
Describing and Integrating Competence Theories

for Problem-Solving Components and Machine

Learning algorithms

Robert Engels and Rainer Perkuhn

Institute AIFB, University of Karlsruhe,

D-76128 Karlsruhe, Germany.

E-mail: [engels;perkuhn]@aifb.uni-karlsruhe.de

http://www.aifb.uni-karlsruhe.de/WBS/index.engl.html

Abstract

A topic in the �eld of knowledge acquisition is the reuse of components
that are described at the knowledge level. Problems concern the des-

cription, indexing and retrieval of components. In our case there is the

additional feature of integrating so-called automated building blocks in a
knowledge level description. This paper describes what knowledge level

descriptions of components for reuse should look like, and proposes a way

to describe assumptions and requirements that are to be made explicit. In
the paper an extension of the "normal" knowledge acquisition setting is

made in the direction of machine learning components and their descrip-

tion and integration at the knowledge level.

Keywords : Knowledge Acquisition, Machine Learning Algorithms, Compet-

ence Theories, Knowledge Level Descriptions, Multi-Strategy Learning

1 Introduction

In the �eld of Knowledge Acquisition many approaches deal with a separation of
several levels on which to represent knowledge (i.e KADS [WSB92], Components
of Expertise [Ste90], Role-limitingmethods [McD88], Generalized Directive Mo-
dels [vH95] and Generic Tasks [Cha86, Cha88]). Most approaches make a di-
stinction between knowledge at the domain layer (domain speci�c knowledge)
and problem-solving knowledge represented at the generic level. One argument
that justi�es this approach is that systems described on several levels separate
di�erent types of knowledge which makes them better maintainable,more under-
standable and parts of it are better suited for reuse in other systems/domains.
In order to make this claim come true, we feel that such a methodology should
contain a way of describing the competence of its (knowledge level) components.

Knowledge acquisition approaches de�ne such components explicitly. They
are possible candidates for reuse, and form so-called Problem-Solving Methods
(PSM's). These PSM's describe how they can perform a certain task, i.e. what
steps need to be taken in order to reach a certain functionality. We concentrate
on the generic parts of such PSM's.

Although the functionality of these PSM's (i.e. describing what a certain
PSM can do) is an important topic for describing PSM's, few approaches make
this competence explicit [WJ95].

The main focus of this paper will be concerned with describing the competence
of the building blocks. Describing these re-usable components on the knowledge
level has the advantage that one can de�ne PSM's and Machine Learning al-
gorithms at the same level of abstraction. Thereby we enable the integration
of learning-algorithm descriptions with PSM-description at the knowledge le-
vel. On the one hand, the background for such an approach is provided by the
need to support users of a multi-strategy learning system to break down the
complexity of their tasks and guide them by the application of machine lear-
ning components to solve their problem. On the other hand we o�er a uniform
framework which de�nes pre- and postconditions for both PSM's and learning
components a basic requirement for integration of those components on a generic
level.

For this purpose we want to extend our MIKE1 approach. In this paper
we will therefore �rst introduce our MIKE-approach and second the notion of
knowledge level descriptions and PSM's.

Also a formal way will be proposed in which one can describe the competence
(functionality) of these components by their in- and output behaviour. As an
example on which we want to clarify our points of view we take the assessment-
model as de�ned in the CommonKADS -approach [BvdV94] and relate this to
a knowledge level integration with a (classifying) ML-algorithm. The paper
concludes with some related work and an evaluation of the approach.

2 MIKE

The MIKE-approach is a methodology that supports the whole cycle of building
and implementing expert-systems. The approach supports the step of know-
ledge elicitation, building a semi-formal structural model of problem-solving
and transforming this semi-formal model into the so-called Model of Expertise
expressed in a formal speci�cation language KARL (cf. [Fen95], [Ang93]). This
process is supported by the MIKE-tool (cf. [Neu94], [Neu93]). The �nal design
and implementation step is supported by the design-model (cf. [Lan95], [LS95])
which integrates non-functional requirements in the model.

In the context of this paper it is not relevant to describe the whole methodo-

logy, therefore we restrict ourselves to the part that will return in the discussion
later on. The Model of Expertise in the MIKE-approach, as in KADS, encloses
three layers: the task-layer, the inference-layer and the domain-layer.

The Model of Expertise aims to de�ne the functionality of a system that
performs a certain task in a certain domain using certain knowledge. The three
layers describe how a task-de�nition relates to certain goals, how these relate to
the actions that have to be performed and how this connects to the knowledge
at the domain layer. A generic con�guration of a task- and inference-layer at
a reusable level of abstraction forms a so-called PSM. Usually a PSM is used
to describe the data- and control ow internal to a problem solving process.
In many expert systems such an exhaustive description of a problem-solving
process is satisfying.

1Model-Based and Incremental Knowledge Engineering; for an overview of the MIKE-
approach, see: ([AFL+93], [AFS96])

3 Integration of Machine-Learning techniques at

the knowledge level

However, there are cases in which we want to tie together components of our
"conventional" knowledge level descriptions with ML-techniques in order to per-
form tasks that either are not suited for normal knowledge acquisition (such as
the analysation of large databases, etc.), or should be done instead of perfor-
ming knowledge-acquisition because the same functionality and performance
might be obtained automatically. This means we want to integrate these two
sorts of components at the knowledge level in our MIKE-approach. However,
when integrating ML-techniques at the knowledge level the point arises that on
the one hand we have got the ("conventional") PSM-competence descriptions
that (as they are meant to) describe problem solving knowledge independent
from its later implementation, and on the other hand we have got to describe
machine-learning algorithms that do represent certain (non-functional) design
decisions as well2.

Task f
pp

pre- & post
functionality

conditions

f =
pp =

focus of paper=
PSMcomp

auto

f’
1 1

p’ p’
1

Sub-Task’

PSMcomp
convent.

PSM

....... Sub-Task’ f’
p’ p’

m

m m
matching/

retrieval

Figure 1: Task-structures for exible integration of ML-algorithms.

So, the goal is rather to integrate ML-algorithms at the knowledge level
than to use ML-algorithms for de�ning parts of an expert system. Sub-tasks
(as long as they are generic) could be replaced by "conventional" PSM's or by
PSMauto that describe ML-algorithms. In this case we are interested in the
ability to de�ne a task-structure in which ML-algorithms may be combined
with "conventional" components. This is interesting for our purposes, since it
gives us the possibility to de�ne multi-strategy systems where we can select
ML-algorithms using task-features and goal-descriptions (see �gure 1).

In this case the task-goal is to be resolved assuming the usage of descrip-
tions of the functionality of ML-algorithms at the knowledge level. For inte-
grating these functionality-descriptions of ML-algorithms with the other PSM-
functionality descriptions at the knowledge level we need a way to describe
this functionality. In the next section we will propose a way in which such a
description can be performed.

2A simple example of this is the notion of e�ciency, something that up till now did not
play a big role in knowledge level descriptions of problem-solving processes in knowledge

acquisition. Some researchers argue that implicitly such kind of requirements are implemented
nevertheless and argue therefore to make them explicit for PSM's as well ([FSvH96], [FS96]).
In that case our point concerning functional and non-functional aspects of PSM's becomes
less important.

4 Describing the functionality of Tasks and Pro-

blem Solving Components

4.1 Motivation

In the MIKE approach we regard the model of expertise as a "functional spe-
ci�cation" of the knowledge based system to be built. This notion is quite
di�erent from speci�cation in terms of software engineering. It is argued that
we need a knowledge level description as a speci�cation of the system incorpo-
rating more knowledge of how to achieve the functionality of the system than
software engineering speci�cation languages like Z [Spi92] or VDM [BFL+94] al-
low to formulate [Fen95]. In software engineering one wants to separate clearly
what one wants to achieve from how to achieve this. To our mind this is a favo-
urite starting point to think about reuse. The two kinds of speci�cation are not
mutually exclusive or in conict. They enhance each other: the model of exper-
tise is the speci�cation of the functionality of the knowledge based system. But
for describing and retrieving reusable components one needs a more abstract
description of which tasks the components can accomplish. In the following we
present a description for tasks and problem solving components in a software
engineering fashion via pre- and postconditions.

On the one hand we use the notation for describing classes of tasks (or
problem instances) schematically which are then instantiated during the requi-
rements elicitation process. On the other hand we capture the functionality
of the components and by this we enable a way of indexing the library of our
components.

requirements functional description

task component
PREtask (=)) PREcomponent

POSTtask (= POSTcomponent

An overview of our framework is given in the �gure above. The �rst arrow is
bracketed because some of the preconditions of the task are hidden assumptions
and no expert can or is willing to explain all the details we need. In the ideal case
the user/expert explains the postconditions, and perhaps (s)he mentions some
preconditions, but one cannot assume that these preconditions are complete.
With this (preliminary) description one can start the retrieval process, i.e. to a
given task T one has to �nd a component C with3:

POSTC[generic termjdomain specific term]) POSTT

In the normal case the above required relation for the preconditions does
not hold, instead one obtains a relation like this:

PREC[generic termjdomain specific term] (PRET ^ assumptions

This deviation could initiate two di�erent processes: First one can try to
validate the assumptions against the experts knowledge, i.e. the process of
knowledge elicitation is triggered once again to make these assumptions explicit

3Actually, there also is a translation needed from the domain speci�c speci�cation as
extracted from the expert into the generic terms of the components. This translation is
beyond the scope of this paper.

(illustrated below on the left hand side).

PRE task PRE task

PRE task

task component task component

POST task

PRE

POST

PRE

POST POST task

component2

component1

component2

component1

PRE component

POST component

’

Extension

Refinement

Adding an additional componentRefining PRE-conditions

Figure 2: Re�nement and Extension of Task-structures

And/or second - if this fails - one can set up the precondition of the compo-
nent as a new goal to search a library. One can search for another component
with a weaker precondition and a postcondition which implies the above men-
tioned precondition (illustrated above on the right hand side). In this way
we can support (through de�nition of a task's functionality) the extension and
re�nement of a task structure that resolves a certain task-goal.

4.2 Capturing Requirements and Guiding Knowledge Eli-

citation

To structure the process of requirements elicitation we browse through a taxo-
nomy of tasks (see �gure 3).

.

to_generate(object: OBJECT)

to_do(agent: AGENT)

to_analyze(object: OBJECT)to_modify(object: OBJECT)

to_configure() to_assess(instrument: INSTRUMENT);
result: RESULT)

to_diagnose(result: RESULT)

Figure 3: Taxonomy of Tasks (Taken from [BvdV94]).

We assume that tasks can be described best with verbs ([BvdV94], [SG95]4)
and to put emphasis on this aspect we use to-do-forms. We augment the nodes in
the taxonomywith the semantic roles which have to (or can be) �lled - according
to the spirit of Fillmore's Case Grammar ([Fil68], [Fil77]). Fillmore proposes a
�nite set of semantic roles some of which are obligatory, others are facultative,
and which can be used to describe what constituents a verb demands/allows
and how the semantics of a sentence can be composed out of the constituents
according to the role they play in the whole sentence5 .

4In [SG95] a similar framework for describing goals is used, however, the explicit notion of
pre- and post-conditions is not taken into consideration there.

5Example: The doctor diagnoses the patient's disease.

(Fillmore proposes a notation independent from syntax which makes clear the semantic role

a constituent plays in the semantics of the whole sentence.)
- semantic roles: to diagnose(agent: doctor; object: patient; result: disease)

The links between the nodes of this taxonomy are really is a links, so every
node inherits all the information of his ancestors, i.e. all the verbs have a role
named agent to �ll, and every node of a lower level has a role named object to
�ll.

We choose the representation for two purposes. First, we believe that this
helps to compare di�erent approaches because one is really forced to explain
what one is talking about, eg. using the verb "to-generate". And second, we
want to avoid that the pre- and postconditions are formulated only over given
terms; we want to ground the requirements on the experts utterances as far as
possible.

We assume that the knowledge engineer in the modeling process can describe
the (overall) task in one sentence or otherwise he can put it in a sequence of
sentences which corresponds to a sequence of (sub-)tasks. In the latter case
one can think about a suite (cf. [BvdV94]) and one can iterate the elicitation
process over the subtasks; in the following we want to concentrate on the former
case for reasons of simpli�cation.

We reduce Fillmore's idea to a schematic description of the task which has to
be instantiated during knowledge acquisition. This schematic description provi-
des the vocabulary for the formulation of the pre- and postconditions. Similar
to software engineering speci�cation notations we can treat some elements as
given if we are not interested in describing their internal structure. But if we
are interested in the internal structure we expect every role to be �lled with
an object described by a set of attributes and a corresponding set of values; we
describe the elements in these terms. This enables us to be very detailed in the
formulation of the conditions and can be used for the domain knowledge acquisi-
tion process. Since it is not very satisfying only to enumerate that all the input
must be provided and that we have a certain output, we have to make explicit
all the interdependencies between all these elements which have to be realized
by all instances of the speci�cation - as it is usual in the software engineering
notion of a speci�cation.

Our notation is deeply inuenced by the speci�cation notation Z [Spi92]. We
leave apart all the special features of Z concerning schemas; we take over the
part of the grammar to formulate boolean expressions and expressions on sets.
In addition we introduce some abbreviations: attributeOBJECT means a certain
attribute of the object OBJECT, and valueOBJECTa the value of the attribute
a of the object OBJECT.

In the following we sketch how some high level task types can be described
via pre- and postconditions.

The top level node "to do" is speci�ed with both conditions as true, i.e. that
every component would be acceptable due to the precondition (TRUE) X is
always true) but no component will �t the postcondition since every component
is aimed at ful�lling a certain goal and has a postcondition di�erent from true.

to generate(agent: AGENT; object: OBJECT)

/* AGENT generates OBJECT */
PRE:

9aja = attributeOBJECT � valueOBJECTa =?
POST:

8aja = attributeOBJECT9value � valueOBJECTa = value

"to generate" means that in the situation before accomplishing the task
there was at least one attribute of the object one wants to generate with an
unde�ned value. The precondition of the "to generate" task type is speci�ed
this way on purpose to express the di�erence to the "to modify" task type since
the "to modify" task type presumes that all the attributes of the object one
wants to modify have de�ned values. After accomplishing the generation or
modi�cation task again all the attributes of the modi�ed object must have -
potentially di�erent - de�ned values.
The analyzing task expects that all the attributes have de�ned values. Of course
after analyzing one will have a result that the postcondition should specify - but
due to the variety of specialications of the analyzing task with di�erent kinds of
results it does not make sense to specify a sophisticated postcondition on this
abstract level. This has to be done on the more concrete levels.

4.3 Integrating an ML-component for solving the assessment-

task

We want to illustrate our point of view (i.e. describing and integrating PSM-
components and ML-algorithms at the knowledge level) with an example.

Let us assume that an expert formulated requirements according to which
the knowledge engineer classi�ed his task as a "to assess" task. The assessment-
task (see �gure 4) is used as de�ned in [BvdV94].

Case

System

System

System Model

Description

Measurement

Description

Assess

Decision

Figure 4: Assessment in the CommonKADS-library [BvdV94].

[VL94] de�ne the assessment-task as:

De�nition: Assessment is a problem type (task) in which a case description

(input) is mapped onto a decision (output) according to a system model.

Where a case description contains a structured description of a case, a
decision is described as a role that contains either a decision class or a grade

that describes how well the decision is, according to the case description and
the measurement system. The system model that is de�ned in the assessment
model consists of two parts, namely a system description that can be seen
as an abstraction of the data that form case-descriptions and the measurement
system, on which to found decisions. The system description de�nes the
"ontology"6 on which an assessment-system is based. In the next part we want
to give a more formal description of an assessment-task that posts certain pre-
and postconditions on the structure that it is used in, and a classi�cation subtask
that ful�lls certain requirements of the assessment-task (in this case: �nding the

6With ontologywe mean ontology as is it is usually used in knowledge acquisition, although

we are aware of discrepancies with its original meaning in philosophy.

instrument respectively the measurement system to assess a case).

For this task we provide the following schema:

to assess(agent: AGENT; object: OBJECT;
instrument: INSTRUMENT; result: RESULT)

/* AGENT assesses OBJECT with INSTRUMENT as RESULT */
PRE:

INSTRUMENT : OBJECT ! RESULT

POST:
RESULT = INSTRUMENT (OBJECT)

The elicitation process yielded the following description of the task as a
partial instantiation of the schema.

to assessrequirements(agent: expert; object: db entry;
instrument: INSTRUMENT; result: class)

/* expert assesses db entry with INSTRUMENT as class */
PRE:

INSTRUMENT =?
POST:

class = INSTRUMENT (db entry)

The expert was able to �ll all the slots of the case frame but the instrument.
So far we can substitute its AGENT by the expert, OBJECT by db entry and
RESULT by class.

Our library contains a component which has the capability to accomplish
the "to assess" task. It must be provided with a case-ontology and decisions.
The component can be "applied" reasonably only if the intersection of both
system-ontology and case-ontology is not empty. Furthermore the component
needs a relation which o�ers certain decisions depending on the values of the
attributes of an object (of the system ontology). This relation should o�er only
one unique value which can be used as the DECISION. If the relation maps the
values of the attributes to no or to more than one decision a theory revision has
to be triggered and the DECISION has no de�ned value.

assessmentcomponent(agent: AGENT; object: CASE;
instrument: CLAUSES; result: DECISION)

/* AGENT assesses CASE with CLAUSES as DECISION */
PRE:

given ontology

given decisions

system ontology = fattrjattr = attributeCASEg

(system ontology \ case ontology) 6= ;

INSTRUMENT � system ontology � decisions

POST:
M = fd 2 decisionsj(CASE; d) 2 INSTRUMENTg

((#M 6= 1 ^DECISION =? ^theory revision)

_(#M = 1 ^DECISION 2M))

If we match our requirements of our task schema (see above) with this com-
ponent we get the following result: The postcondition of the task schema corre-
sponds to the component assessment,(with [AGENT j expert, CASE j db entry,
DECISION j class, CLAUSES j INSTRUMENT]) but the pre-condition requires
an instrument to assess the case (i.e. a mapping as a special case of a relation)
. This pre-condition is not ful�lled and may trigger two possibilities: either to
elicitate this knowledge by hand, or to look for a component with the respective
capability. Our library also contains ML algorithms. The description of the
functionality of ID3 [Qui86] looks like the following.

ID3component(agent: AGENT; object: OBJECT; instrument: DECISION)

/* AGENT classi�es OBJECT wrt DECISION */
PRE:

given training set � OBJECT �DECISION

(o1; d1) 2 training set ^ (o1; d2) 2 training set) d1 = d2
POST:

ontology = fattrjo 2 OBJECT ^ attr = attributeog

CLAUSES =
fcljo 2 OBJECT ^ d 2 DECISION ^ x � ontology^

cl = (
V
a2x

Pa(value
o
a)) d) ^ (o; d) 2 training set^

:9yjy � x � (
V
a2y

Pa(value
o
a)) d)g

Given a training set which is subset of the cartesian product of objects and
decisions this component o�ers a postcondition we looked for. The component
ID3 learns a set of clauses, i.e. conjunctions (over a minimal set of attributes) of
predicates which imply a certain decision for certain values of these attributes.
We use predicate variables Pa to express that we might have di�erent predicates
for the di�erent attributes. A predicate describes a property which must hold
for the value of an object's attribute, e.g. that this value is equal or greater
or less than a constant expression (an instance of such a clause would look like
COLOUR = red ^AGE > 2) problem class34).

To use this set of clauses as input of the assessment component we have to
de�ne �nally a mapping like the following:

(obj; d) 2 INSTRUMENT , 9cl 2 CLAUSES �

x = fattr j attr = attributeobjg

^ cl = (
^

a2x

Pa(value
obj
a)) d)

Since the pre-condition of ID3 is ful�lled with this additional de�nition, we
can combine the two components and together they realize the functionality of
the desired system. So we achieved what the expert wanted even with the very
sketchy requirements and without further knowledge elicitation.

4.4 Strategic aspects

In the "conventional" way of using the assessment PSM one uses the measure-
ment-system as the key-role upon which to base a decision. The measurement-

system in this view forms an assumption of the assessment-PSM, which means
that one needs to de�ne such a system before one can use this PSM. In our case
of integrating ML-algorithms at the knowledge-level we want to be able to rede-
�ne the pre- and postconditions of this PSM, and use the case-description and
decision as preconditions and creating this measurement-system automatically
(which is precisely what an ML-algorithm can perform). In such a case we can
use the same PSM (namely assessment) for di�erent purposes by simply rede�-
ning the pre- and postconditions of a PSM. When we describe our tasks accor-
ding to �gure 2, we get two possibilities to use it for selecting PSM-components.
At the end, our framework does provide a way to describe functionality of PSM-
components (whether one is interested in their internal structure or not is not
the point). In the next section we want to relate this to related work performed
for both describing functionalities of PSM's and ML-algorithms.

Describing the competence of knowledge level components in terms of their
pre- and postconditions as presented above, gives us the opportunity to match
inferences in processes according to their pre- and postconditions. It also
enables a possibility to support the integration of ML-techniques in a task-
decomposition when ML-techniques are described in the same framework as we
propose for PSM's. The integration of these techniques at the knowledge le-
vel then plays a role in the user-guidance module as de�ned for multi-strategy
learning systems.

5 Related work

As far as related research is relevant for our approach, or at least has some
features that makes it signi�cant for us to deal with, this section will provide a
short discussion of them.

In [AP94] the idea of integration of learning techniques for solving impas-
ses in inference-processes is introduced. Di�erences between the approach of
[AP94] and our approach are that we do not see impasses as the trigger for lear-
ning, we try to build up a task-decomposition instead, given the functionality-
descriptions of several machine-learning techniques. In our framework the lear-
ning is not meant to "bridge" impasses, but to use knowledge level descriptions
to provide support for the use of machine learning techniques when decomposing
complex tasks.

In [WJ95] an analysis of the underlying ontological commitments and as-
sumptions is made. They show these assumptions for a few problem solving

components used to model the VT task and also stress the need for making
explicit the assumptions and commitments that underly problem-solving me-
thods.

Another approach we want to relate to is the approach of [RA94]. This
work is performed in the same philosophy as ours. However, where we want to
provide a framework for integrating ML-algorithm "building blocks" with the
normal PSM-building blocks settings the approach of [RA94] concentrates upon
the description of ML-algorithms themselves. The goal we have in mind in our
framework is to describe machine learning algorithms on a high-level abstraction
so we can integrate them with the task-decompositions we want to generate for
complex tasks. A description of the internals of machine learning techniques
is only of limited importance to us, namely as far as it helps us to support a
domain-expert to decompose his task and �nd appropriate ML-techniques to
perform them (and get support to apply those techniques). The same holds for
the approach of [Slo94] (although highly informal) where algorithms are also
described on a very low level of detail and lack a formal description of their pre-

and postconditions.
An approach that has a similar functionality, but deals with KA-algorithms

instead, is the approach of Generalized Directive Models ([vH95]). In a GDM a
task is described and an inference structure is generated that performs this task
using a simple but e�ective task-grammar. In our case a description at the same
level would be necessary in order for our tool to be able to select algorithms
and integrate them with PSM-components.

A few approaches that describe (the need for) task-features are known to us.
In [ABD+93] a more or less natural language description of features is given in
the framework of the CommonKADS -approach [BvdV94]. These features are
not formally described and (as far as we know) never used for describing the
functionality of machine learning techniques.

One of the formal oriented approaches is presented in [Abe95]. What Aben
did for inference actions we provide on a higher level for tasks and problem-
solving components.

There is no real consensus about which features of tasks and ML-algorithms
have to be described, although there are a few proposals that contain such
listings of features ([KMG94], [vS95]). These listings are not very detailed and
not stabilized at the moment.

With regard to the representation of problem descriptions that initiate the
generation of a task-decomposition, there is to mention the approach of [PG96].
The research mentioned is directed towards the formal de�nition of goals, where
[PG96] describe what we see as a problem description, rather than goals as such.

Finally there is the work of the MLT consortium [Con93] where multiple lear-
ning techniques were integrated. Especially the work on Consultant [CSG+92]
is to be mentioned here. This work uses a kind of ML-algorithm description to
select algorithms, but does not do that in an explicit manner. Comparing this
approach with ours, we see that one of the di�erences is that the level of inte-
gration of these learning algorithms was not so strong, and the system assumed
a good task de�nition to be explicitly known by the user. At the same time the
system was meant to select one out of a set of ML-algorithms and there, we feel,
our approach has simply another perspective since we want to integrate several
techniques according to task-decompositional frameworks.

6 Conclusion

The aim of our paper is to present a formalism in which one can de�ne the

functionality of PSM's at the knowledge level. We propose to do so using for-
malized descriptions of the pre- and postconditions of such PSM's. When such
a functionality is de�ned, an opportunity arises to extend these descriptions
to the �eld of learning systems. Such a system can in general be very helpful
when de�ning and re�ning a task-decomposition structure. In many knowledge
acquisition projects making explicit the goals of an application and �nding an
appropriate task-decomposition for them is not as straightforward as it often
seems to be. In our experience experts often need more than one try to come
to a good problem de�nition. What makes our approach interesting for further
research in the direction of multi-strategy learning systems is this process of
de�ning the actual problem (problem de�nition in our framework), mapping
goal descriptions on task-structures while providing a structured way of descri-
bing the whole process, and the combination of de�ning tasks with or without
(depending upon goals and context-givens) learning capabilities in one system.

So, in the �rst place we have the possibility of extending our system easily
with new ML-algorithms, if required, since we have a uniform, component-based

representation of ML-algorithms. Secondly we can also deal with situations
where learning is NOT the most ideal solution for solving a problem (i.e. in
situations were a non automated expert system can perform better due to data
constraints7). Furthermore we want to enable user support based upon the task
de�nition as it is represented by the user and o�er a framework to capture the
requirements of the expert/user. We enable structuring the knowledge elicita-
tion process and provide an explicit representation of the features of the special
task (according to the framework of the task type).

Our future research will be concerned with the question which "semantic
slots" one can and should include in the description of the functionality of
tasks, and integrate these in the MIKE-approach. A new version of the KARL
language (NewKARL) will be de�ned in order to provide the formal basics. An
important topic will be the integration of a library and usage of the component-
descriptions used in this paper as a guidance for component-selection. Future
work also consists of the usage of these ideas for de�ning a multi-strategy lear-
ning system that can exibly support a user de�ning his or her task decomposi-
tions and supporting the execution of such a system using the MIKE-approach.

Acknowledgements

We thank Rudi Studer and the other members of our research team for their
inspiration for and their comments on the ideas presented in this paper.

References

[ABD+93] A. Aamodt, B. Benus, C. Duursma, Chr. Tomlinson, R. Schrooten, and

W. v.d. Velde. Task Features and their Use in CommonKADS. Deliverable
1.5, version 1.0, Consortium, 1993.

[Abe95] M. Aben. Formal Methods in Knowledge Engineering. PhD thesis, Univer-
sity of Amsterdam, 1995.

[AFL+93] J. Angele, D. Fensel, D. Landes, S. Neubert, and R. Studer. Model ba-

sed and Incremental Knowledge Engineering: The MIKE Approach. In

J. Cuena, editor, Knowledge Oriented Software Design, volume A-27, pa-
ges 139 { 168, Amsterdam, 1993. IFIP Transactions, North Holland.

[AFS96] J. Angele, D. Fensel, and R. Studer. Domain and Task Modelling in MIKE.
In Proceedings of the IFIP WG8.1/13.2 Joint Working Conference on Do-

main Knowledge for Interactive System Design., Geneva, May 1996.

[Ang93] J. Angele. Operationalisierung des Modells der Expertise mit KARL. in�x

53, St. Augustin, 1993. In German.

[AP94] J. L. Arcos and E. Plaza. Integration of Learning into a knowledge model-

ling framework. In L. Steels, G. Schreiber, and W v.d. Velde, editors, A

Future for Knowledge Acquisition: Proceedings of the 8th European Know-

ledge Acquisition Workshop, volume 867 of Lecture Notes in Arti�cial In-

telligence, pages 355 { 373. Springer Verlag, September 1994.

[BFL+94] J. C. Bicarrequi, J. S. Fitzgerald, P. A. Lindsey, R. Moore, and B. Ritchie.

Proof in VDM: A Practitioner's Guide. Springer Verlag, Berlin, 1994.

[BvdV94] J. Breuker and W. van de Velde. CommonKADS Library for Expertise

Modelling. IOS Press, 1994.

[Cha86] B. Chandrasekaran. Generic tasks in knowledge-based reasoning: High
level building blocks for expert system design. IEEE Expert, 1, 1986.

7One can think of situations where statistics can do less due to data-characteristics, or
situations where more knowledge is in the expert as in their databases(!)

[Cha88] B. Chandrasekaran. Generic Tasks as building blocks for knowledge-based

systems: The diagnosis and routine design examples. The Knowledge En-
gineering Review, 3(3):183{210, 1988.

[Con93] MLT Consortium. Final public report. Technical report, 1993. Esprit II
Project 2154.

[CSG+92] S. Craw, D. Sleeman, N. Granger, M. Rissakis, and S. Sharma. CON-
SULTANT: Providing Advice for the Machine Learning Toolbox. In M.A.

Bramer and R.W. Milne, editors, Research and Development in Expert

Systems, pages 5{23, 1992.

[Fen95] D. Fensel. The Knowledge and Representation Language KARL. Kluwer,

Boston, 1995.

[Fil68] Ch. J. Fillmore. The case for case. In E. Bach and R. T. Harms, edi-
tors, Universals in Linguistic Theory, New York, 1968. Holt, Rinehart &

Winston.

[Fil77] Ch. J. Fillmore. The case for case reopened. In P. Cole and J.L. Morgan,

editors, Grammatical relations, pages 59 { 82, New York, 1977.

[FS96] D. Fensel and R. Straatman. Problem-Solving Methods: Making Assump-

tions for E�ciency Reasons. In Proceedings of the 9th European Knowledge

AcquisitionWorkshop, Nottingham, England, Berlin, May, 14-17 1996. Lec-
ture Notes in Arti�cial Intelligence, Springer-Verlag.

[FSvH96] D. Fensel, R. Straatman, and F. van Harmelen. The Mincer Methaphor for
Problem-Solving Methods: Making Assumptions for Reasons of E�ciency.

In Chr. Pierret-Golbreich, E. Motta, D. Fensel, and M. Willems, editors,

Proceedings of the Knowledge Engineering-Methods& LanguagesWorkshop
(KEML-95), Paris, January 15-16 1996.

[KMG94] Y. Kodrato�, V. Moustakis, and N. Graner. Can Machine Learning solve

my problem? Applied Arti�cial Intelligence, 8:1{31, 1994.

[Lan95] D. Landes. Die Entwurfsphase in MIKE (The Design Stage in MIKE).

in�x 84, St. Augustin, 1995. In German.

[LS95] D. Landes and R. Studer. The Treatment of Non-Functional Requirements

in MIKE. In W. Sch�afer and P. Botella, editors, Proceedings of the 5th

European Software Engineering Conference ESEC '95, Sitges, Spain, Sep-
tember 25-28 1995. Springer-Verlag, Berlin. Lecture Notes in Computer

Science (989).

[Mar88] S. Marcus. AutomatingKnowledge Acquisition for Expert Systems. Kluwer,

Boston, 1988.

[McD88] J. McDermott. Preliminary Steps towards a Taxonomy of Problem-Solving

Methods. In: [?], 1988.

[Neu93] S. Neubert. Model construction in MIKE (Model-Based and Incremental

Knowledge Engineering). In Current Trends in Knowledge Acquisition, 7th

European Knowledge Acquisition Workshop, pages 200{219, Berlin, Sep-

tember 1993. Toulouse, France, Springer Verlag.

[Neu94] S. Neubert. Modellkonstruktion in MIKE; Methoden und Werkzeuge. in�x

60, St. Augustin, 1994.

[PG96] Chr. Pierret-Goldbreich. Modular and Reusable Speci�cations in Know-

ledge Engineering: Formal Speci�cation of Goals and their Development.

In Chr. Pierret-Goldbreich, D. Fensel, E. Motta, and Mark Willems, edi-

tors, Proceedings of the 6th Workshop on Knowledge Engineering Methods

and Languages, Paris, januari 15-16, 1996, 1996.

[Qui86] J. R. Quinlan. Induction of Decision Trees. Machine Learning, 1:81 { 106,

1986.

[RA94] C. Rouveirol and P. Albert. Knowledge level model of a con�gurable

Learning System. In L. Steel, G. Schreiber, and W.v.d. Velde, editors,
A future for Knowledge Acquisition, 8th European Knowledge Acquisition

Workshop, Belgium, pages 374 { 393, 1994. Lecture Notes in Arti�cial

Intelligence.

[SG95] B. Swartout and Y. Gill. EXPECT: Explicit Representation for Flexible

Acquisition. In B.R. Gaines and M. Musen, editors, Proceedings of the
9th Ban� Knowledge Acquisition for Knowledge-Based Systems Workshop,

volume 2, February 26- March 3 1995.

[Slo94] A. Slodzian. Con�guring decision tree learning algorithms with KresT.

In Workshop Proceedings of the Workshop on Knowledge level models of

machine learning; ECML '94, 1994. Available from:
"ftp://arti.vub.ac.be/pub/krest/appkits/learnkit/learnkit.ps.Z".

[Spi92] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, New
Jersey, 2nd edition, 1992.

[Ste90] L. Steels. Components of Expertise. AI Magazine, 1990.

[vH95] G. van Heijst. The Role of Ontologies in Knowledge Engineering. PhD
thesis, University of Amsterdam, 1995.

[VL94] A. Valente and Ch. L�ockenho�. Assessment. In [BvdV94], pages 155 { 174.
IOS-Press, 1994.

[vS95] M. van Someren. PhD thesis, University of Amsterdam, 1995. To appear.

[WJ95] B.J. Wielinga and J.M. A Formal Analysis of Parametric Design Problem

Solving. In B.R. Gaines and M. Musen, editors, Proceedings of the 9th
Ban� Knowledge Acquisition for Knowleddge Based Systems Workshop,

volume 2, pages 37/1{37/15, Ban�, 1995.

[WSB92] B.J. Wielinga, A.T. Schreiber, and J.A. Breuker. KADS: A modelling

approach to knowledge engineering. Special Issue "The KADS approach to
knowledge engineering". Knowledge Acquisition, 4(1):5{53, 1992.

