due the 

complexity of the expression it is not explicitly given here. 
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