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computational framework.

The suite of modelsthat we devel oped during the V T-experiment especially alowed usto come
up with a characterization of the competence of the propose-and-revise method and a list of its
assumptions (some examples are given in section 5.4). These assumptions are further described
in Fensel (1995b), but the basic idea is that these assumptions alow for a strong problem-
solving method to solve atask more efficiently than the weak generate-and-test paradigm only
operating on the problem specification and not using any heuristics for the generation of a

solution.

Making these assumptions explicitly allows us on the one hand, to prove properties of problem-
solving methods, for example that they correctly solve the problem, when these assumptions
hold. Therefore, they can be used during the construction and adaptation process of reusable
methods or reusabl e building blocks of such methods. On the other hand, the assumptions allow
usto test, whether aproblem-solving method is really applicable for a given domain knowledge
base. Therefore, they can be used to support the method selection process, i.e. the actual process
of method reuse. Such an analysisis mandatory for building successful application system from

reusable components.

The assumptions of a problem-solving method for the required domain knowledge can be
defined together with the external part of the method ontology. This combined definition
defines all the requirements for the method' s domain knowledge. At present, both aspects
cannot be represented in KARL. Therefore, KARL is a specification language for models of
expertise and for their analysis, but the representation of reusable problem-solving method

making their ontological commitments explicit is still not really supported by KARL.
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the CRLM approach which supplies powerful shells eliminating or drastically reducing the
implementation effort, but provides|ess support for the early knowledge acquisition phases. By
combining both approaches, a description of a system and of the used knowledge at different
complementary levels can be achieved: The knowledge is described at the conceptual level ina
semiformal manner by the different layersand primitives of amodel of expertise. It isdescribed
at the formal level to define a precise and unique meaning. This formal description enables us
to exactly define our interpretation of the problem-solving method propose-and-revise without
referring to implementational aspects. The knowledge isdescribed at theimplementational level
by a running system. The domain knowledge can comfortably be acquired and efficiently be

executed by the shell.

One cannot state in general that a specific approach is best suited to solve a knowledge-
engineering task like VT. Probably any structured approach will do, given that it provides the
means to deal precisely enough with the peculiarities of the domain and the method. Somehow,
the process of reasoning about the system is as important as the product of that process,
independent of whether that product is aformal specification or an implemented system. This
reasoning about the competence of a system can also be done during the implementation. Using

aformal specification for this process has the following consequences:

* It requires additional effort as a semiformal and formal specification have to be built up.
Actually, most of this effort is not really additional effort, as it has to be spent during the

implementation otherwise.

» During implementation, the main concern is the product and not the process of
understanding the system better. The product of the process is an implementation of the
system. During specification, the emphasis lies in understanding the system better. This
improved understanding is the important product of the process.

» The formal specification in KARL keeps the conceptual structure of the problem-solving
method as the point of reference for discussing and understanding its formal details. This
need not hold for the implementation which is concerned with symbol-level efficiency.

» The formal specification abstracts from implementational details, which are not related

with the detailed specification of the method but with its realization in a specific



8.2 Experiencewith the Implementation

The adaptation of the problem solver worked as expected, but the generation of the knowledge
editors raised some problems, since the problem solver and the knowledge-acquisition-
generation system made significantly different assumptions about the internal representation of
the domain knowledge. This is no problem if one assumes two different environments for
knowledge acquisition and problem solving and writes atranglator for both representations, but
we prefer an integrated approach. We will adapt both, problem solver and knowledge-
acquisition-generation system, in that respect. Additionally, we have noticed that our approach
presently does not alow for the specification of the runtime environment, for example the

explanation component, but that we have to code this explicitly.

It was a bit of a surprise that it took way longer to arrive at a sufficiently bug-free domain
knowledge base compared to the effort it took to build the interpreter, especially considering
that a reverse engineered OPS5 knowledge base in Y ost (1992), aformal KARL specification
in Sprau (1993), and aformal Ontolinguaspecification in gruber and Runkel (1993) were given.
Some problems can be covered with automatic analyzer tools, but others are introduced by
trand ating natural language descriptionsinto aformal representation. The correspondence of an
informal and aformal specification cannot be proven formally. A good example for thisis the
compensation cable constraint, which was misrepresented by several modeling groups
(including the Ontolingua specification) or the wrong use of radius instead of diameter in the

KARL specification of the domain knowledge.

8.3 Experiences concerning the Combination of MIKE with CRLM

To some extent, both approaches are complementary and supplement each other very well.
Fensel, Eriksson and Musen (1993) already report on a fruitful combination of arole-limiting
method approach and MIKE. In its current stage, MIKE offers significant tool support for the
early phases in knowledge engineering. The hyper model can be used to semiformally describe
a model of expertise and this description can be further refined and operationalized by the
specification language KARL. Language and tool support for the design phase is under way.

Currently, there is no support for the implementation of afinal system. The contrary holds for



of the domain layer and, thus, are defined twice.

» Evaluate knowledge: A constraint is modeled as an object of the class constraints and by a
rule which defines the conditions for a constraint being violated. A constraint violation is
indicated by deriving an object which denotes the respective constraint as an instance of the
unary predicate constraint_violated. This predicate is used as a switch which turnsfix rules

on and off. Such usage of flags looks like assembler programming in logic.

* Revise knowledge: A fix is modeled as an object of the class fixes. The binary predicate
related_fixes models the relationship between a constraint and its associated fixes and the
ternary relationship fixed_value relates the fix to the parameter it changes and to the new
value which the fix derives for the parameter. A fix is further described by a rule which
intensionally defines the relation fixed value. The representation of the “old value” of a
parameter (i.e. asavalue of the attribute which models the parameter) and the “new value’
of a parameter (i.e. as a value of an instance of the predicate fixed value) by different
modeling primitives is necessary due to the monotonicity of the domain layer. Value
changes cannot be expressed directly unless modal logics such as, for example, temporal

logic were used.

It is no surprise that KggSF Veld (1994) runs into some similar problems. A specification
language like DESIRE, which explicitly provides the object/meta distinction, allows a more
explicit representation of these types of meta knowledge Brazier, van Langen, Philipsen,
Wijngaards and Willems (1994). But even DESIRE has some of these problems, for example
in the context of how to derive and represent the knowledge given by the dependencies of the

propose rules at the domain layer implicitly without encoding it a second time.

We often claim that modeling with KARL is modeling at the knowledge level because the
knowledge can be described declaratively without referring to specific algorithmic solutions for
the inference steps, cf. Schreiber (1992). The knowledge is described declaratively without
referring to symbol level control defining an algorithmic solution for elementary inference
actions. But sometimes modeling with KARL seems to be modeling in the basement of the

knowledge level .1

1. Especialy when looking at the restriction on Horn logic which is necessary to operationalize KARL.



effort. This indicates the feasibility of method adaptation instead of simple method selection,
even for afamily of methods. In the following, we will present lessons which we have learned

from using KARL, from using CRLM, and from combing them.

8.1 KARL: TheBasement of the Knowledge L evel

The domain layer was devel oped independently from the problem-solving method for the first
time. Therefore, it was a crash-test for the mapping via extended Horn clauses to see whether
the domain layer could be mapped onto the method ontology. The domain layer usesahierarchy
of severa classes, whereas the problem-solving method works on aflat set of parameters. The
intelligibility of the domain layer is significantly improved by this hierarchical structure.
Related domain knowledge is grouped together and the hierarchy defines different levels of
abstractions. Other problem-solving methods like hierarchical skeletal-design methods might
require such a hierarchy for their reasoning process. On the one hand therefore the hierarchy
improves usability and reusability of domain knowledge. On the other hand, in our case, this
hierarchy of classeswith attributes had to be mapped onto aflat set of parameters. Furthermore,
the problem-solving method should not make assumptions about the number of parameters.
Therefore, every attribute of the domain layer has to be mapped to an object at the inference
layer. Thisisthe only way to handle a set of attributes with unknown cardinality. The mapping
is accomplished by clauses like the following:
par(attribute, domain_class)[value: V] [0 parameter — object[attribute : V] O domain_class.

These clauses already embody meta-reasoning, because attribute names (i.e. terminological
knowledge) at the domain layer is mapped to objects (i.e., constants) at the inference layer. For

every class at the domain layer, such a clause has to be defined.

The domain layer itself contains severa types of meta-knowledge which are not represented
appropriately in KARL:
» Propose knowledge: The computation of values for attributes depends on the values of
other attributes. This circumstance is reflected in the binary predicate dependency, which
ranges over attributes. Such a definition of predicates between attributes was originally not

possible in KARL. In addition, the dependencies are given implicitly in the propose rules



The next constraint violation (MINIMUM_PLATFORM_TO HOISTWAY_LEFT) is caused by the
parameter PLATFORM_TO_HOISTWAY_LEFT, Since its value should be at least 8. Increasing
OPENING_TO_HOISTWAY_LEFT by 1 to a value of 33, i.e. by the missing amount of
PLATFORM_TO_HOISTWAY _LEFT, implies recomputation of PLATFORM_TO_HOISTWAY_LEFT to 8 and
fixes the violation.Then the HOIST_CABLE_SAFETY_FACTOR is below its minimum (C-29 _1). This
issimply fixed by increasing the number of hoist cables from 3 to 5. At this stage, the value of
vertical force of the car_guiderail is well above its upper bound (C-50). Again, the first fix is
successful by upgrading the cARGUIDERAIL to the next model. Now all parameters are computed,
but the last value violates the constraint C-48 2 concerning the traction ratio. Fixing this
constraint is not trivial and requires a significant amount of search. After trying about 500
combinations, upgrading the MSHEAV EGROOV E.MODEL finaly solvesthe problem. To get
the same solution as in Yost (1992), we have to declare the fix upgrading the machine beam
model as appropriate for C-48_2. Then, after about 1000 search steps, a combination of four
fixesisfound for the constraint: The distance from the counterweight to the rear of the platform
is decreased to 1.75 inches, the car supplement weight is increased to 500 pound, the "3/16-
chain" is selected as compensation cable and "S10x35.0" as machine beam. About 99% of the
whole run-time of the configuration are used to fix this last constraint, the other parameters are
computed pretty instantaneously. The entire runtime of the system is about 10 seconds on a

Quadra 700 using Macintosh Common Lisp.

8 Discussion

The integration of KARL and CRLM resulted in a running solution exhibiting fast response
times and a formal specification of the propose-and-revise method and the available domain
knowledge. The mechanisms employed are generic and reusable in other domains or
applications. The specification language KARL can obviously be (and aready has been) used
to describe other knowledge models. Its application in this experiment indicates that its use is
feasible for real life tasks. The implementation resulted in a generic shell for the class of
propose-and-revise problemswhich will be reused for similar problems. The shell was not been

constructed from scratch. Instead, ashell for arelated problem was adapted with rel atively small



as described in Schreiber, Terpstra, Magni and van Velzen (1994).

The implemented system is generic w.r.t. the propose-and-revise method and not specific to the
VT domain. The developed environment is suitable for other simple design problems. We
validated this by successfully using the system for the U-Haul domain, another parametric
design problem developed by John Gennari, c.f. Rothenfluh, Gennari, Eriksson, Puerta, Tu and
Musen (1994).

7 SampleTrace
The following table show parts of a sample trace of the system with the VT domain. The

parameters are computed in the order in which they appear in the table.

Parameter/Constraint Value
Propose for COUNTERWEIGHT_BUFFER_BLOCKING_HEIGHT 0
Propose for ELEVATOR.MOTOR.MODEL-ID MOTOR_MODEL_MO03
Constraint C-34_1
Propose for MOTOR_PEAK_CURRENT_REQUIRED 207.71633163639518
Propose for PLATFORM_TO_HOISTWAY _LEFT 7
Constraint MINIMUM_PLATFORM_TO_HOISTWAY_LEFT
Propose for PLATFORM_TO_HOISTWAY _RIGHT 8
Propose for HOIST_CABLE_SAFETY_FACTOR 6.865653330712384
Constraint C-29 1
Propose for MACHINE_GROOVE_PRESSURE 207.84.54248617777776
Propose for CAR_GUIDERAIL_VERTICAL_FORCE 6328.686463333333
Constraint C-50
Propose for COUNTERWEIGHT _PLATE _QUANTITY 80
Propose for HOIST _CABLE _TRACTION_RATIO 1.8534565074966143
Constraint C-48-2

Figure 24. Trace of the configuration for the test case.

The first constraint violation being detected is C-34 1, since the selected motor.model is not

compatible with the actual machine.model. The fix simply upgrades to a compatible machine.



Configuration Input S[J=——— Results for Sisyphus-UT ——=——0|
M& Value I Parameter [watue |
CAR_CAP ACITY_RANGE 3000 HOIST' AY_BRACKET_SP ACING 165 O
CAR_SPEED 250 ELEY ATOR.C ARBUFFER MODEL-ID' CAR_BUFFER_MODEL_OH1
DOOR_OPENING_TYPE side CAR_BUFFER_QUANTITY 1
DOOR_SPEED double CAR_BUFFER_BLOCKING_HEIGHT B
DOOR_OPENING_STRIKE_SIDE_SPEC right CAR_BUFFER_FOOTING_CHANNEL_HEIGHT |[3.5
PLATFORM_WIDTH 70 COUNTERWEIGHT _GUIDERAIL_UNIT_WEIGHT |3
PLATFORM_DEPTH_SPEC 34 CAR_SUPPLEMENT _WEIGHT 0
CAR_CAB_HEIGHT 96 ELEY ATOR.COMPENS AT IONC ABLE MODEL-ID | | COMPENS AT ION_C ABLE_MODEL_MO7
CAR_INTERCOM_SPEC no COMPENS AT ION_C ABLE_QUANTITY 0
CAR_L ANTERN_SPEC no COMPENSATION_CABLE_LENGTH 0
CAR_PHONE_SPEC yes CONTROL_CABLE_UNIT_WEIGHT 0.167
CAR_POSITION_INDICATOR_SPEC yes ELEY ATOR.CROSSHE AD.MODEL-ID CROSSHE AD_MODEL_MO4
HOIST'W AY_DVERHE AD 192 COUNTERWEIGHT _BETWEEN_GUIDERAILS_..|[ 28
HOISTW AY_PIT_DEPTH 72 COUNTERWEIGHT _FRAME_HEIGHT 133
HOIST'W AY_TRAVEL 729 COUNTERWEIGHT_FRAME_THICKNESS 31
HOISTW AY_WIDTH 90 COUNTERWEIGHT _PLATE_DEPTH 7
HOIST'W AY_DEPTH 110 COUNTERWEIGHT_PLATE_QUANTITY 30
OPENING_COUNT 6 COUNTERWEIGHT _GUIDERAIL_UNIT_WEIGHT |[3
HOISTW AY_FLOOR_HEIGHT 165 ELEYATOR.COUNTERWTGUARD.MODEL-ID || COUNTERWEIGHT _GUARD_THICKNESS_M..
OPENING_WIDTH_BUILDING 42 ELEYATOR.COUNTERWTBUFFER.MODEL-ID || COUNTERWEIGHT _BUFFER_MODEL_MO1
OPENING_HEIGHT 24 COUNTERWEIGHT _BUFFER_QUANTITY 1
OPENING_TO_HOIST'W AY_LEFT 32 COUNTERWEIGHT _BUFFER_BLOCKING_HEIG..|[0
MACHINE_BE AM_SUPPORT_TYPE Packet ELEYATOR.DEFLECTORSHEAVE.MODEL-ID || DEFLECTOR_SHE AVE_MODEL_MO1
MACHINE_BE AM_SUPPORT_DIST ANCE 118 ELEY ATOR.DOOR.MODEL-ID DOOR_MODEL_CODE_MO3
MACHINE_BE AM_SUPPORT_BOTTOM_TO_..|[16 GOYERNOR_CABLE_DIAMETER 0375
MACHINE_BE AM_SUPPORT_FRONT_TO_H...|[3 GOYERNOR_CABLE_LENGTH 2130
ELEYATOR.HOISTC ABLE.MODEL-ID HOIST_CABLE_MODEL_MO1
HOIST_CABLE_LENGTH 1058.96
ELEY ATOR.MBE AM.MODEL-ID MACHINE_BE AM_MODEL_MO1 |
[] @] B

Figure 22. Input and results of the configuration.

Since in the VT-Experiment two formal ontologies, Sprau (1993) and Gruber and Runkel
(1993), were given, we defined mappings from both ontol ogies to the knowl edge representation
of the finally implemented system, although thisis not typical for our approach. The ontology
in Sprau (1993) contained sufficient knowledge for our propose-and-revise implementation.
Part of the entire Sisyphus project was to evaluate the reuse of domain knowledge as provided
by the ontology of Gruber and Runkel (1993). Therefore, we also defined a transformation of
this ontology. It contained large parts of the knowledge actually needed for our propose-and-
revise system, but we had to add some missing propose rules, add the fixes and correct some

minor bugs. The mapping was handled automatically, following suggestions by Guus Schreiber

ED§_ Derivation for CAR_BUFFER_BLOCKING_HEIGHT E—"—————"1V|
i
HOISTW AY_PIT_D... )

PLATFORM_WIDTH

PLATFORM_DEPT...

" ECETATORPLATED ]

W

PLATFORM_DEPTH

Inspect symbol level FFER_HEL..
ELEVATOR.CARBUF... |-——X FFER_FOO...
Computed by proposal as: 84 B
<
@] show Parameter PLATFORM_DEPTH [t

Show Proposal PLATFORM_DEPTH_C

Show Derivation for PLATFORM_DEPTH
Show consequences for PLATFORM_DEPTH

Figure 23. Derivation graph for the car buffer blocking height.
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Figure 21. A hierarchy and some corresponding forms generated by the knowledge acquisition environment.

acquired. Again, the specification can be enriched with layout information.

The declaration of the graphical knowledge acquisition environment took about half a day.
Some of the generated forms are shown in figure 21. The three forms show the acquisition of a
propose rule, a constraint, and an upgrade fix related to the computation of the motor model of
the elevator. The hierarchy in the upper right part of the figure shows a more global view of the
knowledge base and is used to acquire and present the relations between components and

parameters, parameters and propose rules, parameters and constraints, and ,finally, constraints

and fixes.

In contrast to the knowledge acquisition environment, the end user environment, for example
the table to enter the configuration data, the table for the configuration results, and the
explanation component is not generated but hard coded. However, the coding was rather easy
given our library of graphical primitives that are aso used for knowledge acquisition. In figure
22 the tables containing inputs and outputs are shown. The user may either get an explanation
for the computed values or he may change parameters as long as the configuration remains
consistent w.r.t the constraints or he accepts the violations. The explanation shows the

abstracted derivation graph where only the parameters used to compute the val ue are shown, but

not the actual rules (see figure 23).



interpreter from scratch. Rather, large parts of the propose-and-exchange method used for the
previous Sisyphus problems, cf. Poeck (1991, 1992), could be reused. A detailed description of
this method and the shellbox COKE in which it isrealized can be found in Poeck (1995). Since
the propose-and-revise method has already been described in detail in section 5, we will focus

in the following on the differences to propose-and-exchange.

In the adapted implementation, propose-and-revise consists of four main steps stemming from
propose-and-exchange that are repeated until a complete solution is found or until the
configuration task terminates unsuccessfully: Select a parameter (see section 5.2), propose a
value for this parameter (see section 5.2), test the constraints for this parameters (see section
5.3), and revise the configuration by applying fixes if constraints do not hold (see section 5.3).
The first step is exactly the same as in the propose-and-exchange method. No explicit
knowledge for this step is contained in Y ost (1992), but at |east a partial ordering is defined by
atopological sort of the dependencies viathe propose- and constraint- and fix rules. The second
step is dightly different to propose-and-exchange in that a value is computed rather than
selected. While the third step is completely identical again, the correction of constraintsin the

last step is quite different and had to be implemented entirely anew.

The actual redlization of the propose-and-revise-method as an adaptation of propose-and-
exchange was rather straightforward and mainly meant implementation of the revise step and
adaptation of the control flow. The whole implementation effort for the method took about 2
days.

Although our actual VT-knowledge base was mapped from the ontology in Sprau (1993) and
later alternatively from Gruber and Runkel (1993), we also generated a graphical knowledge
acquisition environment as it is normally used within our approach. Thisis done as described
in Poeck and Gappa (1993) and Gappa (1995), by precisely declaring the internal knowledge
representation, c.f. figure 20, i.e. the object types with attributes and their syntax, relations
between the objects and dependencies of attributes. In addition to that, we generated knowledge
editors like hierarchies, for example, by specifying relations to be acquired. The specification
of the relations can be extended by further layout informations, for example the shape of the

boxes. Forms can be generated by simply specifying the object type and the attributes to be



procedurein the shell environment and to alogical rulein KARL. In KARL, rules cannot be the
value of an attribute. In the shell environment, the calculation rule for a parameter can used as

value for the parameter directly.

6 Implementation Aspects

The implementation of our solution of the configuration task was carried out according to the
configurable role-limiting shell approach described in Poeck and Gappa (1993) and Poeck
(1995), which extends earlier work on role-limiting methods, c.f. Marcus (1988b) and Puppe
(1993). We decided to follow the problem-solving method propose-and-revise by Marcus
(1988a) as closely as possible. The specification of propose-and-revise in section 5 is aformal

reverse engineered version of the implementation and should be used as a reference.

Based on an initial understanding of the problem-solving method, we first designed the already
mentioned external method-oriented knowledge representation shown in figure 20. To simplify
knowledge-acquisition and user-interaction, we later added some minor details like grouping of

parameters in components for better organization in the corresponding hierarchy, etc.

In asecond step, after defining a suitable knowledge representation, an interpreter and graphical

environment for this knowledge representation was developed. There was no need to build an

Set-valued Fix

changes

constraints expression
limits
Constraint <\/ [ n/decr ease Fix Upgr ade Fix

<>
Key: | class | | class <> Predicate == is-a

Figure 20. Knowledge representation for propose-and-revise.




applied does not matter). A critical control decision of propose-and-revise is that it cannot
backtrack beyond a selected constraint violation. If a selected constraint violation cannot be
repaired by the fix knowledge, the method stops with a failure instead of selecting another
constraint violation and trying to fix this. The propagation of the later repair activity could
possibly also repair the former violation. As no heuristic selection knowledge for constraint
violationsis provided at the domain layer, thisisavery significant and critical restriction of the
method. For more details see Fensel (1995b). Becoming aware of these featuresis also possible
by implementing rather than formalizing the method. The main advantages of a specificationin

KARL are:

» Theformal specification maintains the conceptual structure of the problem-solving method
as point of reference for discussing and understanding formal details of it. This need not
hold for the implementation, which is concerned with an efficient realization by a

computational agent.

» The formal specification abstracts from implementational details which are not related to
the detailed specification of the method, but with its realization in a specific computational

framework.

In section four we presented the domain model of the VT-domain. In section five, we defined a
method ontology by terminological definitions in inference actions, stores, views, and
terminators. The union of all these definitions defines the method-specific ontology. When
looking only at views and terminators, we have that part of the method ontology whichisvisible
to an externa observer of the method. This external method-specific ontology defines the
knowledge types required by propose-and-revise as input from the domain layer. As KARL
does not explicitly provide such a collected view on its method ontology, we will use the
representation of the external method ontology of the shell and the knowledge acquisition
environment which will be described in the following section. The external part of the method
ontology is depicted in figure 20.

A technical difference between the distributed specification of this ontology in the KARL

model and the specification in figure 20 is caused by the fact that KARL cannot refer directly

to rules as syntactical entities. What is called an expression in figure 20 corresponds to a



that were violated before the application of the fixes (these constraints are still accessiblein the

store violated constraints).

The result of the comparison carried out by the inference action compare constraintsis written
into the store resulting constraints. In particul ar, thisresult indicates which constraint viol ations
have disappeared due to the application of the fixes and, respectively, which other constraints
had not been violated before the fix was applied. A combination of fixes is considered
successful if it has corrected some constraint violations without causing new constraint

violations.

In this case, the set of parameter valuesin the store virtual partial design is copied to the store
partial design and the contents of new violated constraints substitute the previous contents of
violated constraints, i.e. the effect of the fixes is made permanent. Otherwise, the contents of
the stores partial design and violated constraints remain unchanged, and a new combination of

fixesistried, i.e. the effects of the combination of fixestried last are discarded.

In either case, the main loop in figure 16 continues trying combinations of fixes until al
constraint violations disappear or until the set of applicable combinations of constraints has
been exhausted without removing all constraint violations. In the latter case, the problem-

solving method stop, since this means that the current problem cannot be solved in this way.

54 Concluding Remarks

The conceptual and formal specifications of the different types of knowledge required for
problem-solving provide insight into several important aspects of propose-and-revise. Propose-
and-revise makes strong assumptions about available domain knowledge. For instance, in our
understanding, the method assumes that the graph formed by proposerulesiscycle-free and that

the fixes do not interact (i.e. the order in which fixes resulting from a fix combination are

virtual partial design —»4— constraints
; A

partial design new violated constraints

compare constraints

violated constraints
Figure 19. Inference structure of evaluate fix.

—| resulting constraints
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Figure 18. Inference structure of apply fix.
layer which is accessible through the view fixes. The parameter and itsfixed value are stored in

new parameter.

The inference action change parameter s substitutes the old value of the corrected parameter in
the virtual partial design and stores the updated set of parameter valuesin the store temporary.

The contents of temporary are then copied to the store virtual partial design.t

Whenever afix involved in the current combination of fixes has been applied for the specified
number of times, the effects of these applications are propagated to other parameters by the
inference action propagate fix, which again is a composed inference action. The new value has
to be propagated through the network of propose rules as defined at the domain layer. For

reasons of limited space, we will skip the refinement of this complex inference.
5.3.3 Evaluating Constraints after the Application of a Fix

Theinference action evaluatefix in figure 15 isa so composed. Itsrefinement isshown infigure
19. When a combination of fixes has been applied and its effects have been propagated to other
parameters, the resulting set of parameter values has to be checked again in order to find out if
the fix has actually improved the situation with respect to the amount of violated constraints.
The constraints' re-evaluation is accomplished by the composed inference action evaluate fix..
The set of current parameter values in the store virtual partial design is evaluated by the
inference action test, using the view constraintsin order to access the constraints formulated in
the domain layer. The constraint violations are written into the store new violated constraints.
In order to find out if the applied combination of fixes results in an improvement, the current

constraint violationsin the store new violated constraints have to be compared to the constraints

1. The respective value cannot be replaced in the store virtual partial design directly, since this would run counter to the

monotonicity of individual inference actions.



fixes in a combination may be applied more than once (for instance, upgrading a part of the
elevator). Combine fixes a so takes precautions for this. Thus, combinations of fixes may differ

in the fixesinvolved as well asin the number of iterations of individual fixes.

| selected constraint | | selected fixes |

select possible fixes
possible fixes —>| combined fixes |

Figure 17. Inference structure of deliver fix.

select combination

Combinations of fixes causing only minor changes should be tried before any fixes implying
severe modifications. Y ost (1992) provides a scheme supporting the use of fix combinations.
This schemeis described in the view fixes by means of several predicates used by the inference
action select combination for identifying the most promising combination of fixes. Select
combination also takes into account that only such a combination is selected which has not
already been tried on the current set of constraint violations. It does so by keeping track of
already tried combinations of fixes in the store old fixes. The fixes involved in the chosen
combination are then stored in the store selected fixes.

5.3.2 Applying Fixes

The inference action apply fix in figure 15 is a'so composed. Its refinement is shown in figure
18. The store selected fixes contains a collection of individual fixes, which make up a single
composite fix. Each of the individual fixesistagged with anumber indicating how many times
thefix should be applied. Theinference action select fix identifiesthe fix within the combination
which should be applied next. This is again based on the preference relationship available
through the view fixes which indicates that fixes causing minor side-effects should be applied
first. This seems to be fairly reasonable as Y ost (1992) does not give an indication in which
sequence to apply fixes within a combination.

Which fix isto be applied next is recorded in the store next fix. This store serves asinput for the

inference action fix parameter which computes a modified value for the parameter affected by

the chosen fix. The computation of this value relies on the predicate fixed _value at the domain
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SUBTASK revise
/* Check for constraint violations. */
violated constraints := test(partial design);

/* Thelogical variable deadlock becomes true if a constraint violation could not be resolved. */

deadlock := false;
WHILE -[J (violated constraints) [J deadlock
DO

/* Initialize acopy of partial design. */
virtual partial design:= partial design;
* Select one of the violated constraints. */
selected constraint := select constraint(violated constraints);
REPEAT
I* Generate applicable combinations of fixes and select one of them. */
selected fixes := deliver fix(selected constraint);
/* Apply the combination of fixes and propagate its effects. */
virtual partial design := apply fix(selected fix, virtual partial design);
[* Check if the applied fixes improve the situation. */
improvement := false;
(violated constraints, partial design) :=
evaluate fix(violated constraints, virtual partial design)
UNTIL O(selected fixes) O improvement;
IF ~improvement THEN deadlock := true ENDIF
ENDDO
ENDSUBTASK;

- /

Figure 16. Controlflow of revise.
particular constraint in the store selected constraint. The association between constraints and

fixesisdescribed at the domain layer by the predicate related_fixeswhich is accessible through
the view fixes. In some cases, a single fix may not be sufficient for correcting a constraint
violation, but combinations of fixes must be considered. To that end, the inference action
combine fixes generates all possible combinations of the fixes in the store possible fixes, which

roughly corresponds to computing the power set of applicable fixes. Furthermore, some of the



in the VT-application, selection will be random (again we use the lexicographical ordering of
the object-id terms). The selected constraint (which is stored in the store selected constraint) is
then used by the composed inference action deliver fix to find fixes that might remove the
particular constraint violation. It then selects the fix or the combination of individual fixes that
seem to be most appropriate in the given situation. Apply fix then applies the selected
(elementary or composite) fix to the partial design (actually to virtual partial design, whichis
the internal copy of partial design in revise). As a result, a new value for one parameter is
computed as indicated by the respective fix. Since other parameters may depend on the value
which has just been modified, apply fix aso propagates the effect of that modification onto
dependent parameters, thus giving rise to a new set of currently computed parameter values in

the store virtual partial design

The application of a fix may have side-effects on constraints on other parameters. Therefore,
after propagating the effects of the fix, the current collection of parameter values is evaluated
again with respect to the given constraints by executing the composed inference action evaluate
fix. If the situation has improved, the contents of the store virtual partial design are copied to
the store partial design, i.e. the effects of the fix are made permanent, and the set of violated
constraints in the store violated constraints is updated. If the application of a fix combination
has not lead to an improvement, deliver fix is used to deliver the next fix combination as long
as fix combinations for the selected constraint violation exist. If no further combinations exist,

the revise step stops and sets the boolean variable deadlock to “true’.

Even in the case of an improvement, violated constraints could still exist. In this case, the
selection of one violation, the determination and application of a fix, and the propagation and
evaluation of its effect isrepeated once again. Theinterna control of theinference actionrevise

isexpressed in KARL as shown in figure 16.
5.3.1 Determining Applicable Combinations of Fixes

The inference action deliver fixin figure 15 is also composed. Its refinement is shown in figure
17. After a constraint violation has been detected, the first step for its removal is the execution
of the composed inference action deliver fix in order to identify applicable fixes. To that end,

the inference action select possible fixes determines al individual fixes associated with the



heuristics with respect to the ordering of parameters which could get a value according to the
propose rules and the already derived values of other parameters. Due to this fact, the
corresponding mapping expression statesthat an instance of parameter ispreferred over another
if its object-id term is lexicographically smaller. If there were any domain-specific heuristics,

the mapping could be easily adapted to take them into account.

5.3 Revise: Resolving Constraint Violations

After a previously unknown parameter value has been computed by propose, the extended set
of known parameters is checked with respect to the constraints. If a constraint violation is
detected, attempts to remove the problem are made. This is done until no more constraint
violations can be found or no more repair activities are available. The inference structure of the

composed inference action reviseis given in figure 15.

The elementary inference action test checks, whether the new value together with the already
derived partial design lead to constraint violations. The view constraints is used to deliver the
required domain knowledge. All violations are put in the store violated constraints. An attempt
to restore consistency proceeds by first choosing one of the violated constraints which will be
tackled next. This is accomplished by the inference action select constraint which selects one
of the instances in the store selected constraint using a preference relationship defined in the

view constraints. Since no elaborate heuristicsfor preferring aconstraint over others are given
et O partial design

constraints | violated constraints virtual
partial design
A
select constrai nt
|selected constraint]

selected fixes

Figure 15. Inference structure of revise.



/l NFERENCE ACTTON sdlect possble parameters \
PREMISES parameters, partial design;
CONCLUSIONS possible parameters;

DEFINITIONS
> panae —<>
non-initial possible
not-possible
RULES

/* Parameters which do not depend on other parameters are possible candidates. */
non-initial(X) — X[depends:: {Y}] [J parameter.
possible(X) — X [ parameter - non-initial (X).
/* Parameters which depend only on parameters already having avalue are possible
candidates. */
not-possible(X) — X[depends:: {Y}] L] parameter (1= [ partial-design.
possible(X) — X [ parameter [ - not-possible(X).
[* Parameter already having a value are not a candidate. */
X [ possible parameters — possible(X) 0= X [ partial design.

\_END; /)

Figure 14. The inference action select possible parameters.
Inthe particular case of aview or aterminator, thereis al so a specification how thisterminology

isrelated to domain specific terms. For instance figure 13 indicates that an instance of the class
parameter underlying the view parameters will be generated for each attribute of the class
elevator at the domain layer (see clauses 1,2,...,n). Also, each attribute of one of the classes
describing a particular part of the elevator to be configured corresponds to an instance of the
class parameter at the inference layer. The set-valued attribute depends, which is defined by
clause n+1, establishes a dependency network of parameters in a similar way as outlined in
Marcus (19884), cf. section 4.3.1. It is used by the inference action select possible parameters

in order to determine the parameters for which a value can be derived.

Furthermore, the view parameters is associated with a predicate, prefer parameter, which
expresses an ordering of instances of the class parameter (see clause n+2). Thisis necessary, as
propose proposes only one value for one parameter per step and does not select all parameters

which could be given a value according to the partial design. There are no domain-specific



/“VIEW Parameters N
DEFINITIONS

[ parameter_|-#e(Vaue)
over : p

prefer parameter

UPWARD MAPPING
(2) par(A,elevator)[value: V] [ parameter
O[A: V] Ll elevator.
(2) par(A,building)[value: V] L] parameter
O, [elevator_build : O,[A: V]] LI elevator.

(n+1) par (X4, Yp)[depends:: { par(Xo, Yo)}] « dependency(attribute: X4, on: Xo).
(n+2) prefer parameter(p: X, over: Y) — X [ parameter Y [ parameter (X <Y).

KEND; /
Figure 13. Detailed specification of the view parameters.
the values of which are already known (i.e. which are in partial design). The store possible

parameters then contains these parameters, for which values can now be computed. One of
these parametersis sel ected by the inference action select parameter. Only one single parameter
is selected. The selection is based on the predicate prefer parameter associated with the view
parameters (cf. figure 13). Finaly, the value of the selected parameter is computed by the
inference action derive value according to the respective rules at the domain layer, which are
accessible through the view propose rules. The computation of the parameter is accomplished
on the basis of already known parameter values. The specification of the inference layer of
propose includes the formal specification of the elementary inference actions select possible
parameters, select parameter, and derive value, the formal specification of the stores possible
parameter and new parameter, and of the views parametersand proposerules. Inthefollowing,
we will present the formal definitionsfor the view parameters (see figure 13) and the inference

action select possible parameters (see figure 14).

The view parametersis specified asindicated in figure 13. Each role is associated with class or

predicate definitions determining the terminology to be used by the problem-solving method.



ﬁ ASK propose & revise \
REPEAT

/* Select the next parameter and ompute the value of a previously unknown parameter. */
partial design := propose(partial design);

/* Derive anew consistent partial design. */
partial design := revise(partial design)

/* Thelogical variable new value becomes true in propose if a new value could be derived.
The logical variable deadlock becomes truein revise if a constraint violation could not
resolved.*/

UNTIL = new value [Jdeadlock
IF = deadlock THEN solution ;= partia design;

ENDTASK;
2 /

Figure 11. Controlflow of propose & revise.
additional parameter values, evaluating constraints, and, if required, fixing constraint violations

isrepeated until propose does not propose a new parameter value (i.e., thelogical variable new
value becomesfalse). If thisisthe case, the partial design isregarded as complete design, i.e. as

solution.

5.2 Proposing Additional Parameter Values

The composed inference action propose of figure 10 is refined to yield the inference structure
depicted in figure 12.1 The inference action select possible parameters in the refinement of

propose identifies parameters with currently unknown values which only depend on parameters

select possible parameters ~<————— partial design |

| possible parameters|

select parameter

| new parameter | proposerules |

Figure 12. Inference structure of propose.

1. Roles are drawn as boxes with dotted borders if they also appear on more abstract levels of refinement.



partial design|— gl solution

Figure 10. Inference structure of propose & revise.

In the following, parts of the specification of the method in KARL will be given. In order to
reduce complexity, KARL supports the notion of hierarchical refinement of parts of the
problem-solving method. Therefore, the presentation of the configuration task’s specification

with KARL starts with an abstract view, which is then detailed further on.

5.1 AnAbstract View on Propose-and-Revise

At an abstract level, the chosen problem-solving method for the configuration of elevator
systems can be depicted in an inference structure as shown in figure 10. Thecirclesin thefigure
denote inference actions, i.e. problem-solving steps. The inference actions propose and revise
in figure 10 are subject to further decomposition (indicated by shaded bubbles), i.e. they are an

abstraction of more detailed levels of inference structures (see the following subsections).

Boxes indicate roles which supply input to inference actions or collect their output as indicated
by arrows. KARL distinguishes three types of roles: Views (a box supplemented with a small
triangle pointing upwards) are used to deliver knowledge from the domain layer for the
reasoning process. Terminators (abox supplemented with asmall triangle pointing downwards)
are used to write results of the problem-solving process back to the domain layer. They are used
to rephrase the generic terms of the problem-solving methods in domain-specific terms. Stores

(boxes without atriangle) define data stores, which model the dataflow between inferences.

The control flow of the method is defined in figure 11. The two inference actions propose and
revise work on a partial design. Propose determines the next parameter which should get a
value and additionally proposes a value for it. Revise checks, whether the union violates
constraints. It modifies parameter values as long as there are constraint violations, and no
constraint violation is identified that cannot be repaired by any of the available fixes. If a
constraint violation cannot be repaired, revise stops without a solution (i.e. the logical variable

deadlock becomestrue). If aconsistent parameter assignment isfound, the process of proposing



48 2 for the hoist_cable_traction_ratio. Therefore, it cannot be treated as a constraint.

Nevertheless, neither the model of the domain knowledge nor its representation by KARL is
totally method-specific, since propose-and-revise does not handle components with attributes,
but only aflat set of parameters. The domain layer of KARL conserves the conceptual structure
of the domain by hierarchically grouping the components and their attributes. Keeping the
hierarchical structure of the domain knowledge can be helpful for other types of tasks like
(model-based) fault diagnosis or other types of problem-solving methods like hierarchical
design methods. Also, it can be used to hierarchically structure the knowledge acquisition tool
for domain knowledge (see figure 21). The link between the domain model and the
representation implied by the problem-solving method can be specified with flexible mappings
in KARL (see section 5). That is, KARL enables the method-independent representation of

domain knowledge.

5 TheProblem-Solving M ethod

The problem-solving method employed for configuring elevators closely follows the approach
outlined in Marcus (1988a) and Yost (1992). Propose-and-revise assumes that a configuration
is ssimply described by a set of parameters. Parameters represent features whose values
determine attributes of the elevator to be configured and which may change during the
configuration process. For instance, the value of a particular parameter might indicate that the
compensation cable (the parameter) currently is amodel 5/16-chain (the value). Configuration
then amounts to computing the values of the output parameters on the basis of the actual input
parameters. Thisis done with the help of so-called propose knowledge, which either represents
good guesses like “ try to use compensation cable model 3/16” or factslike” the total weight of
the cable system equal s the sum of the weights of the four components’ . The consistency of the
configuration is supervised by constraint knowledge. When one or more of the constraints do
not hold, no simple backtracking occurs, but specific fix actions are applied until all constraint
violations are resolved or until it has been ensured that a constraint violation cannot be resolved
by any of the available fix actions (in which case the configuration process aborts with failure).

Fix actions modify previously guessed values of some parameters.



must be modeled by an additional attribute new-val ue containing the new value for an attribute.

4.4 1stheDomain Layer Independent of the Problem-Solving M ethod?

The KARL model of the VT domain was developed independently of the Ontolingua
description in Gruber and Runkel (1993), since the latter was not available when we started
modeling. The main difference between the KARL model and the model in Ontolingua is that
Gruber and Runkel (1993) triesto define adomain ontology that should only contain the domain
knowledge necessary to define the problem specification. That is, only the domain knowledge
required for the functiona specification of the knowledge-based system should be covered by
it. The KARL model is more complete and contains the complete domain knowledge required
for the problem-solving process as given in Yost (1992). Therefore, the KARL model
additionally contains fixes and knowledge for component selection. Furthermore, it clearly
separates propose rules and constraints (as they are treated differently by the problem-solving
method) both uniformly represented as constraints in Gruber and Runkel (1993). In the case of
knowledge-based systems, an important part of the expertiseis not only concerned with what a
solution is, but aso with how to achieve a solution in an efficient manner. Therefore, this
knowledge is an important part of the domain knowledge and is therefore included into our

domain mode.

The distinction between problem specification and problem-solving knowledge as made by
Gruber and Runkel (1993) is not as simple as it might ook, as the fixes (which are used by the
problem-solving method propose-and-revise) also implicitly represent preferences between
solutions. Fixes have costs, and their application leads to aless preferred solution if they have
high costs. The preference knowledge on solutions is hardwired in the way to find them by

applying fixes. Excluding fixes implies therefore to miss parts of the functional specification.

Additionally, the uniform representation of propose rules and constraints as constraints in
Gruber and Runkel (1993) is misleading, since some propose rules are heuristics and only
define initial values that may be changed during the configuration. An example for thisis the
"constraint"  counterweight to_platform _rear ¢ that defines an initial value for the

counterweight_to_platform_rear. Thisvalue may later be decreased in order to fix the constraint c-



(the next platform model according to the order platform_order) for the platform. The upgrade

order has been defined extensionally in the relationship platform_order (See section 4.2).

fixed_value(fix: fixyq, attribute: selected platform, new_value: N) ~
P[selected platform: B] O platform [

platform_order (current : B, next : N).

Figure 9.  Fixy; and the new derived value.

The domain model of the VT-domain contains 43 fixes.

The relationship between fixes and constraints could also be modeled by a set-valued attribute
like c,q[related-fixes :: {fixy, ...}] such asit is done in the implementation later on.! Still, a
significant problem of the representation in KARL remains. In KARL, we had to model each

constraint and each fix twice:

» Each constraint and each fix is represented by a rule which expresses when a constraint is

violated and what afix doesif it is applied.

» Each constraint and each fix is represented by a constant which defines a name, i.e. a

denotation for it.

These denotations are necessary to define the relation between constraints and fixes. It is not
possibleto directly refer to arule, asaruleisnot an entity of the alphabet (i.e. not aterm) of the
language. Pointing from aconstraint directly to arule which repairsit would require meta-logic,
where formulas from the object logic can be treated as terms of the meta-logic. Even (M L)2,
which provides such arelationship between domain and inference layers, has not provided such
a powerful mechanism for modeling the domain layer. In KARL, aspects of meta-logic were
included in a bottom-up manner?, but this was the first case where an extended object-meta

relationship would have been useful.

A second problem with fixes is that they introduce non-monotonicity by changing avalue. As

KARL does not provide avariant of modal logic, e.g. temporal logic, for the domain layer, this

1. Intheimplementation a constraint is linked to the actual fix procedures objects and not just their identifiers

2. Predicates can range over classes and classes can be values of attributes. As classes correspond semantically to predicates,
this already includes a partial syntactical extension of first-order logic. See Fensel (1995a) for more details.



some cases, several design modifications are applicable for fixing a constraint violation. In a
similar way to constraints, fixes are model ed as elements of the class fixes. Some fixes may have
severe consequences, such as modifications of building dimensions or of contract
specifications. Therefore, fixes are labeled with their cost: the higher the costs, the less
desirable. Furthermore, some fixes such as, for example, upgrading to another model, may be
applied repeatedly.

In order to be able to apply afix it one has to know which fix might resolve which constraint
violation. This relationship between fixes and constraints is modeled by the relationship type
related_fixes. Related_fixes iS a m:n relationship, i.e. different fixes may exist for a single
constraint and one fix may be related to different constraints. Conditions for the applicability of
fixesaredefined by KARL rules. Such aruleyields an instance of arelationship type fixed_value
indicating which fix has been applied, which attribute is affected by the fix, and what the new
value for the attribute should be (cf. figure 9).

For instance, the fix fix,; may potentially resolve the violation of the above mentioned
constraint ¢y, (seefigure 8).
(ﬁxﬂ[name: “upgrade the platform”, cost: 8, max_iterations: 2] [ fixes. )

related_fixes(constraint: cq4, fix: fixo).
Figure 8.  Fix,; and its relation to constraint ¢q;.

The cost of 8 for fix,, indicates that it has major implications on equipment selection or sizing
(cost ranges from 1 to 10). As there are three different models of the platform (i.e., 2.5B, 4B,
and 6B), upgrading can occur at most twice, i.e., the value of the attribute max_iterationsis 2.

Fixy1 upgrades the model of the platform as shown in figure 9. Thisruleyields the new value N

~

constraint_violated (constraint: ¢11) «
E[elevator_car : C, elevator_drive: D] O elevator [
Clcar_platform: P[selected_platform_model : "2.5B"]] [ car I

D[drive_cable_system: §compensation_cable: X]] O drive [J

\ X[car_top _load : L] [0 compensation_cable [JL > 600. /

Figure 7. Violation rule for c-11.



car_capacity_range — g sglected_platform_model

platform_width p Wweight_factor_AP

platform_weight

platform_depth

Figure 6. Parameter dependencies.

The dependencies between the parameters mentioned in the propose rules above yield the
dependency graph depicted in figure 6. The problem-solving method described in the next
section makes some strong assumptions about this graph. It has to be cycle-free and for each
parameter not provided by the user, one unique propose rule has to be applicable. The first
assumption can be easily checked statically, whereas the second condition depends on the

already derived values of the other parameters, see Fensel (1995b) for more details.
432 Congtraints

A valid elevator configuration must meet constraints resulting from security requirements, i.e.
the requirements given by the building and the compatibility of different components. During
problem-solving, these constraints are checked for violations. In case of constraint violations,
the elevator must be reconfigured until the constraint violations disappear. Constraints are
modeled as elements of the class constraints. Constraint violations are indicated by instances of

the unary relationship constraint_violated.

For instance, one of the constraints states that the working load for the compensation cable must
not exceed 600 pounds if the car is at the top and the selected model of the platform is*“2.5B".
Thisisexpressed by a specific instance of the class constraints. A KARL rule as shown in figure
7 then states that ¢4 isviolated if the platform model of the elevator is“2.5B” and the load for
the compensation_cable is greater than 600 if the car is at the top. For the VT-domain, 67

constraints have been modeled, each of which is described by at least onerule.
433 Fixes

If the current elevator configuration violates some constraints, some parameter values have to
be determined anew in order to restore consistency. Heuristics indicating how to cope with

constraint violations are expressed in so-called fixes, i.e. rules defining design modifications. In



/ X[selected platform _model : "2.5B"] \
Y[elevator_car: Z, car_capacity_range: C] [I elevator [
Z[car_platform: X] O car [

X[platform_width: W, platform_depth: D] O platform [

C<2500 0W<840D <60.!

1. The expression X[a:Y,b::{Z;,....Z.}] LI C has the following interpretation: X is an element
of class C, C defines the single-valued attribute a and the set-valued attribute b for its elements.
KX has the value Y for the attribute a and the set of values Zy,...,Z, for the attribute b. /

Figure 5. Propose rule for the platform base.

by four KARL rules, one of which is shown in figure 5. The variable Y addresses the only
avallable elevator as an element of the class elevator. The variable C refers to the
car_capacity_range of this elevator. The variable Z denotes the car of the elevator which is the
only instance of the class car. The variable X addresses the platform of the car which ismodeled
as an instance of the class platform. The variables W and D indicate the required width and depth
of the platform. The model “2.5B” of the platform is chosen if the values bound to the variables
C, W, and D satisfy the condition C < 2500 W< 84 [1D < 60.

The width and depth of the platform and elevator car_capacity _range are requirements supplied
by the customer. Conversely, other parameters depend on the platform model. For instance, the
platform weight_factor AP, which is used to compute the overall weight of the platform,
depends on the chosen model of the platform (selected platform _model) and the width of the
platform (platform_width). In addition, the selected platform model depends on
car_capacity_range, platform_width, and platform_depth. The binary relationship of one parameter
directly depending on another induces a graph with input parameters (i.e, requirements) being
the sources of the graph. These dependencies can be derived from the propose rules and are used
to incrementally compute the different parameters of an elevator configuration. Dependencies
between parameters are expressed by means of instances of the relationship dependency. For

instance, the fact that the weight_factor AP depends on the platform_width is expressed as:

dependency(attribute: weight_factor AP, on: platform width).!

1. Predicates can have named argumentsin KARL.



class: platform_model predicate: platform_order

Object ID platform_height current next

“2.5B" 6.625 “2.5B" “4B”

“4B” 6.625 “4B” “6B”
“6B” 6.6875

Figure 4. Platform models and order.
for the platform _model and the values for their attribute platform_height are described by

elements of the class platform_model. The order of these three models is defined by instances

of the relationship platform_order (see figure 4).

4.3 Rules

Three different kinds of rules for configuring elevators, namely propose rules, constraints, and
fixes, are modeled. As these rules are domain-specific, they are defined at the domain layer.

Examples of each kind of rulesin the VT-domain are given below.
4.3.1 ProposeRules

All configuration parameters, i.e. all attributes expressing properties of the different parts of an
elevator, are dependent on the input parameters and on some additional assumptions such as,
for example, that the only engine available for moving the door weighs 135 pounds. In KARL,
the interdependencies of parameters are expressed by Horn rules extended by stratified
negation.
The selected platform model, for instance, is determined by the car _capacity range of the
elevator and the width and depth of the platform. The dependencies are the following:
selected platform _model = “2.5B”
if car_capacity range < 2500 and platform_width < 84 and platform_depth < 60
selected platform _model = “4B”
if car_capacity_range > 2500 and platform_width < 128 and platform_depth < 108
selected platform _model = “4B”
if car_capacity_range > 2500 and platform_width < 115 and platform_depth < 126

selected platform _model = “6B” in all other cases

Thefour different cases of the platform model’ s dependency on other parameters are expressed
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Figure 3. Configuration of an elevator
The top-level object to be configured is an elevator. The particular elevator in question is
modeled as an element of the class elevator. The parts of an elevator are represented by the
attributes elevator _build, elevator_car, elevator_cwt, elevator _carbuf, elevator _cwtbuf, and
elevator_drive. Theattributescar_capacity _range and speed denote additional properties of the
elevator, the values of which must be supplied by the customer wanting to configure an elevator.
Classes, part-of relationships and attributes of the class elevator are described in the graphical

notation of KARL as shown in figure 3.

Each classrelated to the class elevator by a part-of relationship caninturn be described by means
of subparts and attributes. To that end, we proceed towards elementary classes (el ementswhich
are not composed of smaller components). One advantage of such a structured description of a
complex system is that it is quite natural to consider a complex system as being made up of
components which in turn are made up of more basic components. Furthermore, structuring
supports the abstraction principle in anatural way, asit allowsfor viewing acomplex system at

different levels of abstraction.

4.2 Factual Knowledge

Knowledge about the facts of a given domain, such as the different available models of the
platform, is modeled by facts in KARL. Facts define elements of classes together with values

for their attributes or instances of predicates. For instance, the three different models available



Classes are arranged in a specialization/generalization hierarchy via an is-a relationship. The
similarity of objects, which are elements of the same class, refers to their structure which is
determined by the objects’ attributes and parts. These structuring principles are well known

from object-oriented data modeling.

KARL provides corresponding language primitives for these two structuring principles: Similar
objects are grouped together by means of classes which also describe common attributes and
which are arranged in is-a hierarchies. Attributes are inherited according to this relationship.
While attributes are shared by all elements of aclass, the values of the attributes may differ for
each element. Attributes either describe properties of objects such as the car_capacity range of
an elevator Or express a relationship to other objects. The latter can be used to express part-of
relationships between objects. The range of attributes may either be a single value, object or
class or a set of values, objects, or classes. In addition, arbitrary relationships between objects

may be described by predicatesin KARL.

Since an elevator may intuitively be viewed as a hierarchical assembly of components, the
relationships between objects expressed by attributes can mostly be interpreted as part-of
relationships in the model of the VT domain. In the original problem description , there is no
grouping of parameters referring to the same part of the elevator, nor are the parts organized in
a part-of hierarchy. The KARL model of the VT-domain is determined by the following
modeling decisions:

» Parameters describing properties of the same elevator component are grouped together and

constitute the attributes of a class describing this type of object.

» Loads and moments are described as parameters associated to those classes of objects on

which they are placed.

» Parameters, which cannot be assigned to a class using the rules above are assigned to
classes so that their value can be computed from attributes of only afew other classes. This

reduces the complexity of the propose rules.

For reasons of brevity, only parts of the terminological knowledge for the VT-domain will be

described in the following.



customer requirements. The knowledge part contains the domain-specific knowledge used to
solve the problem, i.e. to configure an elevator from the input knowledge. The contents of this
part are independent of the particular case to be solved and therefore do not change during

problem-solving. In the considered domain, this knowledge consists of the following parts:

» Terminological knowledge about el evators and their components, such as buildings, buffers,

drives etc. and their attributes and knowledge about their interconnections.

» Factual knowledge, for instance the fact that the counterweight always uses a Model 82

frame.

* Intensional knowledge includesthe rulesfor proposing new values from the given ones, the
constraints that must hold, and the fixes which are used to repair a configuration if some

constraints are viol ated.

Theresults of the problem-solving process are stored in the output data part of the domain layer.
This part contains the values for parameters such as Hoistway bracket spacing,

Counterweight_guiderail_unit_weight, €tC.

A domain layer must provide all knowledge required by the problem-solving method described
in section 5. On the one hand it therefore includes method-specific knowledge, such as fixes
which are used by the method to repair an intermediate design. On the other hand, the domain
knowledge can be represented independently from the ontology of the method, as KARL
provides a mapping mechanism which can be used to link the domain terminology to the

method-specific ontology.

In the following, some examples of these various knowledge types in the VT domain are
presented. A complete description can be found in Sprau (1993). In order to enable comparisons
with other ontologies, we will be using the terminology of Gruber and Runkel (1993) whenever

possible.

4.1 Terminological Knowledge

For complex systems, different kinds of structuring principles are known. Objects consist of
parts and these parts in turn consist of parts again. The part-of hierarchy is broken down to its

elementary objects on the bottom level. Furthermore, similar objects are collected in classes.



editors as described in Gappa (1995).

This approach allows for a very flexible process model, c.f. figure 2. The knowledge engineer
selects or adapts an appropriate shell for the domain expert who creates and refines the
knowledge base. If the expert requires additional features, e.g. because the evaluation of the

end-user has revealed some flaws, the shell can be adapted again and so on.

3 Initial Problem Analysis

Although the design of elevator systems is a real life task, the Sisyphus situation is rather
unusual. All the early steps of the knowledge engineering cycle had already been performed,
the domain knowledge had been described informally quite clearly in Yost (1992) and even
formally in Gruber and Runkel (1993), and the problem-solving method already had been

presented in Marcus (1988a). Therefore, no real problem analysis activity was necessary.
The following two activities were performed as the initial problem analysis:

» Anaysisand formalization of the V T-domain knowledge as described in Y ost (1992). The
result was a conceptual and formal model of the domain layer in KARL. The domain model
isaformalization of Yost (1992) which already contains method-specific knowledge like
fixes. A student writing his masters thesistook about six monthsto achieve thistask but the

effort included training in KARL and in the corresponding tools.

» Analysisof the propose-and-revise method as described in Marcus (1988a). We selected the
propose-and-exchange method, which we had used to solve the previous Sisyphus room-
allocation problem, described in Poeck (1991) and Poeck (1992), as a starting point from
our library of implemented problem-solving methods. This choice was rather obvious,
since we originally developed propose-and-exchange as a special variant of propose-and-
revise. The configuration and adaptation of propose-and-revise starting from propose-and-

exchange was rather easy and took only afew days.

4  TheDomain Layer
The domain layer in KARL consists of three different parts. The input data part contains case

specific input data for the problem-solving process. In the VT- domain this part contains the



system, etc. Representing such design decisions in the design model narrows the gap between
the model of expertise and the implementation of the final system. For instance, the informal
and theformal but declarative description of an inference action is supplemented by appropriate
data structures and agorithms supporting an efficient computation. The final description is

achieved by implementing the systemin the given hardware and software environment.

CRLM, c.f. Poeck and Gappa (1993) and Poeck (1995), is based on the role-limiting method
approach, cf. Marcus (1988b), Poeck and Puppe (1992), Puppe and Gappa (1992) and Puppe
(1993). Theideaof thisapproach isto build reusable shellsfor specific tasks, e.g. classification.
Each shell should provide one problem-solving method, a consultation environment and,
probably most important, a graphical knowledge acquisition environment allowing domain
experts to develop knowledge bases by themselves. These shells obviously have avery limited

scope and this disadvantage is to some degree overcome by CRLM.

The additional mainidea of CRLM isto represent and implement the problem-solving methods
in flexible task structures, c.f. Chandrasekaran and Johnson (1993), which can be reconfigured
and customized. These task-structures are built as AND/OR-Trees. For one task, several
alternative methods can be specified (OR-links) that either solve the task or decompose it into
severa subtasks (AND-links). Configuration of a problem-solving method therefore means

making decisions for every OR-link.

To be able to provide strong knowledge acquisition support for custom-configured problem-
solving methods, the knowledge acquisition environment is generated automatically from a

declarative specification of the corresponding knowledge representation and the knowledge

&

adapts custom tailored
shell

used  creates &
by refines

Knowledge
base

Knowledge Expert User
engineer

has requirements has requirements
Figure 2. Process model for CRLM



thus may be used for the maintenance of the final system.

The third type of description is accomplished with KARL. Knowledge represented informally
or semiformally is formalized during the knowledge formalization step. The main benefits of
formal descriptions of expertise compared to informal or semiformal representations are the
following: The vagueness and ambiguity of natural language descriptions become avoidable,
the formalized problem-solving method can be used to guide the further collection of domain
knowledge, the formal description may help to get a clearer understanding of single problem-
solving stepsaswell as of compl ete problem-solving methods and thus supportstheir reuse; and
aformalized specification can be mapped to an operational one, which allowstesting to evaluate

the knowledge, thus supporting incremental modeling.

Formalization results in aformal and operational description of the model of expertise. Since a
KARL specification is based on the structure of the KADS model of expertise, thereisasmooth
transition from a semiformal to a formal description. The KARL model is constructed by
refining the semiformal model of expertise, e.g., by augmenting an informal description of an
elementary inference step in the semiformal model by aformal description. Formal descriptions
should not replace informal ones, but rather define their meaning precisely and uniquely. On the
one hand, natural language is very useful to outline the general idea of an inference since, in a
formal description, one often cannot see the wood for the trees. On the other hand, it is very
difficult, if not impossible, to define the exact meaning of an inference in a precise and unique

manner by natural language only.

The fourth description level is defined by the design model, c.f. Landes (1994) and Landes and
Studer (1995). The model of expertise finally includes all functional requirements posed on the
desired system. For the realization of the final system, additional requirements have to be
considered, which are dill independent of the system’s final implementation. These
requirements are non-functional requirements, such as efficiency of the problem-solving
method’s realization (algorithmic efficiency is independent of the final implementation
language), maintainability of the system, persistency of dataetc. The design model enrichesand
refines the model of expertise by taking these issues into account, e.g. by introducing

appropriate algorithms and data structures, by taking care of a suitable modularization of the
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Figure 1. The different description levels of MIKE
informal descriptions are transformed into a semiformal representation, the so-called hyper
model, c.f. Neubert (1994). The hyper model’s construction is supported by the tool set
MeMoKit, c.f. Neubert (1993). As aresult, the knowledge and the task are described along the
lines of a model of expertise as it is defined in KADS. The description of knowledge is
structured in different layers using appropriate primitives which are also associated with a
suitable graphical representation. The semantics of el ementary knowledge piecesis still defined
in natural language. Such a mediating representation has the following advantages: The
structuring process for creating the mediating representation itself provides early feedback for
the knowledge engineer and the expert, the semiformal representation of the expertise provides
agood basis for communicating with the expert, the contents of the model may be exploited for

the explanation facility of the final system, and the model documents modeling decisions and



parts: Section four describes the model of the domain knowledge, while section five focuses on
the problem-solving method which is avariant of propose-and-revise Marcus (1988a). Section
six describes the implemented system and section seven supplies a sample trace. The paper
concludes with an evaluation and discussion of the achieved solution and, especialy, the

advantages of the combination of both approaches.

2 Knowledge M odeling Approaches

In the following, we will shortly sketch the two different approaches we have combined in this
experiment. Both approaches are model-based in the sense that they explicitly distinguish
different types of knowledge and use generic problem-solving methods as the behavior model
of an expert system. In spite of their similarities, the underlying principles and points of interest
differ significantly in the two approaches. A detailed comparison of both approaches can be

found in Fensel and Poeck (1994).

MIKE is strongly influenced by the results of the KADS-I and CommonKADS projects, c.f.
Wielinga, Schreiber and Breuker (1992) and Schreiber, Wielinga, Akkermans, van de Velde
and de Hoog (1994), and by work in software engineering and information system design, cf.
Angele, Fensel and Studer (1990). It is based on the distinction of different phases in the
software devel opment process such as, e.g., analysis, design, and implementation. Animportant
means of MIKE is the formal and operational knowledge specification language KARL, cf.
Angele at al. (1994) and Fensel (1995a), which allows a precise description of a model of

expertise resulting from the analysis phase.

MIKE assumesthat, during modeling expertise, alarge gap hasto be bridged between informal
descriptions of the expertise gained from the expert using knowledge acquisition methods and
the final realization of the expert system. Decomposing this gap into smaller ones reduces the
complexity of the whole modeling process, since in every step particular aspects may be
considered independently of other aspects. MIKE providesfive different description levels of a

task and the required knowledge (see figure 1).

First, knowledge and task are described in natural language documents. These documents may

result from interviews or observations or can already exist as manuals, books, etc. Second, these



1 Introduction
The paper presents a solution for the Sisyphus elevator-design problem based on the

combination of two quite distinct approaches to model-based knowledge acquisition. A formal
description of the task and the required knowledge using the knowledge specification language
KARL, c.f. Angele, Fensel and Studer (1994) and Fensel (1995a), was combined with an
implementation by a configurable role-limiting method CRLM, c.f. Poeck and Gappa (1993)
and Poeck (1995). KARL was developed in the MIKE project Model-based and Incremental
Knowledge Engineering, cf. Angele, Fensel, Landes, Neubert and Studer (1993), and alows a
formal and operational specification of knowledge-based systems. CRLM Configurable Role-
Limiting Method Approach emerged from experiences with other role limiting method shells
(RLM) like D3/CLASSIKA, c.f. Puppe and Gappa (1992) and COKE, c.f. Poeck and Puppe
(1992), over the last years. CRLM tries to preserve the advantages of RLMs such as strong
knowledge acquisition support and rapid prototyping while extending their scope by being more
adaptable and therefore less brittle.

Although approaches based on specification languages like KARL, on the one hand, and role-
limiting methods, on the other hand, are often discussed as contradictory in literature, we
experienced that both approaches supplement each other very well. Because both approaches
emphasize different aspects in the development process of a knowledge-based system, their
combination emhances the power of the achieved results. Fensel, Eriksson, Musen and Studer
(1993) already showed how an implementation of the board-game method, i.e. arole-limiting

method, can be combined with a semiformal and formal description using KARL.

In this special experiment we started with the formal modeling of the domain knowledge base,
configured a corresponding propose-and-revise specific shell, and finally did aformal reverse
engineering of the implemented problem solver. Only practical and no methodological issues

were the reason for this ordering of tasks.

In the following, we will first briefly sketch the two different philosophies on which the
approaches are based. Section three then outlines the activities we performed in the initial
problem analysis and how much effort was spent on these activities. Sections four and five

describe the devel oped expert system’ smodel of expertise. The specification isdivided into two
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This paper describes a solution to the Sisyphus-11 elevator-design problem by
combining the formal specification language KARL and the configurable
role-limiting shell approach. A knowledge-based system configuring elevator
systems is specified and implemented. First, the knowledge is described in a
graphical and semiformal manner influenced by the KADS models of
expertise. A formal description is then gained by supplementing the
semiformal description with formal specifications which add a new level of
precision and uniqueness. Finaly, a generic shell for propose-and-revise
systems is designed and implemented as the realization of the final system.
This shell was derived by adapting the shellbox COKE, also used for the
previous Sisyphus office-assignment problem. As aresult of thisintegration,
we get a description of the knowledge-based system at different levels

corresponding to the different activities of its development process.



