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Abstract 

 

 

The main purpose of this report is the development of analytical and numerical 
transport models of tokamak plasmas, suitable for implementation into the integrated 
transport code TOKES [1-4]. Therefore this work is presented as an executive 
guideline for numerical implementation. The tokamak edge plasma in reactor 
configurations is expected to be rather thin outmost area with strong radial plasma 
gradients inside the separatrix and the area outside the separatrix, a scrape-off layer 
(SOL), with open magnetic field surfaces, terminated at the divertor plates. The region 
beyond the separatrix plays an important role because it serves as a shield, protecting 
the wall from the hot plasma and bulk plasma from the penetration of impurities and 
because it is mostly affected by transients. The transport model, proposed here, 
provides plasma density, temperature and velocity distribution along and across the 
magnetic field lines in bulk and the edge plasma region. It describes the dependence 
of temperature and density at the separatrix  on the plasma conditions at the plate and 
the efficiency of the divertor operation in detached or attached conditions, depending 
on power and particle sources. The calculation gives eventually the power and particle 
loads on the divertor plates and side walls.  

During numerical implementation some simple models, allowing an analytical 
solution, were developed and used for comparison and checking. Some parts of the 
transport models were also benchmarked with experimental data from various 
tokamaks. 

In the frame of this work the following tasks have been completed:  

• The transport model with neoclassical and anomalous coefficients for bulk plasma 
and 2D transport model for the SOL have been prepared and implemented into the 
TOKES code. The coefficients are suitable for description of stationary plasma 
processes in the bulk and edge tokamak plasmas.  

• The model of pedestal formation at the plasma edge in H-mode operation was 
implemented in TOKES. The model based on power scaling for L to H transition 
and includes the mitigation of turbulence at the edge once the flowing power 
exceeds the H-mode onset threshold. 

• The model of the Edge Localized Mode oscillation based on ballooning mode 
instability is implemented into code.  

• The boundary conditions for fluid equations at the divertor plates and at the main 
chamber wall are formulated and implemented into the integrated code.  

• Analyses of available experiments and benchmarking with simple analytical 
solutions in respect to SOL transport phenomena have been provided. Application 
for ITER is described. 
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Modellierung des Randplasmabereichs 

in TOKES 
 

Zusammenfassung 

 
Der Hauptzweck dieses Berichts ist die Entwicklung von analytischen und 

numerischen Transportmodellen für Tokamak Plasmen, passend zur Implementierung 
in den integrierten Transportcode TOKES [1-4]. Deshalb wird diese Arbeit als eine 
Exekutivrichtlinie für die numerische Implementierung präsentiert. Wie man erwartet, 
ist das Tokamak Randschichtplasma in Reaktorkonfigurationen ein ziemlich dünnes, 
äußeres Gebiet mit starken radialen Plasmagradienten innerhalb der Separatrix und 
des Gebietes außerhalb der Separatrix (sogenannte „scrape-off layer“ Schicht, SOL) 
mit offenen Magnetfeldoberflächen, begrenzt durch die Divertorplatten. Der 
Plasmabereich außerhalb des Separatrix spielt eine wichtige Rolle, weil er größtenteils 
von ELM-Instabilitäten und  Plasmazusammenbruch-Ereignissen betroffen wird und 
weil er als ein Schutzschild dient, der die Wand vor dem heißen Plasma und das 
Zentralplasmagebiet vor Verunreinigungen schützt. Das hier vorgeschlagene 
Transportmodell stellt Plasmadichte, Temperatur- und Geschwindigkeitsprofile 
entlang und quer zu den Magnetfeld-Linien im Zentral- und im Randplasma zur 
Verfügung. Es beschreibt die Abhängigkeit der Temperatur und Dichte an der 
Separatrix von den Plasmabedingungen an den Divertorplatten und der 
Leistungsfähigkeit des Divertors in den „detached“ oder „attached“ Regimen, 
abhängig von der Leistung und den Teilchen-Quellen. Die Berechnung ergibt 
schließlich die Leistungs- und Teilchenbelastung auf den Divertorplatten und auf der 
Wand. Zur numerischen Implementierung im Code wurden einige einfache Modelle, 
die analytische Lösungen erlauben, entwickelt und zum Vergleich und für die 
Überprüfung verwendet. Einige Teile der Transportmodelle wurden auch mit 
experimentellen Daten von verschiedenen Tokamaks validiert. 

 

Im Rahmen dieser Arbeit wurden die folgenden Aufgaben fertiggestellt: 

• Das Transportmodell mit neoklassischen und anomalen Transportkoeffizienten 
für das Zentralplasma und das 2D Plasmatransportmodell für die SOL sind 
entwickelt und in den TOKES-Code eingebaut worden. Die Koeffizienten sind 
zur Beschreibung stationärer Tokamak-Plasmaprozesse im Zentrum und am 
Rand geeignet. 

• Das Modell der Podest-Bildung am Plasmarand in der H-Mode wurde in 
TOKES implementiert. Das Modell basiert auf der Leistungsskalierung  für 
den L-H-Mode-Übergang und schließt die Abschwächung der Turbulenz am 
Rand ein, die stattfindet, sobald der Leistungsfluss die H-Moden-Schwelle 
überschritten hat. 

• Das Modell der Edge Localized Mode Schwingung basiert auf der Ballooning-
Instabilität und wurde in den Code eingebaut. 

• Die Randbedingungen für Transportgleichungen an den Divertorplatten und an 
der Gefäßwand wurden formuliert und in den integrierten Code implementiert.  

• Analysen von existierenden experimentellen Ergebnissen und die Vergleiche 
mit analytischen Lösungen hinsichtlich der SOL-Transportergebnisse, werden 
zur Verfügung gestellt. Die Anwendungen für ITER sind beschrieben. 
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I. Introduction  

 

Analysis of the performance of a tokamak has traditionally focused separately on three 

distinct areas of the plasma; the regions with closed magnetic flux surfaces, referred to as the 

core or bulk plasma and the pedestal area, bordering with separatrix. The region outside the 

last closed flux surface is referred as the scrape-off layer (SOL). The core region has 

historically received more attention since the performance of the tokamak plasma is measured 

by the maximum densities and temperatures which can be achieved in that region. Analysis 

of the core performance takes many forms.  

The simplest analysis is determination of empirical scaling laws for the energy 

confinement time. These laws permit identification of the key operational parameters, and 

allow meaningful comparison of the performance of a variety of devices. This analysis 

approach has been used as a design tool for large generations of tokamaks, and is currently 

being used as guidance for the design of ITER [5]. 

A second analysis scheme is transport analysis where detailed measurements of the radial 

profile of density and temperature are combined with determination of the heating and 

particle source profiles to determine the perpendicular transport diffusivities for particles and 

thermal energy. This analysis permits determination of the radial profile of the transport 

diffusivities, and hence is viewed as the first step in reaching understanding of the physics of 

the transport processes. The plasma parameters are typically assumed to be constant along 

magnetic flux surfaces, permitting 1-D analysis. Typically, these codes used the poloidal flux 

surfaces to define the “radial” coordinate. Since these surfaces do not have to be simple 

circles, but can be shaped, the resulting geometry is referred to as 1.5-D. Uncertainty in the 

details of the source profiles, and questions about the applicability of the 1.5-D assumption 

limits this analysis to regions well inside the last closed flux surface.  

The radial transport pattern in bulk plasma consists of subdominant neoclassical transport, 

which is in our case is simulated not by the conventional routine NCLASS [6], but in the 

form of analytical formulas [7-9]. This allows one readily introduce in future the corrections 

in transport coefficients due to strong plasma gradients in pedestal region, where the 

applicability of standard neoclassical expressions fails [10]. 

A significant progress has been made in determination of the anomalous transport 

diffusivities from fundamental physics models, which allow one predictive calculations of the 

core and pedestal region. Due to the intrinsic complexity of plasma turbulence the transport 

formulas derived from parameterizations of basic non-linear computer simulations contain 
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modelling assumptions. These formulas were validated against the transport coefficients, 

determined experimentally from existing tokamaks. Two transport models are recognized as a 

dominant transport models in bulk plasmas. It is the gyro-Bohm transport models based on 

ion temperature gradient (ITG) transport in ions [8,9] and in electrons the phenomenological 

model, based on electron temperature gradient [11,12]. 

Analyse of the transport mechanisms at the pedestal region show the large contribution of 

magneto electrostatic turbulence. The H-mode is believed to be obtained by shear 

stabilization of turbulence in the pedestal region of a tokamak [13, 14]. For the modeling of 

pedestal formation we have chosen an approach, where transport mitigation down to 

neoclassical level occurs, when power flux across the pedestal region exceeds the L to H 

transition power threshold.  

Analysis of the plasma behavior on the open magnetic field lines in the SOL region 

shows that plasma is toroidally symmetric, but is 2-D in character. Typically, the models use 

the Braginskii fluid model [15] for plasma transport, with the perpendicular transport, treated 

as anomalous. Similarly, impurity radiation plays a key role in power dissipation in the SOL, 

hence the 2-D models have developed techniques of simulating multi-species plasmas, 

including both intrinsic impurities (typically carbon) and impurity species introduced to 

enhance radiation. The presence of numerous multiply charged ions in the edge (scrape-off 

layer) of diverted tokamak plasma makes it difficult and time-consuming to accurately model 

the transpoprt processes in this region. A new model was developed, where the separate 

charge states of a given isotope can be accurately replaced by a set of appropriately averaged 

density, temperature, mass and heat flow equations representing a fictitious  single reduced 

charge state [16,17]. These models are generally applied to divertor tokamaks, where the last 

closed flux surface corresponds to the magnetic separatrix.  But these models must be also 

recognized in pedestal regions, where the 2-D nature of the plasma extends into the closed 

flux surfaces. This is particularly important for calculation of poloidal asymmetry of radiation 

during the  mitigation of the disruption by massive gas injection. It has become increasingly 

apparent that the two regions of the plasma, the core and SOL, are not truly independent.  

The development of the plasma transport in TOKES comprise of three models. First is the 

subdominant neoclassical transport for electrons and ions for tokamak plasma, based on 

Hinton and Heseltine model [7]. The turbulent transport, dominant in the bulk H-mode 

plasma is simulated by ITG and ETG type turbulent models. The SOL and divertor region is 

dominated by Bohm type transport arose and classical fluid transport along the magnetic field 

lines.   
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The boundary plasma region in tokamak device is conventionally defined as an external 

plasma volume, which consist of a pedestal region inside the separatrix and the region 

beyond the last closed flux surface (LCFS), where plasma is not magnetically confined and 

contacting with the in-vessel structures. The regions beyond the separatrix comprise the 

scrape-off layer (SOL) and the divertor plasma region. The advantage of  the TOKES code is 

the inherent capability to simulate simultaneously bulk and edge plasma in spite of difference 

in geometry and time scales [2-4].  

The application of TOKES to ITER is currently expected in several issues. Simulation of 

impurity transport in ELMy SOL due to enhancement of sputtering during small (mitigated) 

ELMs will define the lifetime of divertor plates, radiation power load on Be wall and ultimate 

balk plasma contamination level. This also includes effect of core plasma screening due to 

entrainment of impurities by ELMs and determination of the tolerable ELM size and 

frequency. Another task which can be tackled is related to simulation of massive gas injection 

for ITER. 

The physics issues considered below are presented in such extend, which are required for 

the purpose of modeling. For additional information the references are applied. All quantities 

below in “practical” formulas are in MKS units except temperatures expressed in eV and ion 

mass ( im ) expressed in units of proton mass, ;/ pmm=μ  B in Tesla, Z  is the charge state; 

Boltzmann’s constant )/(1025.6 24 MWseVkb ⋅⋅= . 

 

II. Neoclassical Transport Model for bulk and pedestal region in TOKES  
 

The neoclassical transport coefficients for large aspect-ratio tokamaks in several 

regimes of collisionality were used in the form, suitable for numerical implementation. To be 

most useful, the results were used in the form of continuous function of collisionality [7] for 

ions  
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II. 1. Electron & ion particle flux.  
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Here and below //E  is the electric field along the magnetic field lines, which can be estimated 

as: RUE π2/// ∝ , where U is a toroidal loop voltage. 
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II. 2. Electron energy flux (heat flux and convective flux). 
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II. 3. Ion energy flux.        

 

( )( ) iETeini
i

i
ii

i

e
iiii

ii

qqq
T
TTnA

M
mKKq

Tq

+++∇⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−⋅−⋅⋅−=

=⋅Γ+

∇∇
− 2/3

11
22 1

2
5

2
5

ενρ
 (II.3. 1) 

 

⎭
⎬
⎫

⎩
⎨
⎧

⋅+
⋅⋅

+
⋅+⋅+

⋅≡ 2/3
*,

*,
3

*,
2/1

*, 74.01
77.1

31.003.11
166.0

εν
νε

νν i

i

ii
iK         (II.3.2) 

 

=∇niq
n
n

T
TAKnTq

e

i
iieie

∇
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛ −⋅⋅⋅ − 1

2
5

11
2/322 ενρ   (II.3.3) 

 

e

e
ieeieiTi T

TKKTnqAq
e

∇
⎟
⎠
⎞

⎜
⎝
⎛ −⋅⋅⋅⎟

⎠
⎞

⎜
⎝
⎛ −= −

∇ 1112
2/322

2
3

2
5 ενρ  (II.3. 4) 



  6 

 

B
EcqTnKAq ieiEi

//2/1
132

5 ⋅⋅⋅⋅⋅⎟
⎠
⎞

⎜
⎝
⎛ −= −ε  (II.3.5) 

 

RUE π2/// ≈  (II.3.6) 

 

II. 4. Parallel current density.        
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II. 5. Bootstrap current density.        
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III. Turbulent transport model for bulk and pedestal region in TOKES  
 

Anomalous transport models, employed in TOKES for bulk and pedestal regions based 

on giro-Bohm model of electrostatic micro-turbulence observed in large-scale tokamak 

plasmas. The turbulence reviles the onset threshold at some critical value of temperature 

gradient.  For electrons we use a phenomenological model, described by Rebut-Lalia-

Watkins, updated in comparison with experimental data [11]. The turbulence in ions based on 

ion temperature gradient (ITG) transport, described by the gyro-Bohm IFS-PPPL model of 

Kotschenreuther et al. [8,9], where a parameterization of the critical gradient is obtained from 

a large number of linear gyro-kinetic simulations and with a smaller number of non-linear 

gyro-fluid simulations.  

At the edge the dominant turbulence can be associate with the unstable Alfvén-drift 

waves which are appearing in finite β  ( ie mmBnT /8/ 2 ≥≡ πβ ) plasmas, when the Alfvén 

wave couples to the drift wave [14]. The Alfvén drift turbulence suppression at the plasma 

edge is suggested as a triggering mechanism for the L to H transition. The stability theory of 

Alfvén drift-waves shows that with increasing plasma pressure the Alfvén waves get coupled 

to electron drift waves and as a consequence the unstable long wavelength perturbations 

(most important for transport) are suppressed. The instability can be characterised by two 

significant parameters, i.e. the normalised plasma beta, βn , and the normalised collision 

frequency, vn . The suppression occurs when the normalised beta is greater than a critical 

value, i.e. βn >1+vn
2/3 , which depends on the normalised collision frequency vn . The Alfvén 

drift-wave model predicts the experimental trend of a roughly linear dependence of threshold 

temperature on magnetic field, with a weak dependence on density at high densities and a 

strong dependence on density at lower densities  

We are considering to include in the near future the Alfvén-drift turbulence suppression 

as a trigger for the L to H transition in TOKES calculations. 

As far as the radial transport in the SOL plasma concerns, we are employing there the 

Bohm diffusion coefficient, BD , which can be taken either constant or as a function of 

electron temperature [15]: 

smBTDeBcTD TeeB /,/16/ 2
0 ⋅==    2

0 1025.6 −⋅≡D  (III.1) 

where TB is the magnetic field in Tesla, temperature in eV. 

The charts below present details of the RLW and ITG models, implemented in the 

TOKES.     
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III. 1. Turbulence in electrons. 
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Here πμ 8/10 = , ση /1=  is the plasma resistivity, J is the plasma current, q is the 

safety factor. 
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III. 2. Turbulence in ions.  
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IV. Model of the SOL/Divertor transport  

 

IV. 1 Two dimensional fluid equations for SOL and divertor plasma in TOKES.  

 We are considering a 2D orthogonal coordinate system in the rectangular SOL domain 

with the x-axes across and the y-axes along the magnetic field lines (See Fig. 1). In tokamak 

configuration plasma near the wall has in general a complex curvilinear configuration. The 

magnetization of the plasma and relatively narrow boundary region, however, makes it 

possible to “straiten out” the separatrix and, in some approximation, to treat the problem in a 

rectangular geometry (Fig.1). If there is substantial uncertainty regarding the transport in 

radial direction, the effects of the curvature and of the variation of the poloidal magnetic field 

along B can be simply ignored. The SOL width, solΔ , is specified as a distance from the first 

wall to the separatrix and is much less than a minor radius, a .The plasma is assumed to be in 

steady state quite dense and cold (excluding transients), and is described by the system of 

hydrodynamic equations.    

 

 

 

 

 

 

 

 

 

Fig. 1.  The computational domain for the SOL and divertor region. 

 

 

 

The following hydrodynamic equations for density, n, momentum, yx
iyx nVmP ,

, = and energy 

in the SOL plasma are employed [15]: 
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∂
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where 
2

0 )( nnVnNIQQ recrecionirad βασ +−−−=   (IV. 1 .4) 

Here ie TTT =≡ , yyη  is the viscosity and 0χ is the Spitzer-Harm conductivity coefficients 

along B (for one eV), BD is the radial diffusion coefficient taken in the SOL as 1m2/sec. 

Generalization to functional Bohm coefficient is straightforward. Particle source, 
ion

VnN σ  

and energy sink, Q , due to radiation, ionization and recombination of neutrals 0N which are 

currently modelled by specifying arbitrary the distribution of neutral atoms in divertor. 

The ionization 
ion

Vσ  , the radiative, recα , and the three body recombination, recβ  , the 

charge exchange collision, icxcx VN στ 0/1= , and the radiation equilibrium for cold neutrals, 

radQ , (for of zero temperature and zero velocity) are employed: 
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Here zn is the impurity concentration and zL is the cooling rate for impurity radiation. 

The following improvements are foreseen in near future: 

1) separation of electron and ion temperatures, ie TT ≠ ,  

2) appropriate model of the neutral atoms (self-consistent calculation), 

3) equations for realistic curvilinear geometry. 

4) the terms with parallel current along the magnetic field lines will be added  
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IV. 2. Boundary conditions. The 2D fluid equations are required initial and boundary 

conditions at the computation boundaries.  As initial conditions, density, temperature and 

velocities are taken from the 1D analytical profiles along the B and exponential across the 

SOL. Since we are looking for stationary solution, this choice is unimportant. The kinetic 

effects in boundary conditions are neglected and all transmission coefficients derived 

assuming a half Maxwellian function for the incident particles. We also neglect here the 

influence of impurities on the boundary parameters. One can distinguish five boundaries: at 

the separatrix, in private zone region, at the divertor plates and at the first wall.    

Input particles, Γ and heat, QQQ ie ==  fluxs are specified at the separatrix: 

• Separatrix between the SOL and core: lylrx sol ≤≤−Δ== ),(1  

sep
dydx

Bx SQ
x
TnDq /

;1

=
∂
∂−=

≤≤−=
 (IV.2.2) 
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 (IV.2.2) 

• Divertor & privat zone boundary: Lydrx sol ≤≤Δ== ),(1 ) 

Tnv
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 (IV.2.3) 
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• Divertor plates:  10 ≤≤±= xLy  

)(2 TcnTq ss ⋅=  (IV.2.5) 

 ),(TcV ss =     wTT =  (IV.2.6) 

where wT  is the wall temperature,  )(Tcs is the sound speed. 

• Private region:  LyddyLx ≤≤−≤≤−= ;1  

( ) )(12 TcnTq ss ⋅−= α  (IV.2.7)  

)()1(
4
1 TcnnV ss ⋅−= α  
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where α is some reflexion coefficient 2≅ , which describes the ratio of reflected back 

from privat region particles. 

• Wall:     LyLx +≤≤−= ,0  

We assume 00 == Tn  (IV.2.8) 

The boundary conditions at the divertor plate can be generalized by assuming that the 

distribution function at the boundary is a one directed shifted Maxwellian for ions due to the 

acceleration in the electric pre-sheath, ϕe , and truncated at some velocity double side 

Maxwellian for electrons, because of cut-off in the retarding electric field. The boundary 

conditions at the plate then can be obtained by equating the fluid particle and energy fluxes to 

kinetic ones:   
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Here Tii VVM /=   where iV  is the fluid velocity along B at the plate and TiV is the ion thermal 

velocity; dtexErf
x

t∫
∞−

−=
22)(

π
. The parameter 1M is equal to M if si CV ≥ , while at 

,si CV ≤ it is found from the condition sii CdVMFVdVMF =∫∫
∞∞

)(/)( 1
0

1
0

, where iF  is 

boundary distribution function for ions, ( ) { }2
11 )(exp)( Mu

V
ucMF
Ti

i
i −−=

π
ϑ ,  TiVVu /≡ , 

)(xϑ is the Heaviside function and  iies mTTC 3/)(5 += is the sound velocity. The 

dimensional potential of the sheath eTe /ϕε =   is found from quasineutrality condition [19]:  
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ErfMG

MErf
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m
m

i

e

e

i

1

1 )(ln
 (IV.2.16) 

where     ( ) )( 111

2
1 MErfMeMG M −+≡ − π  

Note that the plasma parameters may have a discontinuity at the boundary, but the fluxes 

remain continuous.  

The value of the electric potential in pure plasma at the plate is about eTe ⋅∝ 5.3ϕ  in absence 

of current flow to the plate and electron emission. But this potential can considerable increase 

in non stationary case, when the material surface becomes due to erosion not even.  

 

IV. 3 Kinetic effects in the SOL plasma.  One of the factors limiting the applicability of the 

hydrodynamic approach is the effect of the suprathermal particles upon the parallel heat 

conductivity and viscosity. Even when the conditions of hydrodynamics are strongly satisfied 

(e.g. the mean free path of particles are small compare with the SOL length), the expressions 

for the parallel heat conduction and viscosity coefficients turn out to be wrong. This is related 

to the fact that hydrodynamic fluxes are higher order moments and are determined mainly by 

suprathermal particles for which the hydrodynamic approximation turns out to be violated. 

When this occurs, the heat and momentum fluxes become non-local in their nature. It is 

shown [19] that the non-local representation for fluxes naturally follows from the equations 

for higher order moments of the distribution function, provided that the spatial derivatives of 

these moments with respect to coordinates are retained. This allows one to use differential 

equations for moments and their derivatives instead of complicated integral expressions for 

the flux in numerical calculations. In simulation of kinetic effects a simplified approach is 

often used, assuming the heat flux to be constrained from above by the quantity  
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kinSH

kinSH
e qq

qqq
+
⋅= , (IV. 3.1)                             

where  Tekin nTVFLFq 2⋅= . Here FLF = 0.1-0.3 is a flux limiting factor which is found either 

from experiments or from the results of numerical solution of a kinetic equation [20-22]. 

Unfortunately, the great uncertainty found in the experimental data does not allow one to 

make a quantitative conclusion about the value of FLF. As a non-local approach, FLF 

increases the upstream plasma temperature and reduces the density, whilst not changing 

significantly the plasma parameters in the vicinity of the plate. However, with the 

introduction of the FLF the transport remains local. Such an approach does not represent all 

the features related to the nature of the non-local transport. Furthermore, the applicability of 

the integral expression is limited to cases with low parallel plasma gradient, where a strong 

anisotropy in the particle distribution function can be neglected. In cases of large temperature 

gradient the main contribution to transport is supplied by the “tail” particles. These hot 

electrons can reach the divertor plate and, essentially produces an increase in the sheath 

potential (see Fig. 2) that can result in increased plate erosion. For a higher sheath potential, 

however, the energy transfer ability of each electron-ion pair on the plate is increased. The 

implication is, that the plasma temperature near the plate may be less than that predicted by 

fluid modelling, thus reducing sputtering by hot ions to some extent. In summary of the 

above arguments, one can say that the non-local transport redistributes the fluxes over the 

thermal layer, reducing the peak power load. Therefore existing hydrodynamic models 

probably give pessimistic values of heat loading and local plasma temperature at the divertor 

plate. The kinetic effects can noticeably affect the transport of impurities in the divertor, in 

particular that of helium. The localisation of impurities is determined by the competition of 

many forces, including the ion thermal force. Under ITER divertor plasma conditions one can 

expect a reduction in the ion thermal force in comparison with the hydrodynamic limit 

[16,17]. In the case of helium ions this reduction is approximately equivalent to a reduction 

of the thermal force coefficient by a factor of two to three.  

Summarize, we are suggesting the following kinetic correction in fluid equation. 

Since electrons are predominantly deviate from hydrodynamic limit the local expression for 

parallel heat conductivity in energy equation, yTyq eSHSHe ∂∂−= /)(, χ  can be replaced by:   

ydyqyyGyq
L

L
SHee ′′⋅′−= ∫

+

−

)()()( , ,        (IV. 3.2) 

where  
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Here  

),()()( **
eeieTe TnTVy τλ ⋅=   and  ee TT ⋅≈ 8.3*   [19] 
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Fig. 2. The influence of hot particles on the 
sheath potential 

wTe /ϕ versus temperature sT , 
and density ns at the separatrix: (1) 

313101 −⋅= cmns
, (2) 313102 −⋅= cmns

,(3) 
313103 −⋅= cmns
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and wT is, the 
temperature at the plate. 

Fig. 3 Kinetic correction to heat conductivity  

vs distance along B; here FLFF /1= ; Heat 

flux near the plate increases several times due to 

the contribution of suprathrmal particles [22]  

 

Analyse of kinetic correction of fluid equations shows, that the suprathermal particles 

are largely responsible for the parallel transport in boundary plasma. Non-locality produces 

two kinds of effect on the heat flow: reduction in the hot region of the SOL and enhancement 

in the cool region near the plate. Reduction of the heat conductivity results in stronger 

temperature gradients and, this, in combination with pressure balance along B reduces 

upstream plasma densities. Suprathermal particles can considerable enhance the sheath 

potential and increase neutral ionization and excitation rates. An efficient numerical 

procedure for kinetic correction to 2D fluid includes the following corrections:  

1) the flux limit factors for electron and ion heat flux along B or  

2) the introduction of non-local heat flux expression (which changes energy equation to 

integer-differential and requires another numerical solver). 

 

IV. 4 Electric field and hot spots formation on the divertor plates.  
Intensive erosion leads to a formation of corrugate wedge-type shape of W-brush 

tungsten target [23-25] (Fig.6). We consider here a sheath region bounded by a corrugated 

surface of divertor plate and a flat boundary held to a constant voltage bias. The rough 
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surface influences the equipotential lines next to surface and can considerable enhance 

erosion due to the electric arcs initiation. These arcs, triggered by abnormal electric field at 

wedge-like edges of the tungsten divertor plates, could be an additional source of impurities 

and dust.  
 Analysis of the surface roughness shows that topography of the material surface after 

exposition has a shape of sharp granules with the pronounced wedge-type shape of 1-3mm in 

height and width. The sharpening of surface roughness changes the electric field pattern in 

adjacent plasma by increasing the electric field at the vicinity of the wedge tips. As it is 

shown further the enhanced electric field could trigger arcs and initiate hot spots. We 

evaluate the electric potential T/ϕ  in the region by solving the 2D Poisson equation at the 

plate:   

2/
2
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2
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d

Te
ei

th

i emm
TV

j
yx

λϕπφπϕϕ ϕ ≈−=
∂

∂+
∂
∂ − ,  (IV. 4.1)  

where dλ
 
is the Debye length, thV  is the ion thermal velocity, φ  is the angle between 

magnetic field and the plate, ij . is the ion saturation current. Here x  is the coordinate along 

the plate and y  is along the magnetic field line. The boundary values at the conductor 

( 0=ϕ ) and in the opposite boundary ( 1=ϕ ) was assumed. The standard variation 

formulation of a finite element method can be used to solve the problem [27]. The potential at 

the lateral magnetic field lines bounded the SOL domain, was specified as a linear function of 

.y  Numerical grids are shown on the Figs. 4 and 8.  

After integration of Eq. IV. 4.1 one can obtain a set of equipotential lines by the 

numerical spline interpolation. The roughness of the equipotential lines is gradually changed 

toward the top region, where ϕ ~ 1 is assumed. First, a sinusoid-type surface shape was taken 

to check the calculation accuracy. Fig. 4 and Fig. 5 show the greed’s pattern and resulting 

equipotential lines above the sinusoidal corrugated surface of divertor plate.  

 

 

 

Fig. 4  Numerical grids for Eq. 1. A 
sinusoidal corrugated surface of divertor 

Fig. 5 Contours of electric potentials above 
the sinusoidal corrugated surface of divertor 
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Fig.6 View of W-brush target corrugated 
under repetitive ELM-like plasma heat loads. 
Q = 1.6 MJ/m2, τ =0.5 ms [24 ] 

Fig. 7 View of a single W-brash after melting 
and splashing the molten layer after different 
numbers of pulses [24].  

 

  

Fig. 8  Numerical grid for Eq. 1. Corrugated 
brash type divertor plate after 300 ELMs 
pulses [28]. 

Fig. 9 Contours of equipotential lines, 
graduated as shown on the right hand side of 
the picture. 
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Fig. 10 Electric field lines graduated in right 
column.  

  Fig. 11 α  values  vs wedge cone angle θ .  
αrEr /1~ , 0<α  [28] 
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 One can see that at the wedge tips the electric field can be so strong, that can easily 

facilitate the generation of arcs and hot spots.  Electric field on perfect metallic wedges 

behaves like αrEr ~ , presenting a singularity when 0<α  [28]. Abnormal electric field 

appears usually for very sharp wedges, 2

4
1 θα −≈  + )(θO . This can be found analytically by  

solving Laplace's equation in spherical coordinate system for 2D wedge shape. A quasi-

analytic procedure based on the theory of Legendre and Lame's functions was used to 

determine α. Formation of the hot spots requires the current density on the surface in excess 

to some threshold value ~ 0.1-1A/cm2 (for W). This can be expected first from the wedge tips 

at some cone angle value (see Fig.6,7), when a strong increase of the field emission of 

electrons takes place. The current density of electrons emission is described by the Fawler-

Nordheim tunnelling law and strongly depends on the electric field. At the electric field value 

cmVE /103~ 7⋅  the field emission current reaches the threshold value 2/1~ cmA  and 

triggers the hot spots. The electric field at the wedge tip can be estimated as ( ) ( )θαarEE /~/0  

, where  keVE 1~0 is the energy of incident particles, cma 1~  is the typical width of the 

wedge (see Fig. 6) and ( )θα is the function of the wedge cone angle θ  (see Figs. 10,11). This 

allows one to estimate the critical value of the wedge curvature (radius) at the tip position. 

Estimation gives, cmr 5.0~  , which is in the range of expected values (see Fig. 11). This 

evaluation indicates the high probability of the hot spot formation and arcs initiation on the 

diverter plates caused by surface distraction during the multiple transient events. This 

additional erosion mechanism could lead to substantial contamination of plasma and the 

material distraction and requires a further investigation.  

 

V. Numerical approach. Application of the modified Belocerkovsky procedure to the 

SOL equations. 

 The system of 2D fluid equations (1,2,3) is solved by using the ‘’split step’’ method 

both for different special directions and for different physics processes as well [29,30]. For 

the later one we are employing the Belocerkovsky numerical procedure, which consist of 

three sub-steps [31]. Below we will consider ie TT ≠ and will dill with the following set of 

transport equation:  
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where  
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First we will employ the velocity-pressure solver together with energy equations  

(the Lagrange sub-step):  
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where the new velocities are found as a function of density and temperature, taken from the 

previous time step, yyη is the parallel viscosity. The discretization for x-diffusion (implicit 

scheme) results is:  
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then using ijn~  and ijn  one can calculate the total number of particles, crossing the cell 

boundary  
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The explicit formula for y-convection reads as: 
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With total plasma particles number cell
ijijij VnN =  in the cell ij, the plasma 

pressure ( )ijieij TTnp += , the ion thermal energy density ijeije nTe ;; 2
3= , and the total energy 

density 
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The total energy change at the Lagrange sub-step is: 
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In the following sub-step we will use the definition, which depends on sign of velocity: 
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In the second (Euler) sub-step we are solving the system of equations: 
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Here      
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or: 
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Which are defined similar to y
ijdN 21+ , see Eq. (V.18). Finally, in  

the third sub-step we are calculating temperatures, velocity from momentum,  
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total energy and electron energy  
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After these procedures the electron- and ion-thermo conductivities as well as the  

equipartition equations are solved as separate sub-steps of total time step.  
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Here both thermoconductivity equations are solved implicitly, including the radiation 

term radQ : 
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VI. Physic Models of plasma transport in the SOL/Divertor. Scaling laws and simple 

models for benchmarking 

 

In this part we present three different regimes of the SOL and divertor operation, which is 

observed in tokamaks, depending on the level of plasma recycling on the divertor plates. 

These are of low, intermediate and high recycling regimes of operation, corresponding to 

attached, partly detached and fully detached cases correspondingly. The regimes are 

characterized by specific plasma behavior and their features can be described by a physics 

models, allowing simple solutions, which can be compared with the full scale 2D simulations 

in TOKES and used for benchmarking. 

 One of the main tasks of plasma modeling in the SOL and divertor region  is to establish  

scaling laws at the separatrix between bulk and edge plasma parameters.  This means e.g., the 

connection between the temperature sT  and the density sn  at the separatrix with the particle 

and energy fluxes, coming from the bulk plasma through the separatix, sQ  and sΓ . The 

boundary conditions can also be expressed through the plasma parameters at the divertor 

plate, using a link between density, temperature and fluxes at the separatrix and at the plate. 

First, we consider the simplest models, for two limiting cases of low and high recycling 

near the material surfaces. The schematic of the SOL and divertor configuration is shown on 

the Fig.12. 

 

0 l 

 

Fig.12  Model of boundary plasma 

 

The plasma heat sQ  and particle flux sΓ  flow through the separatrix  into the SOL region 

sL with and divertor region dL (see Fig. 12). For self-consistent calculations of the balk and 

the boundary plasma it appears convenient to use boundary condition at the separatrix  in the 

form ( )sss QT Γ,  and ( )sss Qn Γ, .  
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VI. 1. The case of low recycling  

The contribution of neutral atoms into plasma flux due to ionization is described by 

recycling coefficient, R  , defined as:  

( ) dsdR ΓΓ−Γ= /  (VI.1) 

In the case of low recycling, considered below, 0~R , the plasma parameters remain almost 

constant along the magnetic field lines, the convective energy loss to the divertor plates 

dominates the parallel transport with the sound speed velocity, 

( ) pisisiss mmCsmTCmTC //1079.9/,/ 3
0

2/1
0

2/1 ≡⋅≡⋅== μμ      (V1.2) 

at the plate, where im is the mass of the dominant ion component, pm is the proton mass and  

the radial (perpendicular) transport is described usually as a diffusion with some anomalous 

coefficient, ⊥D .  Historically, it is taken as a Bohm value, either constant or as a function of 

parameters at the separatrix: 

smBTDeBcTD TssB /,/16/ 2
0 ⋅== , 2

0 1025.6 −⋅≡D   (VI.3) 

where TB is the magnetic field in Tesla. The diffusion normal to the magnetic surfaces, ψ , in 

the rear SOL plasma reads as:  

0
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nDB  (VI.4)  

where sCL /// =τ , qRL π≈  is the magnetic field line length, q is the safety factor at %95=ψ , 

R is the major radius  and n  is the density averaged over the magnetic surface ,ψ  and  ψ=r  

marks the magnetic surfaces. Equation (VI.4) is averaged along the field lines and the parallel 

flow, described as a loss term (last term in (VI.4)). This is justified because the plasma 

parameters are almost homogeneous along the field lines and BD is taken const.. The density 

decay length in the SOL is of the order of gyro-radius only in the case of classical diffusion 

across, ccln D ρτ ∝⋅=Δ // and usually always exceeds cρ  in the case of anomalous 

diffusion, for example: ( ) c
ei

ccBn
LD ρ

λ
τωρτ >>⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≈⋅=Δ 2/1

//  in the Bohm case.  Here, cω  

is the gyro frequency and τ  is the electron-ion coulomb collision frequency, τλ Tei V≡  is the 

mean free pass, TV is the thermal velocity. In the case of rear plasma, eiL λ≤ . Since the 

temperature decay length in the SOL is typically 3/nT Δ≈Δ , the fluid treatment of plasma 

behavior in the SOL region is applicable. For high-energetic particles, emerging from the 

core region the gyro-radius can exceed the SOL width. In the case of ITER for expecting 

temperatures at the separatrix (~300eV) , ≈Δ csol ρ/  50  and for pedestal temperatures 
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(~3keV),  ≈Δ csol ρ/  20. Only for the high-energetic alpha-particles with energies ~0.5 MeV 

the gyro radius (or the banana width) becomes comparable with the SOL thickness. These 

particles are considered as prompt lost particles, or the particles escaping the main plasma 

due to the loss-cone inside the LCFS. Equation (VI.4) gives an exponential decay of density 

across the SOL: 

( )ns arnrn Δ−−⋅= /)(exp)(   (VI.6) 

 where R  and a  are the  major and the miner radius of tokamak plasma, respectively and  

mTTBmL eVsn ,][/][1018.3 4/1
,

3 ⋅⋅=Δ − .                                                                            (VI.7) 

The particle and energy fluxes along the magnetic field line remain constant throughout the 

SOL and can be written as particle flux, dΓ , and thermal power , dQ  to the plate: 

solsssds STCMn ⊥⋅=Γ≈Γ 025.0        and    sssd TQQ Γ⋅=≈ 5       isess TTT ,, ~≡              (VI.8) 

where  sQ  is the total power into the SOL region and  the SOL cross-section surface 

sssol aaaS Δ≈−Δ+=⊥ πππ 2)( 22 .  Here sΔ is the SOL width and M is the Mach number 

near the divertor plate, which is close to one.  If ns Δ≈Δ , then  
 

( ) sec/1,/9.30)2/( 4/3
//0 sssolBsssolss TnBLaMSDTnSaMC ⋅⋅⋅≈⋅≈Γ ⊥⊥ τπ              (VI.9)  

 

MWTkQ ssbs ,5 Γ⋅=    (VI.10)                        

From (VI.9, VI.10) follow the relations, which can serve as boundary conditions at the 

separatrix:  

( ) ( ) 4/34/71
,

3 ][][.][ −−− ⋅Γ= MWQsConstmn sss                           (VI.11) 
 

][5/][][, 1−Γ= skMWQeVT sbss   (VI.12) 
 

where  ( )][][][/103.4. 218 mLMmamSBConst solT ⋅⋅⋅⋅= ⊥  

The specific feature of the simplified model is the monotonic dependence of density and 

temperature on fluxes, which excludes the occurrence of bifurcation in the boundary region. 

At high plasma temperatures due to strong dependence of parallel heat conductivity on 

temperature and the long connection length the slight variation of the temperature and density 

along the magnetic field lines can occur.  In this case the density and temperature at the plate 

pp Tn ,  must be estimated from the conductivity and pressure balance equations along the 

magnetic field lines, s: 
 

radSOLs QVQ
s
q −=

∂
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TTq
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ddmidmid TnMTn )1( 2γ+=                            (VI.14) 
 

Here  RSKaRV SOLsolSOL ππ 2)1(2 2 ⋅≈+Δ= ⊥ , where abK /= is the elongation and radQ  are 

the radiative losses in the SOL/divertor region, 3/5=γ . Equations (VI.13, VI.14) are 

averaged over the SOL width.  The density and temperature at s = 0 represent the upstream or 

the mid-plane values and the Spitzer-Harm parallel conductivity, 2/51122
0 103.1 −−−⋅= eVsmχ is 

assumed. Integrating the equations (VI.13) first in the SOL region sL , with the source term 

sQ  and then, in the divertor region sd LLL −= , where 0=sQ , one finds: 

2/7
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and 
 

)1(2/ =≈ MTTnn dmidmidd , (VI.15)                      

Here *T  denotes the minimum temperature, which can be achieved at the mid-plane for given 

sQ  and for given level of radiation losses, radf . The dependence )( dup TT which follows from 

classical electron thermal conductivity is shown in the Fig. 13. If *TTmid >> , then midp TT ≈ , 

when *TTd ≤ , midT  reaches its minimum value *T  . This occurs due to strong dependence of 

classical conductivity on temperature. 

( ) ( ) ( )( )( ) 7/232
* ][//211][][0.7, mVLLfMWQmLeVT sSdradsS +⋅−⋅⋅≡                          (VI.16) 

 

 
Fig.13 The dependence )( dup TT which follows from classical electron thermal conductivity; if *TTmid >> , 

then midd TT ≈ , when *TTd ≤ , midT  reaches its minimum value *T  . This occurs due to strong dependence 
of classical conductivity on temperature.  
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In the ITER case, for mL 190~  and 2/1380~/ mMWVLQ sss , the critical seperatrix 

temperature (VI.14) is keVT 3.0~* . This is the minimum achievable upstream temperature 

for given power and connection length values. If downstream temperature drops below the 

critical one a noticeable gradient develops, which keeps the mid-plane temperature almost 

unchanged.  This occurs due to strong dependence of classical conductivity on temperature. The 

radiation losses bring down the upstream temperature. 

 

VI. 2. The case of intermediate / high recycling (attached plasma) 

In this case 1≤R  in the vicinity of the plate and the associated radiation brings down the 

temperatute there. Recycling considerably amalgamates the particle flux to the plate.  

Although the density and the temperature strongly vary, the pressure along the magnetic field 

lines remains roughly constant.  Under this condition, when the temperature at the plate is 

small the thermal conductivity becomes a dominant transport mechanism along the magnetic 

field lines 2/5
0// T⋅= χχ . For given sn at the separatrix and given parameters rads fRQ ,, the 

functions ),( sss nQT , and ( )ssT nQ ,Δ  can be easily derived from the energy balance equation 

(VI.13). Using for the anomalous radial conductivity the following scaling: b
s

c
s nT ⋅⋅= ⊥⊥

0χχ , 

one finds: 
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Here TxT ln/ ∂∂≡Δ is the thermal layer width ( solnT Δ<Δ∝Δ 3/ ), TBD /0
0 ≈⊥χ   and the 

exponents here are arbitrary numbers. The dependence of temperature and density at the 

divertor plate on separatrix density can be derived again from the condition of constant 

pressure along the magnetic field line (note, that the separatrix and the mid-plane values, 

indicating with the subscript s and mid, and the values denote as p and d at the plate are 

roughly the same): 

ppppss TnTnMTn 2)1( 2 ≈+= γ ,  (VI.2.3)  

and the particle balance in the recycling zone in the vicinity to the plate:   

( ) ( )R
TnCM s

pps −
Γ≈+

1
1 2/3

0
2γ ,  (VI.2.4)  
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where R is the recycling coefficient, which is taken here as a given value. The particle flux at 

the plate now reads as: 
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and pn can be found from (VI.2.4). One can notice a rather weak dependence of edge plasma 

parameters ( ),Δsn  on separatrix density sn   and the heat flux sQ  due to strong dependence of 

parallel thermal conductivity on plasma temperature.  In reality the recycling coefficient R  

depends on plasma parameters. The total plasma flux to the plate psp R Γ⋅+Γ=Γ consists 

from the initial flux sΓ and from the contribution ionpR Γ=Γ⋅ , arising due to ionization of 

neutrals: 

))/(exp1( ∫−−⋅Γ⋅=Γ ionpion dx λη                                 (VI.2.7) 

were η  is the recombination coefficient at the plate surface, 
ionppion VnTV σλ /)(0= is the 

ionization mean free pass of neutrals. 

Dependence of plasma parameters at the plate from separatrix density can also be derived 

from energy and pressure balance: 

 
11/2

3
0

6
0//10

3
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⊥
⊥ L

q
n

T
s

p χ
χ            (VI.2.8) 

( )

11/2

7
0//

34
0

11/167/3

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

= ⊥
−
⊥

χ
χ L

R
qnn s

p             (VI.2.9) 

where ⊥⊥⊥ −= SfQq rads /)1(, . 

 

These equations show how scales density and temperature in mid-plane and divertor plate 

with machine size (R, a) and the heat flux in the SOL, ( )( ),15.12 2 KKRaS −+⋅⋅≈⊥ π  where K is 

the elongation. The scaling law correspond to high recycling regimes in the SOL with 

classical heat conduction along the magnetic field lines and Bohm conduction (b=1, c=1) 

across field lines. Note, however, that in the model parameters R  and radf  are independent. 

One can see from (VI.2.8, VI.2.9) that the plasma temperature at the plate, decreases as the 

inverse cube of the thermal layer density and depends weakly on the field line length, L.  In 

addition, any variation in the input heat flux and in the parallel heat conduction can strongly 

affect temperature at the plate. The thermal width scaling is important, since it determines the 

peak power load on the plate. Although we are operating here with the density profile width 
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value, it is worth to note, that the radial density profile in the SOL is not described any more 

by simple exponential form (VI.1.4), because the source of neutrals due to ionization plays an 

important role in density profile formation.   

 

IV. 3. The case of high recycling (detached plasma) 

 This is the case, when plasma detaches from the plate and almost all power in the 

SOL/divertor  region is radiated by impurities and by hydrogen. A significant pressure drop 

along the magnetic field lines occurs and the plasma density drops towards the plates. The 

main signatures of detachment include also the plasma particle drop at the plate (ion 

saturation current) and the formation of a strong radiating zone (radiative blanket in divertor), 

which cools down the plasma and radiates almost 100% of energy. The SOL and divertor area 

can be divided into two zones, the upstream radiative zone and the neutral gas dominating 

downstream area with the rear cold plasma, so called cushion near the plate.  A schematic of 

the divertor plasma between the X-point and the target is shown in Fig. 14.  
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Fig. 14 Schematics of divertor plasma in detached state 

 

Two regions are indicated: the radiation region and the cushion (gas blanket). In the radiation 

region, energy losses occur due to the radiation of impurity ions (e.g. Be etc.) and the power 

is transported by parallel heat conduction. In the right-hand part of the cushion, the plasma is 

cold and the remaining power is so small that ionisation is excluded and temperature is taken 

to be constant along the region (TI=Tw). Convection dominates the heat flow in this region. 

In the vicinity of the interface between the two regions, ionisation takes place. In this model 

we are not specifying the position of the border between these two regions, assuming that the 

cushion will be self-consistently developing according to the balance equations. In the 

cushion, a charge exchange collisions with neutrals cause the parallel momentum loss from 



  33 

the plasma flow, thus reducing the pressure at the plate. Detachment occurs when the 

radiation is strong enough to limit the ionization capability downstream of the radiating 

region. In order to simulate this complex phenomenon a simplest model is chosen below, 

which, however, preserves the main features of detachment. This model provides necessary 

for benchmarking solutions of reduced equations.  

 The 1D equations for energy, particle and momentum balance along the field lines in 

the SOL are employed [33]:  
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where q and Γ are the heat and the particle fluxes along the magnetic field lines, n  and zn  

denote the  plasma and impurity density, )(TL  is the radiation cooling rate , V is the parallel 

velocity, ⊥τ is the particle (momentum) loss time due to a radial diffusion ⊥⊥ Δ D/~ 2τ and a 

charge-exchange collision cxτ , 111 −−−
⊥ += cxdif τττ  . For given density sn  , temperature sT and 

heat flux sq  at the separatrix, the plasma parameters at the plate and conditions for 

detachment can be uniquely defined from equations (VI.3.1- VI.3.2). A transition from 

attached to detached state at given upstream conditions can be triggered by varying the 

impurity content in divertor, thus increasing the radiation losses in divertor region.   

 The seven unknown parameters, which must be defined are , the heat and particle 

fluxes plq , plΓ  at the plate, the temperature plT at the plate , the neutral density  n0, fraction of 

radiation, radf , fraction of momentum loss due to interaction with neutrals, mf ,  and the 

length of the cushion, .mL  Upstream heat flux, upq  and upstream pressure, upp  together with 

impurity concentration are the free parameters. The seven required equations are the 

following: 

 

1)        ( ) plsms TMpfn 21/)1( γ+−=     (VI.3.3)     

                      

where mf  is the momentum loss fraction defined as plplsm pppf /)( −≡  and Tpl  is the 

temperature at the plate and M is the Mach number at the plate, which is according the Bohm 

requirements is about 1.  
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The equation for energy remaining in plasma after radiation is transferred to the plate 

 2)       ( )plplpl Tq δε +Γ=                                    (VI.3.4) 

where 20=ε , 8.7=δ  .Multiplying Eq.(VI.3.1) by xTTq ∂∂−= /2/5
0χ  and then, integrating 

from upstream to downstream, one has  

Energy balance equation upstream of the cushion 
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where qI and TI are the heat flux and plasma temperature at the end of the radiation zone, and 

L(T) is the radiation loss function. CZ is the impurity concentration, pup is the upstream 

pressure.  

Equation for the length of  the radiation zone, Lr, which can be determined from the local 

heat flux by  

 

4)

 

Lr = χ0   
T5 / 2

q T( )  
TI

T
up
∫ dT = L − Lm

 

(VI.3.6)

  

and is equal to the difference between L  (total connection length between X-point and plate) 

and the cushion length. Tup is the upstream temperature ( )sup TT ≈ . We also assume constant 

temperature in the cushion. Notice, that  relation between the upstream heat flux upq  along the 

magnetic field lines and sq - across the LMFS. Since at separatrix divq ~0, then 

sol
sup

aq
qq

Δ
= ψπ2

, where ψq  is the safety factor. 

 

The equation for radiation fraction, which follows from the energy balance in the cushion  

 

5) f rad ≅ 1−
pup

qup

(1− fmom )
M

1+ M2

(ε + γ tTd )
Td                                                               

(VI.3.6)
 

This relation shows that at given upp and upq  the achievement of detachment 

( 1~radf  ) is limited by momentum loss efficiency, momf !   
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6) Equation for momentum loss fraction is derived in (see [33]) 

 

f m = 1 − exp(− Lm λ∗);  (VI.3.7)
 

where λ ∗= 2.398⋅ d(m )(11.51⋅Kn +1)  is an effective length (in m) for the momentum loss, Lm 

is the  cushion length, d(m)  is the plasma-wall distance and Kn is the Knudsen number for 

neutrals Kn = 2.5 1019 m-3 / ( )()( 3
0

−⋅ mnmd  ). 

  

Equation for neutral density: 

7) Γ / / exp(−Δ / λion )A1 =
B

/ /
Bp

n0(Cpump +
A0

4
v0(1 − η)  ),    A1 = 2πRΔ   (VI.3.7)  

This is the particle balance equation in the divertor. The neutral density n0 in the divertor 

region is found from a simplified model (shown schematically in Fig. 15). 

 

n0
Γ//

Α1Γ// exp(- Δ/ λion )

A0 n0 v0 /4

ηA0 n0 v0 /4

n0Cpump

n0Cpump

Divertor  
plasma

Divertor plate  

Fig. 15  Model of divertor chamber and  pumping port. 

 

 A fraction of the recycling ion flux  determined by the ionisation mean free path λion 

escapes from the plasma column (width Δ) and forms the source of the neutrals.  There are 

two sinks of neutrals. One part is pumped (n0 Cpump; this also equals the net incoming ion 

flux from upstream). Another part, An0v0/4, enters the plasma column with thermal speed v0 

and a fraction η of these neutrals is again reflected back to the vacuum region due to charge 

exchange collisions. In equation B// and Bp are parallel and poloidal magnetic field, 
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respectively, A0 is a typical area for the plasma column. For simplicity, we take here A0=A1 

(A1 is the cross-sectional area), but this could be generalized.  

 The seven equations listed above contain seven unknown variables Γ, Iq , IT , Tup, n0, 

Lm and fm. They can be solved as function of CZ   for given upstream power and pressure. 

 Calculations were performed for typical ITER conditions: input heat flux q//=650 

MW/m2, upstream pressure (ion + electron) p=3200 Pa, connection length L= 40 m, angle of 

incidence between the field line and the target plate α=7.2°, and various Cz for Be ion 

concentrations. The main results are the following: 

 The detachment is caused by increased radiation because the power available for 

ionization is reduced. Recycling, neutral density, and momentum loss adjust self-consistently 

during the transition. The transition is gradual with increasing impurity concentration, i.e. no 

bifurcation exists. It should be noted that the transition from attached to detached corresponds 

to a small change in impurity concentration.  

 The increase of neutral density and decrease in particle flux which have been shown to 

accompany the transition are consistent with experimental observations. This increase of 

neutral density leads to higher momentum loss, fm. Beyond the transition, the ionization 

mean free path becomes so long that the neutral loss from the plasma becomes independent 

of the mean free path and then the neutral density varies simply with the particle flux, i.e. 

decreases somewhat with increasing CZ . This decrease is not important: the plasma remains 

detached. In the final detached state at high CZ, the heat flux and particle flux are low and the 

cushion length and momentum loss are high.  

 

IV. 4. The benchmarking of TOKES result with simple transport models in the SOL.  

Here we are comparing the solutions of reduced equations (Belocerkovsky in y-

direction)  
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with exact analytic solution of this system (or derived by MathCAD) with TOKES solution 

for several input parameters (particle and heat flux). 

Γ=2*1022 s-1 and QQ=20 MW: 
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The same comparison with other input parameters and distributed power along B:  
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VII. Model for H-Mode Pedestal formation in TOKES   

 During the L to H-mode transition, when input power,Q .exceeds some critical value, 

LHQ  [5]: 

198.074.073.0084.0 −⋅= MSBnQ TLH  (VII.1) 

 a strong pressure gradient forms at the edge because of  the turbulent transport suppression 

outwards beyond some radial position. This pressure gradient separates the anomalous core 

and the neoclassical pedestal region, which spreads from the top of the pedestal up to 

separatrix and is is marginally stable. There are two suppression factors: 1) proportional 

to ( )( )2/1/1 γωExBk ⋅+ , where γ  is an increment of the ion temperature gradient (ITG) 

instability and ExBω  is ExB  shearing rate, and 2) due to increase of edge (e.g. bootstrap) 

current and, consequently, the magnetic shear at the edge. Since s/1~γ , increase of shear 

suppresses the turbulence. We assume here, that the turbulent transport is mainly suppressed 

by Er × B  velocity shear at the plasma edge.  This means, that the radial transport 

coefficients for thermal conductivity and particle diffusion drop down to subdominant 

(neoclassical) value: 
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nD ieie ⋅= ., χ  (VII.3)  

 Here an
ie,χ  is the anomalous conductivity, which dominates in the core region, 

where 0~ExBωγ > .  Within pedestal region, where ExBωγ <  , anomalous transport is 

suppressed by the magnetic shear s and ExB  shear. In this region the dominate transport is 

neoclassical (second term in (4)). Here k is some fitting factor~1.  The anomalous 

conductivity is   

pedstorGB
an

ie sC Δ≈= ερχχ /2
,   (VII.4) 

and  

pedstorGBs skCk Δ≈= ⊥⊥
ερχγ /222            03.022 ≈⊥ tork ρ   (VII.5) 

where γ  is the growth rate of  a gyro-Bohm type instability. Expression for shearing rate 

ExBω  reads as:                     
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Here we assume, that penEr ∇≈  and pednTp Δ≈∇ / .The width of the pedestal region, pedΔ  

, can be defined as a radial position inside the separatrix , where turbulence is suppressed by 

the combined effect of the magnetic and E × B  shear (see Figs. 17).  The pedestal width 

depends on the toroidal Larmor radius ρtor  and the magnetic shear )(rs , and can be 

expressed as: 

 2storped ⋅=Δ ρ        ,
1131023.3 itor TAZB

T
⋅⋅⋅= −−−ρ  (VII.7) 

 

Here TB  is the toroidal magnetic field in Tesla, A  is the mass number, Z  is the charge state, 

iT  is the ion temperature in keV, ρ  is in m. The shear depends on radial position, but for 

simplicity sake it can be arbitrarily chosen at 95% flux surface.  

The pedestal width, pedΔ  be define as a radial position where : 
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         Fig. 16 Definition of pedestal width.    Fig. 17  Pedestal width is define at radial  
position where turbulence is suppressed by 
magnetic and electric shear. 
 

The radial transport suppression in TOKES , which describes the L to H transition  is 

implemented (taking into account threshold dependence of the H-mode onset on input power) 

as 
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         (VII.8)  

where εμρ storped ∝Δ  and ppk ped ∇≈ /         

For ITER LHQ  is about 60MW [5]. 
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VIII.  Model of the ELMs in TOKES  

 

The Edge Localized Mode model considered here is a cyclic variation of the pedestal 

parameters, which caused by ballooning instability. The modeling based on a Peeling-

Ballooning theory of Type I ELM [34-38]. The ELMs usually appear in H-mode plasma, 

when due to extensive plasma heating the edge pedestal pressure gradient and, consequently, 

plasma current grow, approaching some critical unstable values. The instability reveals itself 

as a repetitive burst of energy and particles at the pedestal area.  The numerical modelling of 

the ELM includes: 1) the ELM triggering conditions, 3) the  transport model during and 

between the ELM burst, 2) mechanism of ELM cycles and typical time scaling, 4) model of 

energy and particles loss during an ELM. Finally, some numerical results of the ELM 

simulation, based on simplified model are presented here for the purpose of benchmarking. 

 

VIII. 1. The ELM triggering conditions. When in H-mode of operation power input 

increases the pedestal pressure gradient raises and can approach the absolute pressure limit 

(Ballooning limit):  

                                 dp
dx
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             (VIII. 1.1) 

  

where R is the major radius, a is the minor radius, q is the safety factor, B is the magnetic 

field, and p is the pressure, )(xS  is the shear and cf is some geometrical factor [39]. Once 

this limit is reached, the transport at the edge turns back to the L-mode (anomalous) value. 

This can be taken into account by assuming, that the denominator in thermal conductivity 

coefficient turns to 1.    
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As a result, the pressure gradient is flattening. At this phase of ELM, energy and particles are 

expelled to the SOL. These losses occur radially from the stability violation point outwards, 

assuming quick (with alfven time scale) re-connection of the affected area with the divertor 

plate. This can be modeled by adding the parallel convective losses of heat and particles in 

the SOL region: ELM
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where qRLc π≈  is a connection length and ieP , , ELM
nΓ  are power and particle sinks due to an 

ELM, respectively. 

 The cross-field transport during an ELM burst can be presented as: 
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This normalization is based on the experimental fact that there is no large difference in the 

power deposition profile on divertor plates during and between the ELMs. These additional 

losses and enhanced cross-field transport in the SOL are switching on when at some radial 

position the stability of ballooning mode is violated and exist until this violation disappears in 

the whole confinement region. 

 

VIII. 2. Modeling of ELM limit cycle, typical time scales. The described above model 

gives the following estimate for the ELM affected width of pedestal, ELMδ , the ELM time 

scale ELMτ  and the ELM recovery duration, ELMf/1 . Where ELMf  is the ELM frequency.The 

fraction of energy stored in the outer part of the pedestal is assumed proportional to aped /Δ , 

where pedΔ  is the pedestal width and a is the plasma minor radius. Only pedELM Δ/δ  of this 

fractional energy would be lost during the ELM event, so that ΔW / W( )0 ≈ δELM / a . For 

coupled peeling-ballooning modes, the mode width can be expressed as  

 

qsNaELM n/≈δ ,  (VIII. 2.1) 

 

where N related to the toroidal mode number ~ 2-3, q is the safety factor and s is the magnetic 

shear. Finally, the ratio of the energy loss per ELM burst, ΔW , to the energy stored in the 

pedestal area, W , can be estimated as:   

 

ΔW / W( )0 ≈ N / nqs   (VIII. 2.2) 

 

 For estimation of the ELM burst time two time scales are expected to be relevant. The 

first is the Alfven timeτ A = πqR / cA , were cA = B / μ0nmi  is the Alfven velocity, and the 

second is the resistive diffusion time across a narrow layer of width,δELM , 



  43 

i.e.τ η = μ0δELM
2 / η , where η  is the plasma resistivity.  In principle, ELMτ could involve any 

combination of these time-scales, and can be written as  

 
p

AELM Sττ ≈  (VIII. 2.3) 

 

whereS = τ η / τ A , is the Lundquist number, and p is a fractional power (1~1/3). A typical 

value of the ELM duration τ ELM  is usually a few tens/hundreds microseconds.  

The ELM duration time is simply inverse proportional to the ELM frequency and for Type I 

ELM is typically in the range of several tens milliseconds. 

 Current evolution during the ELM recovery follows the resistive time and described 

by Ohm law with classical or anomalous resistivity. This time scale must agree with the 

inverse ELM frequency value. It is reasonable to suggest that the turbulence affects the 

current evolution, increasing the resistivity at the plasma edge. 

   The stability diagram for peeling-ballooning mode and an ELM cycle is explained 

below in Fig.18 

 

   

Fig. 18. Schematics for the peeling-ballooning model and cycling diagram. 

 

 Dimensionless current is plotted against the dimensional pressure. Beyond some alpha 

value (see vertical line) the ballooning mode is unstable. The inclined line separates the 

peeling unstable areas.  
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 We begin at the point (1) (see Fig. 18) with low pressure gradient and low current. As 

we heat the plasma the pressure gradient rises, and we approach the ballooning stability 

boundary. The current density will also rise, but this will occur on the current diffusion time, 

which is generally slower than the pressure diffusion time. On reaching the ballooning 

stability boundary (2), the edge transport would increase effectively tying the pressure 

gradient to the marginally stable value, but no large scale event is anticipated at this point. 

Meanwhile, the current will rise on the slower timescale due to the effect of the bootstrap 

current. Since the peeling mode becomes destabilized, the trajectory will tend to drift up 

towards the point (3) where the plasma would also become unstable to the peeling mode. 

 Note, that at this point, the increase in the thermal transport, and subsequent reduction 

in α , caused by the instability, further destabilizes the mode, leading to a crash event(4). 

Furthermore, at the point (3) the peeling mode couples to the ballooning mode, so that in this 

vicinity the mode is rather radially extended (typically ~10% of the minor radius) so that a 

significant fraction of the pedestal region would be affected by the instability, and as a result 

a lot of energy would be lost; this can be interpreted as the Type I ELM. 

VIII. 3. Transport in the pedestal region during the ELM. On reaching the ballooning 

boundaries (VIII. 1.1) the edge transport increases, expelling the energy and particles into the 

SOL region. Pressure gradient at the pedestal position drops back to the marginally stable 

value.  Since the power from the bulk plasma cannot be transferred outwards at that pressure 

gradient, it starts to increase again up to the critical value crα , and the process repeats. Two 

phases must be distinguished: the burst phase of a strong transport increase, reducing 

eventually the pedestal, and the phase of gradient recovery at the edge. The recovery time 

scales inverse proportional to the ELM frequency ELMf , ELMELM f/1~τ , whereas the burst 

time depends on instability.  

 

VIII. 4. Transport in the scrape-off-layer (SOL) during the ELM.   At first phase of 

ELM, energy and particles are expelled to the SOL. The same happens with the edge current, 

but in different (resistive) time scale. These losses occur radially from the stability violation 

point outwards, assuming quick (with alfven time scale) re-connection of the affected area 

with the divertor plate. This can be modeled by adding the  parallel convective losses of heat 

and particles in the SOL region: ELM
ie

SOL
ie PP ,, + ,       ELM

n
SOL
n Γ+Γ  

 cS
ped
ie

ped
ie

ELM
ie LCnTnTP /5.2/5.2 ,//,, ⋅=⋅= τ ,    cs

ELM
n LnC /=Γ           (VIII. 4.1) 
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where qRLc π≈  is a connection length and ieP , , ELM
nΓ  are power and particle sinks due to an 

ELM, respectively. The cross-field transport during an ELM burst can be presented as: 

 

SOL
ieSOL

ie

ELM
ieELM

ie P
P

,
,

,
, χχ = ,         SOL

ieSOL
n

ELM
nELM

ie DD ,, Γ
Γ

= .    (VIII. 4.2) 

This normalization is based on the experimental fact that there is no large difference in the 

power deposition profile on divertor plates during and between the ELMs. Between the 

ELMs the L-mode transport conditions are working. This means, for example, the anomalous 

transport in the core region with the Bohm type cross-field diffusion and the parallel classical 

Spitzer-Harm transport in the SOL.  These additional losses and enhanced cross-field 

transport in the SOL are switching on when at some radial position the stability of ballooning 

mode (VIII. 1.1)  is violated and exist until this violation disappears in the whole confinement 

region. 

VIII. 5. Model of energy and particle loss during the ELMs. When an ELM occurs, the 

pedestal plasma loses energy towards the divertor plate for a time τ ELM . The duration is much 

shorter than the typical energy equilibration time and, as a consequence, the energy is 

transported to the divertor mainly at the ion sound speed. The electron flux is impeded by the 

formation of a strong electric field, which is set up in the plasma over a few ms, when a large 

population of hot electrons first reaches the target. Consequently, the ELM energy drop is 

determined by the ratio of the ion parallel energy loss time and the ELM time. Then the 

fractional energy loss will be, for example, described by: 

ΔW / W = ΔW / W( )0 1+ τ / / / τELM( )−1
 (VIII. 5.1) 

 

where τ //  is the energy loss time (due to conduction and convection), i.e.:  

              

  

τ // ≈ πqRN 1+ cνν
∗( )/ cs

   

(VIII. 5.2) 

 

The subscript 0 in (VIII. 5.1) indicates the fractional energy loss, that would occur if the 

parallel transport timescale were much faster than the ELM timescale. Here ν∗  is the electron 

collisionality, R  is the major radius, cs  is the sound speed for the pedestal temperature, and 

cν  is the fitting parameter. Due to the magnetic reconnection the connection length is 

multiplied by some factor N, which further plays a role of the fitting parameter. 



  46 

        Substituting (VIII.5.2, VIII. 2.3) for, τ // , τ ELM   into (VIII. 5.1) and using 

ΔW / W( )0 ≈ δELM / a , one can write down a  scaling for the energy loss during an ELM:  

 

ΔW / W = cw (N / nsq) 1 + N(1 + cνν
∗ )/ Sp β( )−1

   (VIII. 5.3) 

 

Here 2/8 Bpπβ =  is the ratio of thermal to magnetic energy in the pedestal, cw and νc are the 

fitting constants. Fitting parameters p = 1 / 3,  cν =1,  cw = 0.15,  n = 3  were obtained by 

using a least square procedure in comparison with experimental data. Parameter N is taken as 

5, to have the best fit. 

 According to this model, the ELM size and deposition time are dependent on 

collisionality due to the limitation of the transport time along the open magnetic field lines 

(“plugging effect”) [38,39,40].  

 

VIII. 6. Some numerical results for benchmarking. A simplified stability criterion (VIII. 

1.1) for the ballooning mode was adapted in the ASTRA transport code [41]. When total edge 

current exceeds the peeling limit, then the radial transport coefficient was increased by a 

large amount within a region of radial widthδELM  at the plasma edge. Fig.19 shows the 

calculated evolution of plasma temperature and density during and after ELM in JET. 
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JET, after ELM

T
e
, keV
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0

1

2
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5

6

1 1.05 1.1 1.15 1.2 1.25

JET, before ELM
JET, after ELM

n, 1019 m-3

ρ, m  b) 

Fig.19. Electron temperature (a) and density (b) profiles before and after ELM 

 (JET case, [45]). 

Convective losses along the magnetic field lines dominate during the ELM.  At t ≥ τ ELM  edge 

current decreases and the plasma becomes stable to both ballooning and peeling modes. The 

radial transport drops to neoclassical level (see Fig. 19) and convective losses are no longer 

active. 
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0.5

1.5

0.06 0.07 0.08 0.09 0.1

χ
e

Time, sec

 
Fig. 20 Time evolution of the thermal conductivity at the edge during the ELM cycle; m2/sec; 

min value correspond to .neoclasχ . 
  

As a result, the pedestal slowly recovers and the plasma again crosses the stability boundary. 

Clearly in this case a cycle occurs, and we see in Fig. 21-22 the evolution of various 

equilibrium quantities over a couple of ELM periods.  

0

0.5

1

1.5

0.06 0.07 0.08 0.09 0.1

J total J crit. Te, eV

t, sec

Asdex Up, ELMy H-Mode

 

0

0.01

0.02

0.06 0.07 0.08 0.09 0.1

pedestal energy    ΔW
ped

, MW/m2 

Pressure    eV/m-3

t, sec

Fig. 21 Time evolution of the critical (solid) and 
total currents (short dashed line), MA/m2; 
pedestal electron temperature Te, keV (long 
dashed line)[41,42].  

. Fig. 22 Time evolution of the stored pedestal 
energy ΔWped  (dashed) and total pressure 
(solid) at the edge [42,43]. 

 The time scale for ASDEX Up parameters for the ELM is τ ELM ≈ 400μ sec  and the 

time between ELMs ≈ 10msec . The energy loss per ELM is estimated as 12 ÷18kJ , 

comparable with the experiment data. The transport coefficient χ ⊥  is of the order 

1 ÷1.5 m2 / sec . The qualitative agreement with ASTRA data provide confidence in the 

model. The evolution of the plasma density and the electron and ion temperatures in the case 

of JET plasma is similar (see Fig.23). The ELM repetition rate in the model is found to be 

about 15 ms, a factor of 3 smaller than the experimental one (for JET it is about 50 ms). It is 

seen that during an ELM approximately 1% of the total energy is lost, consistent with the 

ELM repetition rate, whereas in the experiment the energy loss is about 3%. 
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 Fig.23. Time dependence of electron temperature and plasma density at the 
pedestal top and the bulk energy (JET case [45]).Calculation from [46] 

The results of the computations presented here demonstrate that the model fits the 

experimental data at least qualitatively. In section VIII the calculation of ELMs in TOKES 

are presented. 
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IX. Conclusive remarks and TOKES application for ITER 

The main objective of the project was to develop physics-based models of 

neoclassical and turbulent transport coefficients in the core, pedestal and scrape-off layer/ 

divertor regions for numerical implementation into TOKES transport code. This ultimate goal 

has been completed and update TOKES transport code version, suitable for simulation of 

transient processes (ELMs, Massive Gas Injection etc.) and impurity dynamics in the ITER 

boundary plasma was prepared. Two physics tasks, related to ITER, are currently under 

discussion and will be simulated in TOKES.  

First task is  

a) to evaluate ITER core plasma pollution with tungsten impurities sputtered from the 

divertor plates by small (mitigated ) ELMs during the discharge time. This gives the answer 

to which extent ELMs have to be suppressed to be tolerable for ITER operation in the sense 

of PSC life-time and dilution. The model will include a sputtering of divertor plates by 

incident ELMy hot particles as a source of impurity ions, dynamics of impurity ions in the 

SOL region and “entraining” effect of ELMs in the pedestal area.  

The second task is  

b) to simulate the radiation energy distribution on the first wall during TQ and CQ stage in 

ITER caused by Massive Gas Injection (MGI). Impurities of Ne and Ar will be introduced in 

H-mode ITER discharge by MGI and their poloidal and radial distribution will be calculated 

by  2D TOKES Code.  Stoping radius and required amount of injected gas will be rescaled 

for ITER by taking into account results and arguments from JET experiments. Such 

calculations are 2D and address the poloidal asymmetry in the first instance. TOKES Code  

will include the 2D impurity transport in the SOL and pedestal region and  will account for 

the opacity effects in realistic (magnetic) geometry.  

The following tasks will be implemented in TOKES in near future:   

1. plasma current equation 

2. current equation for ELM triggering (peeling-ballooning modes interplay) 

3. 2D impurity dynamics in the SOL 

4. entraining mechanism of impurity screening 

5. 2D grid in the pedestal zone 

6. diverter plate sputtering by incident ions from the ELM transient loading 

7. model for hydrogen dynamics in the boundary plasma; modelling of MGI. 

8. poloidal convection, sepyV ,  and boundary conditions at the separatrix 
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