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Abstract

The main purpose of this report is the development of analytical and numerical
transport models of tokamak plasmas, suitable for implementation into the integrated
transport code TOKES [1-4]. Therefore this work is presented as an executive
guideline for numerical implementation. The tokamak edge plasma in reactor
configurations is expected to be rather thin outmost area with strong radial plasma
gradients inside the separatrix and the area outside the separatrix, a scrape-off layer
(SOL), with open magnetic field surfaces, terminated at the divertor plates. The region
beyond the separatrix plays an important role because it serves as a shield, protecting
the wall from the hot plasma and bulk plasma from the penetration of impurities and
because it is mostly affected by transients. The transport model, proposed here,
provides plasma density, temperature and velocity distribution along and across the
magnetic field lines in bulk and the edge plasma region. It describes the dependence
of temperature and density at the separatrix on the plasma conditions at the plate and
the efficiency of the divertor operation in detached or attached conditions, depending
on power and particle sources. The calculation gives eventually the power and particle
loads on the divertor plates and side walls.

During numerical implementation some simple models, allowing an analytical
solution, were developed and used for comparison and checking. Some parts of the
transport models were also benchmarked with experimental data from various
tokamaks.

In the frame of this work the following tasks have been completed:

e The transport model with neoclassical and anomalous coefficients for bulk plasma
and 2D transport model for the SOL have been prepared and implemented into the
TOKES code. The coefficients are suitable for description of stationary plasma
processes in the bulk and edge tokamak plasmas.

e The model of pedestal formation at the plasma edge in H-mode operation was
implemented in TOKES. The model based on power scaling for L to H transition
and includes the mitigation of turbulence at the edge once the flowing power
exceeds the H-mode onset threshold.

e The model of the Edge Localized Mode oscillation based on ballooning mode
instability is implemented into code.

e The boundary conditions for fluid equations at the divertor plates and at the main
chamber wall are formulated and implemented into the integrated code.

e Analyses of available experiments and benchmarking with simple analytical
solutions in respect to SOL transport phenomena have been provided. Application
for ITER is described.






Modellierung des Randplasmabereichs
in TOKES

Zusammenfassung

Der Hauptzweck dieses Berichts ist die Entwicklung von analytischen und
numerischen Transportmodellen fiir Tokamak Plasmen, passend zur Implementierung
in den integrierten Transportcode TOKES [1-4]. Deshalb wird diese Arbeit als eine
Exekutivrichtlinie fiir die numerische Implementierung priasentiert. Wie man erwartet,
ist das Tokamak Randschichtplasma in Reaktorkonfigurationen ein ziemlich diinnes,
duBeres Gebiet mit starken radialen Plasmagradienten innerhalb der Separatrix und
des Gebietes auBlerhalb der Separatrix (sogenannte ,,scrape-off layer Schicht, SOL)
mit offenen Magnetfeldoberflichen, begrenzt durch die Divertorplatten. Der
Plasmabereich auBlerhalb des Separatrix spielt eine wichtige Rolle, weil er groftenteils
von ELM-Instabilititen und Plasmazusammenbruch-Ereignissen betroffen wird und
weil er als ein Schutzschild dient, der die Wand vor dem heilen Plasma und das
Zentralplasmagebiet vor Verunreinigungen schiitzt. Das hier vorgeschlagene
Transportmodell stellt Plasmadichte, Temperatur- und Geschwindigkeitsprofile
entlang und quer zu den Magnetfeld-Linien im Zentral- und im Randplasma zur
Verfiigung. Es beschreibt die Abhdngigkeit der Temperatur und Dichte an der
Separatrix von den Plasmabedingungen an den Divertorplatten und der
Leistungsfahigkeit des Divertors in den ,detached” oder ,attached“ Regimen,
abhingig von der Leistung und den Teilchen-Quellen. Die Berechnung ergibt
schlieBlich die Leistungs- und Teilchenbelastung auf den Divertorplatten und auf der
Wand. Zur numerischen Implementierung im Code wurden einige einfache Modelle,
die analytische Losungen erlauben, entwickelt und zum Vergleich und fiir die
Uberpriifung verwendet. Einige Teile der Transportmodelle wurden auch mit
experimentellen Daten von verschiedenen Tokamaks validiert.

Im Rahmen dieser Arbeit wurden die folgenden Aufgaben fertiggestellt:

e Das Transportmodell mit neoklassischen und anomalen Transportkoeffizienten
fiir das Zentralplasma und das 2D Plasmatransportmodell fiir die SOL sind
entwickelt und in den TOKES-Code eingebaut worden. Die Koeffizienten sind
zur Beschreibung stationdrer Tokamak-Plasmaprozesse im Zentrum und am
Rand geeignet.

e Das Modell der Podest-Bildung am Plasmarand in der H-Mode wurde in
TOKES implementiert. Das Modell basiert auf der Leistungsskalierung fiir
den L-H-Mode-Ubergang und schlieBt die Abschwichung der Turbulenz am
Rand ein, die stattfindet, sobald der Leistungsfluss die H-Moden-Schwelle
iiberschritten hat.

e Das Modell der Edge Localized Mode Schwingung basiert auf der Ballooning-
Instabilitdt und wurde in den Code eingebaut.

e Die Randbedingungen fiir Transportgleichungen an den Divertorplatten und an
der GefaBwand wurden formuliert und in den integrierten Code implementiert.

e Analysen von existierenden experimentellen Ergebnissen und die Vergleiche
mit analytischen Losungen hinsichtlich der SOL-Transportergebnisse, werden
zur Verfiigung gestellt. Die Anwendungen fiir ITER sind beschrieben.

I1I
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1. Introduction

Analysis of the performance of a tokamak has traditionally focused separately on three
distinct areas of the plasma; the regions with closed magnetic flux surfaces, referred to as the
core or bulk plasma and the pedestal area, bordering with separatrix. The region outside the
last closed flux surface is referred as the scrape-off layer (SOL). The core region has
historically received more attention since the performance of the tokamak plasma is measured
by the maximum densities and temperatures which can be achieved in that region. Analysis

of the core performance takes many forms.

The simplest analysis is determination of empirical scaling laws for the energy
confinement time. These laws permit identification of the key operational parameters, and
allow meaningful comparison of the performance of a variety of devices. This analysis
approach has been used as a design tool for large generations of tokamaks, and is currently

being used as guidance for the design of ITER [5].

A second analysis scheme is transport analysis where detailed measurements of the radial
profile of density and temperature are combined with determination of the heating and
particle source profiles to determine the perpendicular transport diffusivities for particles and
thermal energy. This analysis permits determination of the radial profile of the transport
diffusivities, and hence is viewed as the first step in reaching understanding of the physics of
the transport processes. The plasma parameters are typically assumed to be constant along
magnetic flux surfaces, permitting 1-D analysis. Typically, these codes used the poloidal flux
surfaces to define the “radial” coordinate. Since these surfaces do not have to be simple
circles, but can be shaped, the resulting geometry is referred to as 1.5-D. Uncertainty in the
details of the source profiles, and questions about the applicability of the 1.5-D assumption

limits this analysis to regions well inside the last closed flux surface.

The radial transport pattern in bulk plasma consists of subdominant neoclassical transport,
which is in our case is simulated not by the conventional routine NCLASS [6], but in the
form of analytical formulas [7-9]. This allows one readily introduce in future the corrections
in transport coefficients due to strong plasma gradients in pedestal region, where the

applicability of standard neoclassical expressions fails [10].

A significant progress has been made in determination of the anomalous transport
diffusivities from fundamental physics models, which allow one predictive calculations of the
core and pedestal region. Due to the intrinsic complexity of plasma turbulence the transport

formulas derived from parameterizations of basic non-linear computer simulations contain
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modelling assumptions. These formulas were validated against the transport coefficients,
determined experimentally from existing tokamaks. Two transport models are recognized as a
dominant transport models in bulk plasmas. It is the gyro-Bohm transport models based on
ion temperature gradient (ITG) transport in ions [8,9] and in electrons the phenomenological
model, based on electron temperature gradient [11,12].

Analyse of the transport mechanisms at the pedestal region show the large contribution of
magneto electrostatic turbulence. The H-mode is believed to be obtained by shear
stabilization of turbulence in the pedestal region of a tokamak [13, 14]. For the modeling of
pedestal formation we have chosen an approach, where transport mitigation down to
neoclassical level occurs, when power flux across the pedestal region exceeds the L to H

transition power threshold.

Analysis of the plasma behavior on the open magnetic field lines in the SOL region
shows that plasma is toroidally symmetric, but is 2-D in character. Typically, the models use
the Braginskii fluid model [15] for plasma transport, with the perpendicular transport, treated
as anomalous. Similarly, impurity radiation plays a key role in power dissipation in the SOL,
hence the 2-D models have developed techniques of simulating multi-species plasmas,
including both intrinsic impurities (typically carbon) and impurity species introduced to
enhance radiation. The presence of numerous multiply charged ions in the edge (scrape-off
layer) of diverted tokamak plasma makes it difficult and time-consuming to accurately model
the transpoprt processes in this region. A new model was developed, where the separate
charge states of a given isotope can be accurately replaced by a set of appropriately averaged
density, temperature, mass and heat flow equations representing a fictitious single reduced
charge state [16,17]. These models are generally applied to divertor tokamaks, where the last
closed flux surface corresponds to the magnetic separatrix. But these models must be also
recognized in pedestal regions, where the 2-D nature of the plasma extends into the closed
flux surfaces. This is particularly important for calculation of poloidal asymmetry of radiation
during the mitigation of the disruption by massive gas injection. It has become increasingly

apparent that the two regions of the plasma, the core and SOL, are not truly independent.

The development of the plasma transport in TOKES comprise of three models. First is the
subdominant neoclassical transport for electrons and ions for tokamak plasma, based on
Hinton and Heseltine model [7]. The turbulent transport, dominant in the bulk H-mode
plasma is simulated by ITG and ETG type turbulent models. The SOL and divertor region is
dominated by Bohm type transport arose and classical fluid transport along the magnetic field

lines.



The boundary plasma region in tokamak device is conventionally defined as an external
plasma volume, which consist of a pedestal region inside the separatrix and the region
beyond the last closed flux surface (LCFS), where plasma is not magnetically confined and
contacting with the in-vessel structures. The regions beyond the separatrix comprise the
scrape-off layer (SOL) and the divertor plasma region. The advantage of the TOKES code is
the inherent capability to simulate simultaneously bulk and edge plasma in spite of difference

in geometry and time scales [2-4].

The application of TOKES to ITER is currently expected in several issues. Simulation of
impurity transport in ELMy SOL due to enhancement of sputtering during small (mitigated)
ELMs will define the lifetime of divertor plates, radiation power load on Be wall and ultimate
balk plasma contamination level. This also includes effect of core plasma screening due to
entrainment of impurities by ELMs and determination of the tolerable ELM size and
frequency. Another task which can be tackled is related to simulation of massive gas injection

for ITER.

The physics issues considered below are presented in such extend, which are required for
the purpose of modeling. For additional information the references are applied. All quantities
below in “practical” formulas are in MKS units except temperatures expressed in e} and ion

mass (m, ) expressed in units of proton mass, 4 =m /m,; B in Tesla, Z is the charge state;

Boltzmann’s constant k, = 6.25-10**eV /(s - MW).

I1. Neoclassical Transport Model for bulk and pedestal region in TOKES

The neoclassical transport coefficients for large aspect-ratio tokamaks in several
regimes of collisionality were used in the form, suitable for numerical implementation. To be

most useful, the results were used in the form of continuous function of collisionality [7] for

ions
V. 32
Vo, =V, /vy =—t——, where |, _&Vn .y = 1m, (IL1)
’ &V, 1gR ! q-R
and for electrons
3/2
=V IV, = 3/2"7 , where v, = & v, =JT./m, . (11.2)
” ' &V, 1qR q-R

Electron / ion gyroradius:



0, =V, /o, =23810°T*B™,  p, =V, /@, =1.02-10°T"*(BZ)"\[u (1L 3)

Here q(r)is the safety factor, € is /R and collisional frequencies v, and v, are given as

3/2
2M. (T
v, =%\/;niZfe4 InAM T and v, =v, m_(Fj (IL.4)
II. 1. Electron & ion particle flux.
I =l (I1.1.5)
T
[L=-pXv, -¢c"n, K, (1 +F’j%+ R R (I1.1.6)
T | VT
2 2 372 i i
Ly, ==p2v,-q°€n, - K, -[(1—Ai)?j-—T (IL.1.7)
vTr
Iy, = ~PVy ngﬂ/zne ) (KIZ _gKnj T . (IL1.8)
— -1/2 E//
I,=-K,n, ¢ q.c.F (IL.1.9)
And coefficients are given as follows:
1 1.414- v,
K., =1.04- + € II.1.10
" {1+2.0l~v,}f +1.53-v,, 1+0.89-v*ﬂg3/2} ( )
1 0.47-& v,
K.=12. N o I.1.11
. {1 +0.76- V)2 +0.67-v., 1+0.56-v. " } ( )
1
K,=23- I1.1.12
a {(1 +1.02-v/2 +1.07-v,,)-(1+1.07 ., -g”)} ( )
_ G129 1.,2 . 03 12
_(L17-035-v12)-200v2 (1407 1)) (AL1L13)

f 1+07-v2)-(1+v2 &) (1+v2-&)

Here and below E, is the electric field along the magnetic field lines, which can be estimated

as: E, o< U/27R , where U is a toroidal loop voltage.
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IL. 2. Electron energy flux (heat flux and convective flux).
5 3 VT,
qe+§Te.Fe: pe ee q 8 Te'(KZZ__KIZJT-l—qun+quTi+qu

Vn

qun =_pjvee ,q2 .g n T KIZ(I J
T, )n

T VT,
2 2 3/2
==pV,-q € ""n, T, -K,1-4)—+——"
quT, pe ee q 12( )Te T;

E
qu:—K23.ne.Te.g_”2.q.c._//

B
Where:

0.43-¢° V*
K22=2.55‘ 1/1
1+0.45-v., +043-v,, 1+O43 Vi E

1
K= 4'19'{(1+0.57~v1fj +0.61-V*,e)-(1+0.61-v*,653/2)}

I1. 3. Ion energy flux.

5 _ VT.
= _pz'2q2 Vi '(Ki _EKII ) ],C; ((1 -4 ))}9 3/2’7'Ti 'Tt'i' Qivn Y951 T4

1 1.77-€%-v..
K, =0.66- !

1+1.o3-v,1;.2+0.31-v*, 14+0.74-v, &

thn = pevm q 8 - T 'Kll(Ai _gJ(l+£JE

(IL.2.1)

(11.2.2)

(11.2.3)

(I1.2.4)

(I1.2.5)

(11.2.6)

(IL3. 1)

(11.3.2)

(IL3.3)

(IL3. 4)



5 -1/2 E//
= A-—=1|K,-n T -€ cc—=
nt ( i 2) 13 e i q B

E, =U/27nR
I1. 4. Parallel current density.

Jy=-nT,-e%¢* - pl-v K34, +K,VInT, |- (K33\/E_1 WU 1 27R

where
2 -1
oy =l e -(0.29 ;046 )
Me 1.08+Z7
and

Ajp = 1.,.& @4_ (1_AZ.)EE_EE
T, ) n I, 1; 21,

C(1L17-035-v2)-2.0v2 2 (14 0.7 V1)

i (1+07-v2)-(1+v2-&)-(1+v2-&)

K13 =23. ! + 1

141021/ 241,07 ve o 14107 v, e/

1
K3 = 4-19'{(”0,57-%1;2 +0.61-V*’e)-(l+0.6l-v*,€€3/2)}

K33 =183 1/; + !
140.68 i/ 2 +032:vs,  140.66-v, &>/

(IL3.5)

(11.3.6)

(IL.4.1)

(11.4.2)

(11.4.3)

(IL4.4)

(IL4.5)

(11.4.6)

(IL.4.7)



I1. 5. Bootstrap current density.

x=~2€, D(x)=24+54-x+2.6-x>

F=¢Vnp,+c,Vinp, +c,VInT, +¢,VInT,

C1 =

44+2.6-x

Cr =

1+1.02-\fve, +1.07-v2, J1 41073212, )

7.0+6.5-x

> C = ]

3=

s

d+0.35- ;12

140.7-vs,'?

P {10.57 g +0.61-ve 140612772 v,

+2.1.63 'V*’IZJ

)—2.5'01

1

2
(1 - -v*,-ZXI +& -v*ez)

\E

q'pe 'F

(IL5.1)

(IL5.2)

(IL.5.3)

(IL.5.4)

(IL5.5)

(IL5.6)



III. Turbulent transport model for bulk and pedestal region in TOKES

Anomalous transport models, employed in TOKES for bulk and pedestal regions based
on giro-Bohm model of electrostatic micro-turbulence observed in large-scale tokamak
plasmas. The turbulence reviles the onset threshold at some critical value of temperature
gradient. For electrons we use a phenomenological model, described by Rebut-Lalia-
Watkins, updated in comparison with experimental data [11]. The turbulence in ions based on
ion temperature gradient (ITG) transport, described by the gyro-Bohm IFS-PPPL model of
Kotschenreuther et al. [8,9], where a parameterization of the critical gradient is obtained from
a large number of linear gyro-kinetic simulations and with a smaller number of non-linear
gyro-fluid simulations.

At the edge the dominant turbulence can be associate with the unstable Alfvén-drift
waves which are appearing in finite 8 (8 =nT/87B* > m,/m,) plasmas, when the Alfvén

wave couples to the drift wave [14]. The Alfvén drift turbulence suppression at the plasma
edge is suggested as a triggering mechanism for the L to H transition. The stability theory of
Alfvén drift-waves shows that with increasing plasma pressure the Alfvén waves get coupled
to electron drift waves and as a consequence the unstable long wavelength perturbations
(most important for transport) are suppressed. The instability can be characterised by two
significant parameters, i.e. the normalised plasma beta, f, , and the normalised collision
frequency, v, . The suppression occurs when the normalised beta is greater than a critical

. 2/3
value, i.e. S, >1+v, /

, which depends on the normalised collision frequency v, . The Alfvén
drift-wave model predicts the experimental trend of a roughly linear dependence of threshold
temperature on magnetic field, with a weak dependence on density at high densities and a
strong dependence on density at lower densities

We are considering to include in the near future the Alfvén-drift turbulence suppression
as a trigger for the L to H transition in TOKES calculations.

As far as the radial transport in the SOL plasma concerns, we are employing there the
Bohm diffusion coefficient,D,, which can be taken either constant or as a function of
electron temperature [15]:

D,=cT,/16eB=D,-T./B,, m* /s D,=625-10" (I1L.1)
where B, is the magnetic field in Tesla, temperature in eV’

The charts below present details of the RLW and ITG models, implemented in the
TOKES.



II1.1. Turbulence in electrons.

Rebut-Lallia-Watkins model (RLW)

thermal ﬂUX q = qneocl + qan q = qneocl
Particles flux =T, +t1, =T,
e _ e RL
q Neo = _}(NeoneVTYe q an = _/’L/e neVT:z
RL re | VT, Vn,| g ? VT, ..

= —+2— | 1-——)1|-0|VT, —-VT_ . |-6|V
e = | Ve VT oIvT, -VT,,]-6[Vq] (IIL1.1)
where

()

RL 45172 i 1/2
Xoo =0.15-(yymec”)"” ———-\1+ 2,
=015 umety (12,

(11L.1.2)

Here u, =1/8x, n=1/0 is the plasma resistivity, J is the plasma current, g is the

safety factor.



III. 2. Turbulence in ions.

lon Temperature Gradient model (ITG)

_ Vi /T, _ Ly (111.2.1)
' Vn/n, L,
thermal flux |9 =¢,c0c T ql.]TG 9 = Deoct
=T
particles flux [T =T, + T F=T
quTG — _;(i]TG .ni VT;
D" =— const.y"Vn,
zl[TG — pl2 . VITG
where
3 1 2-T
Taz.—. = (771' - ncrit)' (1 + 1/77i)' 9(771' - 77crit) (I1.2.2)

2 L m.
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IV.Model of the SOL/Divertor transport

IV.1 Two dimensional fluid equations for SOL and divertor plasma in TOKES.

We are considering a 2D orthogonal coordinate system in the rectangular SOL domain
with the x-axes across and the y-axes along the magnetic field lines (See Fig. 1). In tokamak
configuration plasma near the wall has in general a complex curvilinear configuration. The
magnetization of the plasma and relatively narrow boundary region, however, makes it
possible to “straiten out” the separatrix and, in some approximation, to treat the problem in a
rectangular geometry (Fig.1). If there is substantial uncertainty regarding the transport in
radial direction, the effects of the curvature and of the variation of the poloidal magnetic field

along B can be simply ignored. The SOL width, A _,, is specified as a distance from the first

sol >
wall to the separatrix and is much less than a minor radius, a .The plasma is assumed to be in
steady state quite dense and cold (excluding transients), and is described by the system of

hydrodynamic equations.

X
? Balk
, ! plasma
separatrix ' Divertor

_______ I ] I e

Viosop Y § plate
L -1 0 ! LY

wall

Fig. 1. The computational domain for the SOL and divertor region.

The following hydrodynamic equations for density, n, momentum, P, , = m;nV " and energy

in the SOL plasma are employed [15]:

on o 0 on
DDy L e, =D, vy

11



onV. 14

Yy +i(ny}yy):_32”T_inVny £ O[T 7 (IV. 1.2)

ot dy mdy  0x dy\ m 9y

V2 VZ VZ V2

i(3nT+M+”)J+i[5nT+—mn( 7 )JVX +

ot 2 X 2

(V. 1.3)
V2 2

+i 5nT+M V.o+ ZOT/ aT — DBTa—T

dy 2 Yy oy "o Ox
where

0=-0,,—1nN,(oV) —(a,, +nB,n’ (IV. 1 .4)

Here T=T,=T,, n,, is the viscosity and 2" is the Spitzer-Harm conductivity coefficients
along B (for one eV), D, is the radial diffusion coefficient taken in the SOL as 1m®/sec.
Generalization to functional Bohm coefficient is straightforward. Particle source, nN <0'V>m

and energy sink, O, due to radiation, ionization and recombination of neutrals N, which are

currently modelled by specifying arbitrary the distribution of neutral atoms in divertor.

The ionization <0'V>i0n , the radiative, ,,,, and the three body recombination, £, , the

rec 2

charge exchange collision, 7, =1/ N, <0' V> and the radiation equilibrium for cold neutrals,

X1

Q... » (for of zero temperature and zero velocity) are employed:

?;Z n,[S,N, —an —ann,] (IV. 1 .5)
on.T 3 3 mV:\n
3—+..=n,|-1S,N,-3Ta.n, ——Tosnn, |- | =T+—=|—+ IV.1.6
at e|: 1~0470 r'ti 2 3% ej| Qrad [2 2 JTCX ( )
Q.=lann,+nn,L +Nymn,L, av.1.7)
onv, nV,
Ey = _”e[“r”i + 0(3nine]Vy - (IvV.1.8)

Here n_is the impurity concentration and L_is the cooling rate for impurity radiation.
The following improvements are foreseen in near future:

1) separation of electron and ion temperatures, 7, #7,,

2) appropriate model of the neutral atoms (self-consistent calculation),

3) equations for realistic curvilinear geometry.

4) the terms with parallel current along the magnetic field lines will be added

12



IV. 2. Boundary conditions. The 2D fluid equations are required initial and boundary
conditions at the computation boundaries. As initial conditions, density, temperature and
velocities are taken from the 1D analytical profiles along the B and exponential across the
SOL. Since we are looking for stationary solution, this choice is unimportant. The kinetic
effects in boundary conditions are neglected and all transmission coefficients derived
assuming a half Maxwellian function for the incident particles. We also neglect here the
influence of impurities on the boundary parameters. One can distinguish five boundaries: at
the separatrix, in private zone region, at the divertor plates and at the first wall.

Input particles, I"and heat,Q, =Q, = O fluxs are specified at the separatrix:

* Separatrix between the SOL and core: x =1 (r=A ), —-I[<y<]|

oT
q, =—nDy . =Q0/S,, (IV.2.2)
X x=1;-d<y<d
0
nV.=-D, " =T/S,, (IV.2.2)
a'x x=1;-d<y<d

e Divertor & privat zone boundary: x =1 (r=A_ ), ‘d‘ <y< ‘L‘ )

oT
g, =—nDy En =2nv,T (IV.2.3)
Xl x=15]a|<y< 1]
on 1
nV,=-Dy— =—Vph V.24
ox|,, a4 ( )

e Divertor plates: y=*L 0<x<1

q. =2nT-c.(T) (Iv.2.5)
Vi=c (T), T=T, (IV.2.6)
where 7', is the wall temperature, c, (7)is the sound speed.
* Privateregion: x=1 - L<y<-d; d<y<L
(Iv.2.7)

q, =2(1-a)nT -c, (T)

nV, :%(l—a)n ¢, (T)
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where « is some reflexion coefficient =2, which describes the ratio of reflected back

from privat region particles.

e Wall: x=0, —-L<y<+L

We assume n=0 7 =0 (Iv.2.8)
The boundary conditions at the divertor plate can be generalized by assuming that the

distribution function at the boundary is a one directed shifted Maxwellian for ions due to the
acceleration in the electric pre-sheath, e, and truncated at some velocity double side
Maxwellian for electrons, because of cut-off in the retarding electric field. The boundary

conditions at the plate then can be obtained by equating the fluid particle and energy fluxes to

kinetic ones:

(%nVSTe +q,)=f,TnV,, (Iv.2.9)

(miTI/iz + %Ti)nVl. +q, = fTnV, (Iv.2.10)
2 av,

(mnV" +nT +nT, —n, a—y’) =f,.In+ f,Tn (Iv.2.11)

where

f,=2+¢ (Iv.2.12)

M2+ M) -~7M, (Mf + ;]EW—MI)

Ji= GOV ) (IV.2.13)
_20AM (M i e D
S “Gn,) {\/;e +(M| +2)Erf( Ml)} (IV.2.14)

S = Nz {— \/ge‘g + %Erf (—6)} (IV.2.15)

G(M,)
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Here M =V,/V,, where V, is the fluid velocity along B at the plate and ¥, is the ion thermal

velocity; Erf(x) = e dt . The parameter M, is equal to M if V, = C_, while at

Vr 2,
V. <C,,itis found from the condition I E(M)Vdv/ I F.(M,)dV =C_, where F, is
0 0

boundary distribution function for ions, F(M,), = ¢ exp{— (u—-M,)’ }, usVIivy,

l V ﬂVTi

¥(x)1s the Heaviside function and C, = \/S(T . +T,)/3m, is the sound velocity. The

dimensional potential of the sheath £ =e@/T, is found from quasineutrality condition [19]:

n [ L g o)
" T (IV.2.16)

G(MI)E}’f (_ \/;)

where  G(M,)=e™ +\mM,Erf(-M,)
Note that the plasma parameters may have a discontinuity at the boundary, but the fluxes
remain continuous.

The value of the electric potential in pure plasma at the plate is about e@ o< 3.5-7, in absence

of current flow to the plate and electron emission. But this potential can considerable increase

in non stationary case, when the material surface becomes due to erosion not even.

IV. 3 Kinetic effects in the SOL plasma. One of the factors limiting the applicability of the
hydrodynamic approach is the effect of the suprathermal particles upon the parallel heat
conductivity and viscosity. Even when the conditions of hydrodynamics are strongly satisfied
(e.g. the mean free path of particles are small compare with the SOL length), the expressions
for the parallel heat conduction and viscosity coefficients turn out to be wrong. This is related
to the fact that hydrodynamic fluxes are higher order moments and are determined mainly by
suprathermal particles for which the hydrodynamic approximation turns out to be violated.
When this occurs, the heat and momentum fluxes become non-local in their nature. It is
shown [19] that the non-local representation for fluxes naturally follows from the equations
for higher order moments of the distribution function, provided that the spatial derivatives of
these moments with respect to coordinates are retained. This allows one to use differential
equations for moments and their derivatives instead of complicated integral expressions for
the flux in numerical calculations. In simulation of kinetic effects a simplified approach is

often used, assuming the heat flux to be constrained from above by the quantity

15



g, = Jsu Qi (IV.3.1)
sy + Giin

where ¢q,, = FLF -2nTV,, . Here FLF = 0.1-0.3 is a flux limiting factor which is found either

from experiments or from the results of numerical solution of a kinetic equation [20-22].
Unfortunately, the great uncertainty found in the experimental data does not allow one to
make a quantitative conclusion about the value of FLF. As a non-local approach, FLF
increases the upstream plasma temperature and reduces the density, whilst not changing
significantly the plasma parameters in the vicinity of the plate. However, with the
introduction of the FLF the transport remains local. Such an approach does not represent all
the features related to the nature of the non-local transport. Furthermore, the applicability of
the integral expression is limited to cases with low parallel plasma gradient, where a strong
anisotropy in the particle distribution function can be neglected. In cases of large temperature
gradient the main contribution to transport is supplied by the “tail” particles. These hot
electrons can reach the divertor plate and, essentially produces an increase in the sheath
potential (see Fig. 2) that can result in increased plate erosion. For a higher sheath potential,
however, the energy transfer ability of each electron-ion pair on the plate is increased. The
implication is, that the plasma temperature near the plate may be less than that predicted by
fluid modelling, thus reducing sputtering by hot ions to some extent. In summary of the
above arguments, one can say that the non-local transport redistributes the fluxes over the
thermal layer, reducing the peak power load. Therefore existing hydrodynamic models
probably give pessimistic values of heat loading and local plasma temperature at the divertor
plate. The kinetic effects can noticeably affect the transport of impurities in the divertor, in
particular that of helium. The localisation of impurities is determined by the competition of
many forces, including the ion thermal force. Under ITER divertor plasma conditions one can
expect a reduction in the ion thermal force in comparison with the hydrodynamic limit
[16,17]. In the case of helium ions this reduction is approximately equivalent to a reduction
of the thermal force coefficient by a factor of two to three.
Summarize, we are suggesting the following kinetic correction in fluid equation.
Since electrons are predominantly deviate from hydrodynamic limit the local expression for

parallel heat conductivity in energy equation, g, g, () = —¥,07, /dy can be replaced by:

9. =[G =) 4usu (), aV.3.2)

where
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. _[rdn
=) u(y’)exp[ ‘j A1)

)J (IV.3.3)

Here

AW) =V (T))7,(n,T,) and T, =3.8-T, [19]

40 mid-plane target
5 —

F= electrons

ions

8/ T,

: : -
{5 7.2 T 8 8 250 ! |
- - - : : - 0 5 10 15
T./1008V X, m
Fig. 2. The influence of hot particles on the Fig. 3 Kinetic correction to heat conductivity

sheath potential .p T versus temperature T, ]
p ep/T, P s vs distance along B, here F =1/ FLF ; Heat

and density ng at the separatrix: (1)
no=1-10%m™ (2) n =2-10%cm=2.(3) flux near the plate increases several times due to

n, =3-10%m>,(4) n,=4.10°cm>and T, is, the the contribution of suprathrmal particles [22]
temperature at the plate.

Analyse of kinetic correction of fluid equations shows, that the suprathermal particles
are largely responsible for the parallel transport in boundary plasma. Non-locality produces
two kinds of effect on the heat flow: reduction in the hot region of the SOL and enhancement
in the cool region near the plate. Reduction of the heat conductivity results in stronger
temperature gradients and, this, in combination with pressure balance along B reduces
upstream plasma densities. Suprathermal particles can considerable enhance the sheath
potential and increase neutral ionization and excitation rates. An efficient numerical
procedure for kinetic correction to 2D fluid includes the following corrections:

1) the flux limit factors for electron and ion heat flux along B or
2) the introduction of non-local heat flux expression (which changes energy equation to

integer-differential and requires another numerical solver).

IV. 4 Electric field and hot spots formation on the divertor plates.
Intensive erosion leads to a formation of corrugate wedge-type shape of W-brush
tungsten target [23-25] (Fig.6). We consider here a sheath region bounded by a corrugated

surface of divertor plate and a flat boundary held to a constant voltage bias. The rough
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surface influences the equipotential lines next to surface and can considerable enhance
erosion due to the electric arcs initiation. These arcs, triggered by abnormal electric field at
wedge-like edges of the tungsten divertor plates, could be an additional source of impurities
and dust.

Analysis of the surface roughness shows that topography of the material surface after
exposition has a shape of sharp granules with the pronounced wedge-type shape of 1-3mm in
height and width. The sharpening of surface roughness changes the electric field pattern in
adjacent plasma by increasing the electric field at the vicinity of the wedge tips. As it is
shown further the enhanced electric field could trigger arcs and initiate hot spots. We

evaluate the electric potential ¢ /7 in the region by solving the 2D Poisson equation at the

plate:

2 2 ..
gxqz) + aaf = 47?}5?(’75 (A=m, [ 2mm,e " =@/ X, (IV. 4.1)
th

where A, is the Debye length, ¥, is the ion thermal velocity, ¢ is the angle between
magnetic field and the plate, j,. is the ion saturation current. Here x is the coordinate along
the plate and y is along the magnetic field line. The boundary values at the conductor

(¢=0) and in the opposite boundary (@ =1) was assumed. The standard variation

formulation of a finite element method can be used to solve the problem [27]. The potential at
the lateral magnetic field lines bounded the SOL domain, was specified as a linear function of
v. Numerical grids are shown on the Figs. 4 and 8.

After integration of Eq. IV. 4.1 one can obtain a set of equipotential lines by the
numerical spline interpolation. The roughness of the equipotential lines is gradually changed
toward the top region, where ¢~ 1 is assumed. First, a sinusoid-type surface shape was taken
to check the calculation accuracy. Fig. 4 and Fig. 5 show the greed’s pattern and resulting

equipotential lines above the sinusoidal corrugated surface of divertor plate.
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Fig. 4 Numerical grids for Eq. 1. A Fig. 5 Contours of electric potentials above
sinusoidal corrugated surface of divertor the sinusoidal corrugated surface of divertor
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Fig.6 View of W-brush target corrugated
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One can see that at the wedge tips the electric field can be so strong, that can easily

facilitate the generation of arcs and hot spots. Electric field on perfect metallic wedges

behaves like E, ~r“, presenting a singularity when <0 [28]. Abnormal electric field
1 . .
appears usually for very sharp wedges, o = —292 + O(0) . This can be found analytically by

solving Laplace's equation in spherical coordinate system for 2D wedge shape. A quasi-
analytic procedure based on the theory of Legendre and Lame's functions was used to
determine a. Formation of the hot spots requires the current density on the surface in excess
to some threshold value ~ 0.1-1A/cm? (for W). This can be expected first from the wedge tips
at some cone angle value (see Fig.6,7), when a strong increase of the field emission of
electrons takes place. The current density of electrons emission is described by the Fawler-

Nordheim tunnelling law and strongly depends on the electric field. At the electric field value
E~3-10"V /cm the field emission current reaches the threshold value ~1A4/cm® and

triggers the hot spots. The electric field at the wedge tip can be estimated as E,/ E ~ (r/ a)a(g)

, where E, ~1keV is the energy of incident particles, a ~1cm 1is the typical width of the

wedge (see Fig. 6) and 0!(9) is the function of the wedge cone angle € (see Figs. 10,11). This
allows one to estimate the critical value of the wedge curvature (radius) at the tip position.
Estimation gives, »~0.5¢cm , which is in the range of expected values (see Fig. 11). This
evaluation indicates the high probability of the hot spot formation and arcs initiation on the
diverter plates caused by surface distraction during the multiple transient events. This
additional erosion mechanism could lead to substantial contamination of plasma and the

material distraction and requires a further investigation.

V. Numerical approach. Application of the modified Belocerkovsky procedure to the
SOL equations.

The system of 2D fluid equations (1,2,3) is solved by using the “’split step’” method
both for different special directions and for different physics processes as well [29,30]. For
the later one we are employing the Belocerkovsky numerical procedure, which consist of

three sub-steps [31]. Below we will consider 7, # 7,and will dill with the following set of

transport equation:

a_n"‘i(an)'*‘i(”Vy):n [Sono L _a3n2:|En(7/ion ~Vree) (V.1)
ot Ox dy
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where

}/ion = SOnO ;/rec (n) == [ rec + a3n] (Vz)
al’lVy +i(nVyVy)+inVny = _M_Fi(niaLyJ —
o oy ox m, 0y dy\ m, dy V.3)
nV*=-D, g”‘ (V.4)
X

3(3@ cpyeml ) *Vf)]n 0 [5<T +Ti>+—”’f(Vy2+sz)jan .

'VZ VZ
i(g(T+E)+m,(y+ )JHV NCI L AR N

dy " dy  ox ox

(V Vz) (V.5)
. +
T%E DLZE__QMQ’ i i _+
9 dy O 0x 2 2 T,
V2 +v?
1”% (e-l_]—;-l_n/ll(y X)jnyz
3(3 )+i(§nTjV +i(§nTjV y 0Ly 0T, Sme T o1,
ar\ 2 ox ay 2 ox T dy m[. T, (V.6)
Zt e/ aT nD* a7,
ay dy ax ox
First we will employ the velocity-pressure solver together with energy equations
(the Lagrange sub-step):
on
wv. =D, (1) (V.7)
ox
y , y
onV =_8n(Te+Tl)+i Ny oV (V.8)
ot may ay| m dy
o(3 mn(Vy2 +Vx2) b p)
—|=nll, +T;)+ —— W, + L)WV WV +—Wnl,+T )V V.9
at{ ot )+ Dl 2t 1) V)
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where the new velocities are found as a function of density and temperature, taken from the

previous time step, 7, is the parallel viscosity. The discretization for x-diffusion (implicit
scheme) results is:
n;—n; 9 ony;

i — 1y
), ) V.10
At ox L oox ( )

then using 7; and n; one can calculate the total number of particles, crossing the cell

boundary

~ I
ANy = mViy2, S (V.11)

~

— M _ﬁij along _

dN}y, j==Dy =S¥ =Ty (V.12)
~ 1l .

dNG = (g =g Vg 4 dNG, 0= (H, 1)1 (V.13)

The explicit formula for y-convection reads as:

- A

Vi =V; - Tz\t[y ((pij+l TPy )Sj+1/2 - (pij—l L )Sj—l/z) (V.14)
- VY +v?

Vijy+1/2 = ( ’ B l]+_1) (V.15)

With total plasma particles number N;; = nl-jVife” in the cell ij, the plasma

énT

pressure p;; = n(T L+ T )l.j , the ion thermal energy densitye,;; = > ey and the total energy

density

(V.16)

el.j=[§n(Tg+Ti)+ :

mi (sz + sz)nj
i

The total energy change at the Lagrange sub-step is:

22



~ A t v Ccross Ccross
£, =E, _W(Pijﬂ/zVﬁjn/szl/z PVl S 1/2)
i (V.17)

A 4 alon, alon
(p1+1/2 le+1/2 jSt+1/§/ P 1/2/ i- 1/2 jSl l/gj)

(P§+1/2 - p§_1/z) (pie+1/2j - pz‘e—l/Zj) preell _

~ At
— y X
ey =bey v |V TR,
ij ij
At ’ )
= B+ 02 n = 2502 5570, 4925 oty = o0 2, (V.13

In the following sub-step we will use the definition, which depends on sign of velocity:

7y cross j 1’if I7y 1/2 >0
dNJ+1/2 a1tV S 2 With 74y = Lif V 5 S0
(V.19)
In the second (Euler) sub-step we are solving the system of equations:
I O )4 L) =y, -y () (V.20)
ot Ox dy
onV?> 9 d
+— VvV )+ —Wr’rt)=0 V.21
1 ay(” ) ax(” ) (v-2)
onV* 0 d
+— Vv )+ =WV’ )=0 V.22
ot  Ox (n ) dy (n ) ( )
) VZ V2 ) V2 V2
9 E(T@ +Tl.)+—m’( L+7) ned E(T6+Ti)+—m’( L+7) nv, +
ot\ 2 2 ox |2 2
(V.23)
W2+v?
+i E(Te +]’;)+M an :_Q
ay |2 2 ’
2(3 Te]+i(§nTjV +i(énT jV =—1Iny, —ngj/r (V.24)
ot\ 2 ox ay\ 2
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Here

0= ET +@]—l+1mﬂ {%(z + Z)+MJ%

X

or:

Nl N + dNtx 1/2j dN[)-Ci—l/Zj + dNij'}—l/2 - dNij'/H/Z + (yi(m - yrec )n I/ijce”

P =P’ +dPY, —dP},, +dP>, —dP} , =y, V" nV;

i+1/2j ij-1/2

1 y X cell
P P +dP; 1/2] —d i+1/2j + de 1/2 dPlj}E/l/z ]/rech Vy

~ 3
1 x X cell
E - Ee;g‘/’ + dEe;i—l/Zj - dEe;H—l/Zj + dEey;ij—l/Z - dE:;ij-%—l/Z - (]1 yion + E Tej/rec jn I/lj

i

il i ix ix i )
E - E +d i-1/2j —d i+1/2j +dEyy 12 dEy'y+1/2 -

2 +v?
_(Ilyi +%[Te + TI +MJ}GJ”V;€”

Define as: F; = Ny Vljx, Py =Ny Vljy, and

dP ij+1/2 (nV )]+1 ij+1/2 ;Tls/sz, dP 2 = (nV )]+1 A ;:ols/sz

along VX along
dP"'l/z] (I’ZV )l+1] l+1/2JS1+1/2j dPl+1/2j (I’ZV )l"'lj l+1/2]Sz+l/2]

cross along

dEy+1/2 j+1 +1/2 ij+1/2> dElJ+1/2 = €11 l+1/21Sz+1/2J
y — cross X along
dEe;ij+l/2 —ee;ij+1 +1/2 ij+1/2 dEe;ij+1/2 Cesitl ] l+l/2]Sl+l/2]

Which are defined similar to dN see Eq. (V.18). Finally, in

ij+1/2°

the third sub-step we are calculating temperatures, velocity from momentum,
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total energy and electron energy

—

N. ., P 2 EL g Lij = Leyjj
11]: Jll’ iJl':_jl’ el;ij:_ e’ll] ’ Ti!ij:_ 1 : (V.36)
Vit i 3Ny 73 N
After these procedures the electron- and ion-thermo conductivities as well as the
equipartition equations are solved as separate sub-steps of total time step.
i(gneTejzneT}_Te > i(inez—:jz_n@z_n TE E%Te (V'37)
or\2 T, or\2 T, m,
93,7 +iDeT%a£+in per, O =-0,.4(T,,n) (V.38)
atzee aySe ay aer_eax rad \*e> .
5 , . .
2(3 Tj + L2, 0, b T (V.39)
ot\ 2 dy dy Ox ox
Here both thermoconductivity equations are solved implicitly, including the radiation
termQ, , :
3 9T ar.| .
=N,—=xlT )= + Ty V.40
2 e at ( e) ay ) Qrad( ) cell ( )
3. LT, T. T, T=Tp o (), Q)
ENeij /A—t/ = Kij+1/2 T - Kij—l/2 JA—yll + de (7;, )+ a—dT(l)(Zj - T;‘j )Vcell (V-41)
K2 T - ENe[j + 00,4 (Zj)AfVceu 4 KA 4 Ky p Al T, - KAt T =
Ay 2 oT Ay Ay / Ay 7
(V.41

00 T, - e
{% N, eij + Q:-;—;,(J;)At Vcell JZJ - Qrad (]:J )At Vcell
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VI. Physic Models of plasma transport in the SOL/Divertor. Scaling laws and simple

models for benchmarking

In this part we present three different regimes of the SOL and divertor operation, which is
observed in tokamaks, depending on the level of plasma recycling on the divertor plates.
These are of low, intermediate and high recycling regimes of operation, corresponding to
attached, partly detached and fully detached cases correspondingly. The regimes are
characterized by specific plasma behavior and their features can be described by a physics
models, allowing simple solutions, which can be compared with the full scale 2D simulations
in TOKES and used for benchmarking.

One of the main tasks of plasma modeling in the SOL and divertor region is to establish
scaling laws at the separatrix between bulk and edge plasma parameters. This means e.g., the

connection between the temperature 7, and the density n, at the separatrix with the particle
and energy fluxes, coming from the bulk plasma through the separatix, O, and I'.. The

boundary conditions can also be expressed through the plasma parameters at the divertor

plate, using a link between density, temperature and fluxes at the separatrix and at the plate.
First, we consider the simplest models, for two limiting cases of low and high recycling

near the material surfaces. The schematic of the SOL and divertor configuration is shown on

the Fig.12.

Bulk _ i
separatrix !
TI plasma P F Divertor
I__i_—$____*—_ T . ? Plate
mid plane | 0, T SOL Asol >
] >
¥ B
r o Ls Ld

Fig. 12 Model of boundary plasma

The plasma heat Q. and particle flux I, flow through the separatrix into the SOL region
L with and divertor region L, (see Fig. 12). For self-consistent calculations of the balk and

the boundary plasma it appears convenient to use boundary condition at the separatrix in the

form 7.(Q,,T) and n,(Q,.T.).
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VI. 1. The case of low recycling

The contribution of neutral atoms into plasma flux due to ionization is described by
recycling coefficient, R , defined as:
R=(T,-T,)/T, (VL1)
In the case of low recycling, considered below, R ~ 0, the plasma parameters remain almost
constant along the magnetic field lines, the convective energy loss to the divertor plates

dominates the parallel transport with the sound speed velocity,

C, =T /m)*=Cy-T", m/s  C,=979-10"/Ju p=mIm, (V1.2)
at the plate, where m; is the mass of the dominant ion component, m , is the proton mass and
the radial (perpendicular) transport is described usually as a diffusion with some anomalous
coefficient, D, . Historically, it is taken as a Bohm value, either constant or as a function of
parameters at the separatrix:

D,=cT,/16eB=D,-T,/B,, m* /s, D,=625-107 (VL3)
where B, is the magnetic field in Tesla. The diffusion normal to the magnetic surfaces, ¥, in
the rear SOL plasma reads as:

o’n n
22 _ 20 V14
b or? T, ( )

D
where 7,=L/C,, L =7mqR is the magnetic field line length, g is the safety factor at y =95%,
R is the major radius and n is the density averaged over the magnetic surface , and = fy

marks the magnetic surfaces. Equation (V1.4) is averaged along the field lines and the parallel
flow, described as a loss term (last term in (VI.4)). This is justified because the plasma
parameters are almost homogeneous along the field lines and D, is taken const.. The density
decay length in the SOL is of the order of gyro-radius only in the case of classical diffusion
across, A, =./D,-7, < p and usually always exceeds p. in the case of anomalous
cop L :
diffusion, for example: A =,/D, -7, = p. (a)cz')m(ﬁ—j >> p_ in the Bohm case. Here, @,
is the gyro frequency and 7 is the electron-ion coulomb collision frequency, A, =V, 7 is the
mean free pass, V,is the thermal velocity. In the case of rear plasma, L <A, . Since the
temperature decay length in the SOL is typicallyA, = A /3, the fluid treatment of plasma

behavior in the SOL region is applicable. For high-energetic particles, emerging from the
core region the gyro-radius can exceed the SOL width. In the case of ITER for expecting

temperatures at the separatrix (~300eV) , A ,/p.= 50 and for pedestal temperatures
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(~3keV), A,/ p. = 20. Only for the high-energetic alpha-particles with energies ~0.5 MeV

sol
the gyro radius (or the banana width) becomes comparable with the SOL thickness. These
particles are considered as prompt lost particles, or the particles escaping the main plasma
due to the loss-cone inside the LCFS. Equation (V1.4) gives an exponential decay of density
across the SOL:

n(ry=n-exp(-(r—a)/A,) (VL6)
where R and a are the major and the miner radius of tokamak plasma, respectively and

A =3.18-107L[m]/B[T]-T%, m. V1.7
n s,eV

The particle and energy fluxes along the magnetic field line remain constant throughout the

SOL and can be written as particle flux, I, , and thermal power ,Q, to the plate:

Fs = Fd = 025anCsO\/Ts ) Slsol and Qd = Qs =5 I_;]: ]1 = ];,e ~T,

S,

(VL8)
where Q, is the total power into the SOL region and the SOL cross-section surface

S, =7m(a+A,) —m’® =2mA,. Here A, isthe SOL width and M is the Mach number

near the divertor plate, which is close to one. If A, = A, then
T, =~ (mMC,yS,,, | 2n\T, -Dyz, =309-S,,,(aM - LINB)-n,T*"*, 1/sec (VL9)

0. =5k, -T.T,, MW (VL.10)

From (VL.9, VI1.10) follow the relations, which can serve as boundary conditions at the

separatrix:
n,[m™]= Const.(T, [s™1) " - (0, 1MW 1) (VLI1)
T.,[eV]=0[MW]/5k]T [s] (VL.12)

where Const. = 4.3-10" -\[B, /(S,,[m*]-a[m]M - L[m])

The specific feature of the simplified model is the monotonic dependence of density and
temperature on fluxes, which excludes the occurrence of bifurcation in the boundary region.
At high plasma temperatures due to strong dependence of parallel heat conductivity on
temperature and the long connection length the slight variation of the temperature and density
along the magnetic field lines can occur. In this case the density and temperature at the plate

n,,T, must be estimated from the conductivity and pressure balance equations along the
magnetic field lines, s:

o1

d
4 O MVeor =Oraas q= _ZOTS/ s

VL13
% (VL13)
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i T = (LM ), T, (V1.14)

Here V,,, =27°RA a1+ K) =S, -27R, where K =b/a is the elongation and Q, , are
the radiative losses in the SOL/divertor region, y =5/3. Equations (VI.13, VI.14) are

averaged over the SOL width. The density and temperature at s = 0 represent the upstream or

the mid-plane values and the Spitzer-Harm parallel conductivity, y, =1.3-10%m's eV >"?is

assumed. Integrating the equations (VI.13) first in the SOL region L, with the source term

Q. and then, in the divertor region L, = L — L_, where Q. = 0, one finds:

Td7/2 — T,,Zjiiz _ T*7/2, (VL15)
where
120, 0
77 =| == |((1- “(14+2L,/L = red VI1.14
- paravaning) e an
and
n,~n_T /2T, (M=1), (VL.15)

Here 7. denotes the minimum temperature, which can be achieved at the mid-plane for given

O, and for given level of radiation losses, f,,, . The dependence T,,(7,) which follows from

classical electron thermal conductivity is shown in the Fig. 13.1f 7, ,, >>T.,then T, = T,

mid >
when T, <T,, T, reaches its minimum value 7. . This occurs due to strong dependence of

classical conductivity on temperature.

T..ev = 7.0((Ly[m)) - O,[MW1- (1= £.,)- (1421, 1 L)1V, [m*])f (VL16)

£
mid

Fig.13 The dependence T, (T,) which follows from classical electron thermal conductivity; if T, >>T.,

.
then T, =T,.,, when T, <T.,, T, reaches its minimum value T . This occurs due to strong dependence

of classical conductivity on temperature.

29



In the ITER case, for L ~190m and Q,L, /V, ~1380 MW /m”, the critical seperatrix

temperature (VI.14) is 7, ~0.3 kel . This is the minimum achievable upstream temperature
for given power and connection length values. If downstream temperature drops below the
critical one a noticeable gradient develops, which keeps the mid-plane temperature almost

unchanged. This occurs due to strong dependence of classical conductivity on temperature. The

radiation losses bring down the upstream temperature.

VL. 2. The case of intermediate / high recycling (attached plasma)

In this case R <1 in the vicinity of the plate and the associated radiation brings down the
temperatute there. Recycling considerably amalgamates the particle flux to the plate.
Although the density and the temperature strongly vary, the pressure along the magnetic field
lines remains roughly constant. Under this condition, when the temperature at the plate is

small the thermal conductivity becomes a dominant transport mechanism along the magnetic

field lines y, = y,-T°">. For given n, at the separatrix and given parameters Q,, R, f,,, the
functions 7,(Q,,n,), and AT( S,ns) can be easily derived from the energy balance equation

(VL.13). Using for the anomalous radial conductivity the following scaling: y, = ) -T¢-n’,

S

one finds:
5 B 2, ) 2/(2¢+9)
T - l:a {mz)bL /S| (VI.2.1)
YAy AR
7/(2¢+9)
R 20x7n’ ]
A =— AL s = (V1.2.2)
Y ((QS (1= £

Here A, =dx/dInT is the thermal layer width (A, =< A /+3<A_,), ' =D, /B, and the

exponents here are arbitrary numbers. The dependence of temperature and density at the
divertor plate on separatrix density can be derived again from the condition of constant
pressure along the magnetic field line (note, that the separatrix and the mid-plane values,
indicating with the subscript s and mid, and the values denote as p and d at the plate are
roughly the same):

nT, =(1+M*)n,T, =2n,T,, (V1.2.3)

and the particle balance in the recycling zone in the vicinity to the plate:

2 3/2 s
(1+7M )Csoin,, “U=R) (VL.2.4)
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where R is the recycling coefficient, which is taken here as a given value. The particle flux at

the plate now reads as:

2(1_ 2\ 22 y(cpyro
T, =L£—Qs (/) j n, (V12.5)
n X X1

P

and n, can be found from (VIL.2.4). One can notice a rather weak dependence of edge plasma

parameters (#_,A) on separatrix density n, and the heat flux O, due to strong dependence of

parallel thermal conductivity on plasma temperature. In reality the recycling coefficient R

depends on plasma parameters. The total plasma flux to the plate I', =T, + R - I’ consists

arising due to ionization of

ion >

from the initial flux I’ and from the contribution R-T', =T
neutrals:

Lo =n-1T,-(1-exp—( I dx/ 4,,)) (VI1.2.7)

were 77 is the recombination coefficient at the plate surface, A,

on =Vo(T,)/n,(0V) is the
ionization mean free pass of neutrals.
Dependence of plasma parameters at the plate from separatrix density can also be derived

from energy and pressure balance:

. 6 21

T =L | 10 Zno VI1.2.8
37 _-16/11 4 7321

n =2 41 (ZigL j (V1.2.9)
(I_R) o

where ¢, =0, (1= f,.,)/S..

These equations show how scales density and temperature in mid-plane and divertor plate
with machine size (R, ) and the heat flux in the SOL, §, ~27°Ra- (1.5-(1 +K)-K ), where K is
the elongation. The scaling law correspond to high recycling regimes in the SOL with
classical heat conduction along the magnetic field lines and Bohm conduction (b=1, c=1)

across field lines. Note, however, that in the model parameters R and f, , are independent.

One can see from (VI.2.8, VI.2.9) that the plasma temperature at the plate, decreases as the
inverse cube of the thermal layer density and depends weakly on the field line length, L. In
addition, any variation in the input heat flux and in the parallel heat conduction can strongly
affect temperature at the plate. The thermal width scaling is important, since it determines the

peak power load on the plate. Although we are operating here with the density profile width
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value, it is worth to note, that the radial density profile in the SOL is not described any more
by simple exponential form (VI.1.4), because the source of neutrals due to ionization plays an

important role in density profile formation.

IV. 3. The case of high recycling (detached plasma)

This is the case, when plasma detaches from the plate and almost all power in the
SOL/divertor region is radiated by impurities and by hydrogen. A significant pressure drop
along the magnetic field lines occurs and the plasma density drops towards the plates. The
main signatures of detachment include also the plasma particle drop at the plate (ion
saturation current) and the formation of a strong radiating zone (radiative blanket in divertor),
which cools down the plasma and radiates almost 100% of energy. The SOL and divertor area
can be divided into two zones, the upstream radiative zone and the neutral gas dominating
downstream area with the rear cold plasma, so called cushion near the plate. A schematic of

the divertor plasma between the X-point and the target is shown in Fig. 14.

Radiation region Cushion
TO N 0
—> q I q W /
I w /
L L %
. —» < n >%

o
o

Fig. 14 Schematics of divertor plasma in detached state

Two regions are indicated: the radiation region and the cushion (gas blanket). In the radiation
region, energy losses occur due to the radiation of impurity ions (e.g. Be etc.) and the power
is transported by parallel heat conduction. In the right-hand part of the cushion, the plasma is
cold and the remaining power is so small that ionisation is excluded and temperature is taken
to be constant along the region (77=T). Convection dominates the heat flow in this region.
In the vicinity of the interface between the two regions, ionisation takes place. In this model
we are not specifying the position of the border between these two regions, assuming that the
cushion will be self-consistently developing according to the balance equations. In the

cushion, a charge exchange collisions with neutrals cause the parallel momentum loss from
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the plasma flow, thus reducing the pressure at the plate. Detachment occurs when the
radiation is strong enough to limit the ionization capability downstream of the radiating
region. In order to simulate this complex phenomenon a simplest model is chosen below,
which, however, preserves the main features of detachment. This model provides necessary
for benchmarking solutions of reduced equations.

The 1D equations for energy, particle and momentum balance along the field lines in

the SOL are employed [33]:

a_q =nn_L(T) (VL3.1)
ox

ar_n (V1.3.2)
ox 1,

dp+mnV?) _nmV
ox T,

(V1.3.3)

where gand I'are the heat and the particle fluxes along the magnetic field lines, n and n,
denote the plasma and impurity density, L(7') is the radiation cooling rate , V' is the parallel

velocity, 7, is the particle (momentum) loss time due to a radial diffusion 7, ~A* /D, and a

charge-exchange collision 7., 7,' =7, +7. . For given densityn, , temperature 7T, and

heat flux ¢, at the separatrix, the plasma parameters at the plate and conditions for

detachment can be uniquely defined from equations (VI.3.1- VI.3.2). A transition from
attached to detached state at given upstream conditions can be triggered by varying the
impurity content in divertor, thus increasing the radiation losses in divertor region.

The seven unknown parameters, which must be defined are , the heat and particle

fluxes ¢,,,I",, at the plate, the temperature T, at the plate , the neutral density ny, fraction of
radiation, f, ,, fraction of momentum loss due to interaction with neutrals, f,, and the
length of the cushion, L, . Upstream heat flux, g,, and upstream pressure, p,, together with

impurity concentration are the free parameters. The seven required equations are the

following:
Do == f)p, 1+ )T,,, (V1.3.3)

where f, is the momentum loss fraction defined as f, =(p, - p,)/ p, and Ty is the

temperature at the plate and M is the Mach number at the plate, which is according the Bohm

requirements is about 1.
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The equation for energy remaining in plasma after radiation is transferred to the plate

2) q,=C,le+or,) (VL3.4)

where e =20, § =7.8 Multiplying Eq.(VL.3.1) by g =—y,7°'?0T /0x and then, integrating

from upstream to downstream, one has

Energy balance equation upstream of the cushion

2 2 Zopg ¢z T
3) q“(I) =47 +—2L [NTL(T)dT (V1.3.5)
T

1
where qJ and TT are the heat flux and plasma temperature at the end of the radiation zone, and
L(T) is the radiation loss function. C is the impurity concentration, pyp is the upstream

pressure.

Equation for the length of the radiation zone, L;, which can be determined from the local

heat flux by
4) w7512 (V1.3.6)
L = ——dT=L-L .
r =40 7{ q(T) m
1

and is equal to the difference between L (total connection length between X-point and plate)

and the cushion length. 7y is the upstream temperature (T w =T, ) We also assume constant
temperature in the cushion. Notice, that relation between the upstream heat flux g, along the
magnetic field lines and g, - across the LMFS. Since at separatrix divg ~0, then

2mq,a

174

9 =4, , where ¢, is the safety factor.

sol

The equation for radiation fraction, which follows from the energy balance in the cushion

5) frad = 1_ &ﬂ (1_ f;7101n) M 2 (8 i y[Td) (VI36)
9, 1+m T,

This relation shows that at given p,, and g,, the achievement of detachment

(frua ~1) 1s limited by momentum loss efficiency, f,,,.!
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6) Equation for momentum loss fraction is derived in (see [33])

f, =1-exp(-L [ 2"; (VL3.7)

where A =2.398-d(m)(11.51-Kn+1) is an effective length (in m) for the momentum loss, Ly,
is the cushion length, d(m) is the plasma-wall distance and K7 is the Knudsen number for

neutrals Kn = 2.5 1019 m=3 / (d(m)-n,(m™) ).

Equation for neutral density:

B
// A
7) I, exp(=A/ ﬂion A, =3 nO(Cpump + 70 vold=m ), A =27RA (VL.3.7)
j2

This is the particle balance equation in the divertor. The neutral density n() in the divertor

region is found from a simplified model (shown schematically in Fig. 15).

no Cpump

b

AoNoVo/4
«
Divert NAoNoVo/4
ivertor
plasma DI
No
no Cpump
_>

Aily exp(- A Aion)

Divertor plate

Fig. 15 Model of divertor chamber and pumping port.

A fraction of the recycling ion flux determined by the ionisation mean free path Ajon

escapes from the plasma column (width A) and forms the source of the neutrals. There are

two sinks of neutrals. One part is pumped (n() Cpump; this also equals the net incoming ion
flux from upstream). Another part, Angv(/4, enters the plasma column with thermal speed v

and a fraction 1 of these neutrals is again reflected back to the vacuum region due to charge

exchange collisions. In equation B/, and Bp are parallel and poloidal magnetic field,
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respectively, A( is a typical area for the plasma column. For simplicity, we take here Ag=A;

(A1 1s the cross-sectional area), but this could be generalized.

The seven equations listed above contain seven unknown variables /7 ¢q,, T, T, n,

Ly and fi;. They can be solved as function of C, for given upstream power and pressure.

Calculations were performed for typical ITER conditions: input heat flux g/,~=650

MW/m?2, upstream pressure (ion + electron) p=3200 Pa, connection length L= 40 m, angle of
incidence between the field line and the target plate o=7.2°, and various Cz for Be ion

concentrations. The main results are the following:

The detachment is caused by increased radiation because the power available for
ionization is reduced. Recycling, neutral density, and momentum loss adjust self-consistently
during the transition. The transition is gradual with increasing impurity concentration, i.e. no
bifurcation exists. It should be noted that the transition from attached to detached corresponds

to a small change in impurity concentration.

The increase of neutral density and decrease in particle flux which have been shown to
accompany the transition are consistent with experimental observations. This increase of
neutral density leads to higher momentum loss, f;;;. Beyond the transition, the ionization
mean free path becomes so long that the neutral loss from the plasma becomes independent
of the mean free path and then the neutral density varies simply with the particle flux, i.e.
decreases somewhat with increasing Cz . This decrease is not important: the plasma remains
detached. In the final detached state at high Cz, the heat flux and particle flux are low and the

cushion length and momentum loss are high.

IV. 4. The benchmarking of TOKES result with simple transport models in the SOL.

Here we are comparing the solutions of reduced equations (Belocerkovsky in y-

direction)

on 0 r

—=——\nV )+ — Iv.4.1
ot ay (n y)+ Vo ( )

IV 9 (qyrpr)= 9207 (IV.4.2)
ot  dy may

J J %Y

—3nT )+ —05nT )V, === V4.3

5 BT )+ 5, GnT Y, == (IV.43)
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with exact analytic solution of this system (or derived by MathCAD) with TOKES solution

for several input parameters (particle and heat flux).

I=2%10% s and Q0=20 MW:

TOKES SOLUTION

ANALYTICAL SOLUTION
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Here V(0)=-2.189x10 V(Ej =0
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The same comparison with other input parameters and distributed power along B:

I=2%10*s" and QQ = 20[1 —~ ‘2% -1

) [y—Ejz
o = E n0 + n0 B Sn2 2
4 (1 122 ) (1 122 j Cs(Tmax)z-(l + 2%)

Tmax y k
-— = 1+2-=| Tmax:=Sq-——
YY) = (y ) 3 ( Lj T3

L
n[zj = 1.097 x 10 n(0) = 1.463 x 10 , V(0) = ~1.548 % 105

)M W . In this case the analytical solution reads:

Slw
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VII. Model for H-Mode Pedestal formation in TOKES

During the L to H-mode transition, when input power, O .exceeds some critical value,

O [51:
0, =0.084-7°7B """ p! (VIL1)

a strong pressure gradient forms at the edge because of the turbulent transport suppression
outwards beyond some radial position. This pressure gradient separates the anomalous core
and the neoclassical pedestal region, which spreads from the top of the pedestal up to

separatrix and is is marginally stable. There are two suppression factors: 1) proportional
tol/(l+k-(a)ExB/j/)2), where ¥ is an increment of the ion temperature gradient (ITG)
instability and @, , is ExB shearing rate, and 2) due to increase of edge (e.g. bootstrap)
current and, consequently, the magnetic shear at the edge. Sincey ~1/s, increase of shear
suppresses the turbulence. We assume here, that the turbulent transport is mainly suppressed
by E,X B velocity shear at the plasma edge. This means, that the radial transport
coefficients for thermal conductivity and particle diffusion drop down to subdominant

(neoclassical) value:

2 -1
P 7 B e N R GV (VIL2)
i " A 7(s) ’

D, =x..n (VIL3)

Here . is the anomalous conductivity, which dominates in the core region,

wherey > w,, ~0. Within pedestal region, where ¥ <@, , anomalous transport is

suppressed by the magnetic shear s and ExB shear. In this region the dominate transport is
neoclassical (second term in (4)). Here k is some fitting factor~1. The anomalous

conductivity is

Z:,rll = ZGB = ptir CS /SEAped (VII4)
and
Y, = Xaski = P, CkL I s°A ki p., =0.03 (VILS)

where y is the growth rate of a gyro-Bohm type instability. Expression for shearing rate

W, reads as:
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_9 (E] _ a(VPj —p, C.IN (VIL6)
A

ped

Here we assume, that £, = enVp and Vp =nT /A ,, .The width of the pedestal region, A,

, can be defined as a radial position inside the separatrix , where turbulence is suppressed by
the combined effect of the magnetic and E X B shear (see Figs. 17). The pedestal width

depends on the toroidal Larmor radius o, , and the magnetic shear s(r), and can be

expressed as:

A = P S° P, =323-107-B'Z27 /4T, (VIL7)

Here B, is the toroidal magnetic field in Tesla, 4 is the mass number, Z is the charge state,

T is the ion temperature in keV, p is in m. The shear depends on radial position, but for

1

simplicity sake it can be arbitrarily chosen at 95% flux surface.

The pedestal width, A, be define as a radial position where :

N A8 /1
/ , shear
7 fmid %separatnx
n, T %/
pedesta /
pOSItIOﬂ / N _~ E x B shearing
h % ‘--~- :_‘_;~<_f rate
\%X\ T Turbaence - .
growth rate ~.
4 N r Pedestal Width
y=95% r=a, \|j=1 Z(I’zsema

r

Fig. 16 Definition of pedestal width. Fig. 17 Pedestal width is define at radial
position where turbulence is suppressed by
magnetic and electric shear.

The radial transport suppression in TOKES , which describes the L to H transition is

implemented (taking into account threshold dependence of the H-mode onset on input power)

as

X
Z = “ + Zneo (Vllg)
1+ u0(0 =0, )(s°p, 1k py)*

where A ped up, .s° and Koy =p/Vp

For ITER Q,,, is about 60MW [5].
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VIII. Model of the ELMs in TOKES

The Edge Localized Mode model considered here is a cyclic variation of the pedestal
parameters, which caused by ballooning instability. The modeling based on a Peeling-
Ballooning theory of Type I ELM [34-38]. The ELMs usually appear in H-mode plasma,
when due to extensive plasma heating the edge pedestal pressure gradient and, consequently,
plasma current grow, approaching some critical unstable values. The instability reveals itself
as a repetitive burst of energy and particles at the pedestal area. The numerical modelling of
the ELM includes: 1) the ELM triggering conditions, 3) the transport model during and
between the ELM burst, 2) mechanism of ELM cycles and typical time scaling, 4) model of
energy and particles loss during an ELM. Finally, some numerical results of the ELM

simulation, based on simplified model are presented here for the purpose of benchmarking.

VIIL 1. The ELM triggering conditions. When in H-mode of operation power input
increases the pedestal pressure gradient raises and can approach the absolute pressure limit

(Ballooning limit):

2
(d_l’) _Ba 5x) (VIIL 1.1)
de).” 2pRq(x)

where R is the major radius, a is the minor radius, ¢ is the safety factor, B is the magnetic

field, and p is the pressure, S(x) is the shear and f, is some geometrical factor [39]. Once

this limit is reached, the transport at the edge turns back to the L-mode (anomalous) value.
This can be taken into account by assuming, that the denominator in thermal conductivity

coefficient turns to 1.

— Zan
1 + /’le(Q - QLH )Szloi /(kped + Aped

Z )2 + Zneo S Zan (VIII 12)

As a result, the pressure gradient is flattening. At this phase of ELM, energy and particles are
expelled to the SOL. These losses occur radially from the stability violation point outwards,
assuming quick (with alfven time scale) re-connection of the affected area with the divertor

plate. This can be modeled by adding the parallel convective losses of heat and particles in

the SOL region: P> + P, | D e

P =25.-nTr" |7, =25-nT)"Cs/L,, T =nC /L, (VIIL 1.3)
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where L, = 7qR is a connection length and P, """ are power and particle sinks due to an

e,i?’ n

ELM, respectively.

The cross-field transport during an ELM burst can be presented as:

pEM [ EM
ELM __ " e SOL EIM _ *n SOL
Xei© = psor Kei > Dei” =fsar Do (VIIL 1.4)

This normalization is based on the experimental fact that there is no large difference in the
power deposition profile on divertor plates during and between the ELMs. These additional
losses and enhanced cross-field transport in the SOL are switching on when at some radial
position the stability of ballooning mode is violated and exist until this violation disappears in

the whole confinement region.

VIII. 2. Modeling of ELM limit cycle, typical time scales. The described above model
gives the following estimate for the ELM affected width of pedestal,d,,,,, the ELM time

scale7,,,, and the ELM recovery duration, 1/ f,,, . Where f},,, is the ELM frequency.The
fraction of energy stored in the outer part of the pedestal is assumed proportional to A, /a,
where A, is the pedestal width and a is the plasma minor radius. Onlyd,,,, /A, of this

fractional energy would be lost during the ELM event, so that (AW/ W), = J,,,,/ a. For

coupled peeling-ballooning modes, the mode width can be expressed as

Opy = Nalngs, (VIIL 2.1)

where N related to the toroidal mode number ~ 2-3, g is the safety factor and s is the magnetic
shear. Finally, the ratio of the energy loss per ELM burst, AW, to the energy stored in the

pedestal area, W, can be estimated as:

(AW/ W), = N/ ngs (VIIL 2.2)

For estimation of the ELM burst time two time scales are expected to be relevant. The

first is the Alfven timez, = 7qR/c,, were ¢, = B/ u,nm, is the Alfven velocity, and the

second is the resistive diffusion time across a narrow layer of width,d,,,,,
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Le.7,= U,0,,, 1 11, where 7 is the plasma resistivity. In principle, 7,,,, could involve any

combination of these time-scales, and can be written as
Ty =T,S7 (VIIL 2.3)

whereS§ =7, / 7,, is the Lundquist number, and p is a fractional power (1~1/3). A typical

value of the ELM duration 7,,,, is usually a few tens/hundreds microseconds.
The ELM duration time is simply inverse proportional to the ELM frequency and for Type I
ELM is typically in the range of several tens milliseconds.

Current evolution during the ELM recovery follows the resistive time and described
by Ohm law with classical or anomalous resistivity. This time scale must agree with the
inverse ELM frequency value. It is reasonable to suggest that the turbulence affects the
current evolution, increasing the resistivity at the plasma edge.

The stability diagram for peeling-ballooning mode and an ELM cycle is explained
below in Fig.18

Peeling @

unstable @ -

bootsreap

J, B + J, /B

driven

Ballooning
unstable

@ stable

alpha

Fig. 18. Schematics for the peeling-ballooning model and cycling diagram.
Dimensionless current is plotted against the dimensional pressure. Beyond some alpha

value (see vertical line) the ballooning mode is unstable. The inclined line separates the

peeling unstable areas.
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We begin at the point (1) (see Fig. 18) with low pressure gradient and low current. As
we heat the plasma the pressure gradient rises, and we approach the ballooning stability
boundary. The current density will also rise, but this will occur on the current diffusion time,
which is generally slower than the pressure diffusion time. On reaching the ballooning
stability boundary (2), the edge transport would increase effectively tying the pressure
gradient to the marginally stable value, but no large scale event is anticipated at this point.
Meanwhile, the current will rise on the slower timescale due to the effect of the bootstrap
current. Since the peeling mode becomes destabilized, the trajectory will tend to drift up
towards the point (3) where the plasma would also become unstable to the peeling mode.

Note, that at this point, the increase in the thermal transport, and subsequent reduction
in «a, caused by the instability, further destabilizes the mode, leading to a crash event(4).
Furthermore, at the point (3) the peeling mode couples to the ballooning mode, so that in this
vicinity the mode is rather radially extended (typically ~10% of the minor radius) so that a
significant fraction of the pedestal region would be affected by the instability, and as a result

a lot of energy would be lost; this can be interpreted as the Type I ELM.

VIII. 3. Transport in the pedestal region during the ELM. On reaching the ballooning
boundaries (VIII. 1.1) the edge transport increases, expelling the energy and particles into the
SOL region. Pressure gradient at the pedestal position drops back to the marginally stable
value. Since the power from the bulk plasma cannot be transferred outwards at that pressure

gradient, it starts to increase again up to the critical value ., and the process repeats. Two

phases must be distinguished: the burst phase of a strong transport increase, reducing
eventually the pedestal, and the phase of gradient recovery at the edge. The recovery time
scales inverse proportional to the ELM frequency f,,,,, Tz ~1/ fz » Whereas the burst

time depends on instability.

VIILI. 4. Transport in the scrape-off-layer (SOL) during the ELM. At first phase of
ELM, energy and particles are expelled to the SOL. The same happens with the edge current,
but in different (resistive) time scale. These losses occur radially from the stability violation
point outwards, assuming quick (with alfven time scale) re-connection of the affected area

with the divertor plate. This can be modeled by adding the parallel convective losses of heat

and particles in the SOL region: P." + Po™Y | D

P =25.-nT)" /7, =25-nT)Cs /L, T/ =nC /L, (VIIL 4.1)
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0 n

where L, = 7gR is a connection length and P, are power and particle sinks due to an

ELM, respectively. The cross-field transport during an ELM burst can be presented as:

ELM FELM
ELM __ * e, SOL ELM _ SOL
Xei = Lsor Xei » i == D, (VIIL. 4.2)
e, n

This normalization is based on the experimental fact that there is no large difference in the
power deposition profile on divertor plates during and between the ELMs. Between the
ELMs the L-mode transport conditions are working. This means, for example, the anomalous
transport in the core region with the Bohm type cross-field diffusion and the parallel classical
Spitzer-Harm transport in the SOL. These additional losses and enhanced cross-field
transport in the SOL are switching on when at some radial position the stability of ballooning
mode (VIII. 1.1) is violated and exist until this violation disappears in the whole confinement

region.

VIII. 5. Model of energy and particle loss during the ELMs. When an ELM occurs, the
pedestal plasma loses energy towards the divertor plate for a time 7,,,,. The duration is much
shorter than the typical energy equilibration time and, as a consequence, the energy is
transported to the divertor mainly at the ion sound speed. The electron flux is impeded by the
formation of a strong electric field, which is set up in the plasma over a few ms, when a large
population of hot electrons first reaches the target. Consequently, the ELM energy drop is
determined by the ratio of the ion parallel energy loss time and the ELM time. Then the

fractional energy loss will be, for example, described by:

AW/ W=@WIW)(1+ 7,/ Ty ) (VIIL 5.1)
where 7, is the energy loss time (due to conduction and convection), i.e.:
7, =mRN(1+c, V' ) c, (VIIL. 5.2)

The subscript 0 in (VIIL. 5.1) indicates the fractional energy loss, that would occur if the
parallel transport timescale were much faster than the ELM timescale. Here V' is the electron
collisionality, R is the major radius, ¢, is the sound speed for the pedestal temperature, and
c, is the fitting parameter. Due to the magnetic reconnection the connection length is

14

multiplied by some factor N, which further plays a role of the fitting parameter.
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Substituting (VIIL.5.2, VII. 2.3) for, 7,, 7., into (VI 5.1) and using

AW/ W), =8,/ a, one can write down a scaling for the energy loss during an ELM:
1
AW/ W = cw(N/nsq)(l +N(1+c,v)/ S"\/E) (VIIL 5.3)

Here =87/ B’ is the ratio of thermal to magnetic energy in the pedestal, ¢, and c, are the
fitting constants. Fitting parameters p=1/3, c¢,=1, ¢, =0.15, n=3 were obtained by
using a least square procedure in comparison with experimental data. Parameter N is taken as
5, to have the best fit.

According to this model, the ELM size and deposition time are dependent on

collisionality due to the limitation of the transport time along the open magnetic field lines

(“plugging effect”) [38,39,40].

VIII. 6. Some numerical results for benchmarking. A simplified stability criterion (VIII.
1.1) for the ballooning mode was adapted in the ASTRA transport code [41]. When total edge
current exceeds the peeling limit, then the radial transport coefficient was increased by a
large amount within a region of radial widthd,,,, at the plasma edge. Fig.19 shows the
calculated evolution of plasma temperature and density during and after ELM in JET.

n, 10°m®
6 ———

F—~—— —— JET, before ELM
5 Y S | -— JET, ater ELM
"'\\ " ;
: N :

. \

Fig.19. Electron temperature (a) and density (b) profiles before and after ELM

(JET case, [45]).

Convective losses along the magnetic field lines dominate during the ELM. Att > 7,,,, edge
current decreases and the plasma becomes stable to both ballooning and peeling modes. The
radial transport drops to neoclassical level (see Fig. 19) and convective losses are no longer
active.
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Fig. 20 Time evolution of the thermal conductivity at the edge during the ELM cycle; m2/sec;
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As a result, the pedestal slowly recovers and the plasma again crosses the stability boundary.
Clearly in this case a cycle occurs, and we see in Fig. 21-22 the evolution of various

equilibrium quantities over a couple of ELM periods.

15 0.02

Jeritt. —--Te,ev | | 7777 pedestal energy AW__, MW/m?

Pressure eV/im™

1 B | -
70 PR et -
00Lg .7 ; : ; P

05 L '; S
P B R ﬂﬂm/t/sec-
. , ,
ol i | E,/I Asdex U;J Eﬁny H-Mode 0
0.06 0.07 0.08 0.09 0.1
0.06 0.07 0.08 0.09 0.1

t, sec

Fig. 21 Time evolution of the critical (solid) and . Fig. 22 Time evolution of the stored pedestal

total currents (short dashed line), MA/m2; energy AWW , (dashed) and total pressure
pedestal electron temperature Te, keV (long (solid) at the edge [42,43]
dashed line)[41,42]. T

The time scale for ASDEX Up parameters for the ELM is 7,,,, = 400usec and the
time between ELMs = 10msec. The energy loss per ELM is estimated as 12 +18kJ,

comparable with the experiment data. The transport coefficient y, is of the order

1+1.5 m’/sec. The qualitative agreement with ASTRA data provide confidence in the
model. The evolution of the plasma density and the electron and ion temperatures in the case
of JET plasma is similar (see Fig.23). The ELM repetition rate in the model is found to be
about 15 ms, a factor of 3 smaller than the experimental one (for JET it is about 50 ms). It is
seen that during an ELM approximately 1% of the total energy is lost, consistent with the

ELM repetition rate, whereas in the experiment the energy loss is about 3%.
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Fig.23. Time dependence of electron temperature and plasma density at the
pedestal top and the bulk energy (JET case [45]). Calculation from [46]

The results of the computations presented here demonstrate that the model fits the

experimental data at least qualitatively. In section VIII the calculation of ELMs in TOKES

are presented.
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IX. Conclusive remarks and TOKES application for ITER

The main objective of the project was to develop physics-based models of
neoclassical and turbulent transport coefficients in the core, pedestal and scrape-off layer/
divertor regions for numerical implementation into TOKES transport code. This ultimate goal
has been completed and update TOKES transport code version, suitable for simulation of
transient processes (ELMs, Massive Gas Injection etc.) and impurity dynamics in the ITER
boundary plasma was prepared. Two physics tasks, related to ITER, are currently under
discussion and will be simulated in TOKES.
First task is
a) to evaluate ITER core plasma pollution with tungsten impurities sputtered from the
divertor plates by small (mitigated ) ELMs during the discharge time. This gives the answer
to which extent ELMs have to be suppressed to be tolerable for ITER operation in the sense
of PSC life-time and dilution. The model will include a sputtering of divertor plates by
incident ELMy hot particles as a source of impurity ions, dynamics of impurity ions in the
SOL region and “entraining” effect of ELMs in the pedestal area.
The second task is
b) to simulate the radiation energy distribution on the first wall during TQ and CQ stage in
ITER caused by Massive Gas Injection (MGI). Impurities of Ne and Ar will be introduced in
H-mode ITER discharge by MGI and their poloidal and radial distribution will be calculated
by 2D TOKES Code. Stoping radius and required amount of injected gas will be rescaled
for ITER by taking into account results and arguments from JET experiments. Such
calculations are 2D and address the poloidal asymmetry in the first instance. TOKES Code
will include the 2D impurity transport in the SOL and pedestal region and will account for
the opacity effects in realistic (magnetic) geometry.
The following tasks will be implemented in TOKES in near future:

1. plasma current equation

current equation for ELM triggering (peeling-ballooning modes interplay)
2D impurity dynamics in the SOL
entraining mechanism of impurity screening
2D grid in the pedestal zone
diverter plate sputtering by incident ions from the ELM transient loading

model for hydrogen dynamics in the boundary plasma; modelling of MGI.

® N kR wd

poloidal convection, V,

y,sep

and boundary conditions at the separatrix
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