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In future work we will use the assumptions identified in this paper to construct, in an assumption-driven
manner, efficient knowledge-based reasoners. We will also investigate whether the identified assumptions
can be structured in a such a way that they support this process. In other words, we are looking for libraries
of reusable assumptions. Still, our current work suffers from serious shortcomings. We have not provided a
proper definition of the term 

 

assumption

 

 nor a real justification for the classification we applied in the
paper. The assumptions where collected as they could be found in papers on model-based diagnosis but it
lacks a theoretical-based framework that would allow to detect gaps in this list and to decide when a level
of (relative) completeness is achieved.
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The description of the 

 

domain model

 

 introduces the domain knowledge as it is required by the problem-
solving method and the task definition. Three elements are needed to define a domain model. First, a
description of properties of the domain knowledge at a meta-level. The 

 

meta-knowledge

 

 characterises
properties of the domain knowledge. It is the counterpart of the assumptions on domain knowledge made
by the other parts of a KBS specification: assumptions made about domain knowledge by these parts, must
be stated as properties of the domain knowledge. These properties define goals for the modelling process
of domain knowledge in the case of knowledge acquisition. The second element of a domain model
concerns the 

 

domain knowledge 

 

and 

 

case data 

 

necessary to define the task in the given application domain,
and necessary to carry out the inference steps of the chosen problem-solving method. The third element is
formed by 

 

external assumptions

 

 that link the domain knowledge with the actual domain. These external
assumptions can be viewed as the missing pieces in the proof that the domain knowledge fulfils its meta-
level characterisations.

The assumptions of the different parts of a KBS specification define their proper relationships and the
adequate relationship of the overall specification with its environment. Their detection, verification, and
validation is an important part for developing correct reasoning systems. In [Fensel et al., 1996], we used
the Karlsruhe Interactive Verifier (KIV)

 

10

 

 [Reif, 1995], developed in the specifications. Besides
verification, KIV was used to detect hidden assumptions which were necessary to relate the competence of
a problem-solving method to the task definition. Hidden assumptions could be found by analysing failed
proof attempts. The analysis of partial proofs gives some hints for the construction of possible counter
examples, but also for repairing the proof by introducing further assumptions. These assumptions are the

 

missing pieces

 

 in proofing the correctness of the specification. Verifying these specification is therefore a
way to detect underlying hidden assumptions.

 

6 Conclusion

 

It is essential to know the underlying assumptions of a reasoning system in order to know when it is
applicable. Moreover, assumptions are good ways to characterise them and they can be used to guide the
acquisition process of domain knowledge. They define the type of knowledge and its properties as it is are
required by the reasoner.

In [Fensel, 1995] we provided the analysis of the assumptions of one problem-solving method. In this
paper we have provided a study of the role of assumptions used by a the group of problem-solving methods
for model-based diagnosis. Model-based diagnostic systems were first introduced to overcome the
limitations of heuristic systems. However, research on model-based systems revealed immediately that
“pure“ model-based diagnostic systems were too inefficient to be useful. Model-based diagnosis is in
principle intractable, and in the last ten years, substantial effort has been devoted to optimise diagnostic
algorithms in order to make them tractable. Assumptions can be viewed as the re-introduction, however
controlled, of heuristics for reasons of efficiency. Looking at the history of model-based diagnostic
systems in retrospect, we could describe it as follows: researchers have started with a general, but
inefficient, model-based diagnostic reasoner, and then incrementally introduced and modified
assumptions, until an efficient reasoner was achieved. This approach is strikingly similar to the
assumption-driven development process of problem solvers recently put forward in the knowledge
engineering community [Fensel & Straatman, 1996], where one starts with a general, but inefficient,
specification of the reasoning process and gradually introduces and modifies assumptions until a efficient
reasoner is achieved. In [Fensel et al., 1996] is shown how verification tools can be used to support the
process of detecting and introducing assumptions of reasoning systems.

 

10.  The KIV system (Karlsruhe Interactive Verifier) is an advanced tool for the construction of provably correct
software. It supports the entire design process starting from formal specifications and ending with verified code.



 

The 

 

task

 

 

 

definition

 

 specifies the goals that should be achieved in order to solve a given problem, which are
functionally specified as an input-output relation. A task definition also defines assumptions about the
domain knowledge. For example, a task that concerns the selection of the maximal element of a set of
elements, requires a preference relation as domain knowledge. Assumptions are also used to define the
requirements on such a relation (e.g. transitivity, symmetry, etc.).

The reasoning of a knowledge-based system can be described by a 

 

problem-solving method

 

 (

 

PSM

 

). A PSM
consists of three parts. First, a definition of the functionality defines the 

 

competence

 

 of the PSM
independent of its realisation. Second, an 

 

operational description

 

 defines the dynamic reasoning process.
Such an operational description describes how the competence can be achieved in terms of the reasoning
steps and their dynamic interaction (i.e., the knowledge and control flow). The third part of a PSM
concerns 

 

assumptions

 

 about the domain knowledge. Each inference step requires a specific type of domain
knowledge with specific characteristics. These complex requirements on the input of a problem-solving
method distinguish it from usual software products. Preconditions on inputs (used in normal software to
guarantee valid inputs) are in PSMs extended to complex requirements on available domain knowledge. A
problem-solving method can only solve a complex task with reasonable computational effort by
introducing assumptions. Such assumptions can work in two directions to achieve this result. First, they
can restrict the complexity of the problem, that is, weaken the task definition in such a way that the PSM
competence is sufficient to realise the task. Second, they can strengthen the competence of the PSM by the
assumed (extra) domain knowledge. This is called the 

 

law of conservation of assumptions

 

 in Figure
[Benjamins et al., 1996]. In terms of dynamic logic Figure [Harel, 1984], this law can be formulated as
follows:

 

assumptions

 

domain-knowledge

 

 

 

→

 

 ([

 

problem-solving method

 

] 

 

assumptions

 

task

 

 

 

→

 

 

 

goal

 

)

The formula states that, if the assumptions on domain knowledge hold in the initial state, then the problem-
solving method must terminate in a state that fulfils the goals of the task, if the assumptions on the task are
fulfilled. This formula could be weakened by either strengthening the assumptions on domain knowledge
(i.e., the problem-solving method must behave well for less initial states) or strengthening the assumptions
on the task (i.e., the problem-solving method must achieve the goal in less terminal states).

 

9.  We skip a fourth element of a specification (so-called adapters) of a knowledge-based system here. The necessity
of adapters arise if the other buildings blocks should be reusable. Then they must be adjusted to each other and to the
specific requirements of a given application problem.

Goals

Assumptions

Task definition Competence 

Operational Specification 

Problem-solving method

Assumptions

Domain model

Fig. 3    The different elements of a specification of a knowledge-based systems.

Domain knowledge + case data

Meta knowledge

External assumptions



 

4 Efficient Interaction with the Environment: Hypothesis Discrimination

 

Hypothesis 

 

discrimination

 

 becomes necessary if the number of hypotheses found, exceeds the desired
number (cf. Table [Davis & Hamscher, 1988]). Additional observations must be provided as the initial
observations were not strong enough to discriminate between existing hypotheses. Assumptions related to
this activity include the following (see Table [Benjamins, 1993]). First, it must be possible to obtain

 

additional observations

 

. Examples of more specific versions of this assumption are: can the device be
unfastened, are measuring points reachable, can components be replaced easily to test behaviour, can new
input be provided to the device, etc. Second, assumptions can be made about the 

 

utility of additional
observations

 

. One can assume cost information of additional measurements and knowledge about their
discriminatory power (i.e., knowledge about dependencies between hypotheses) to optimise their selection.
Again, NP-hard problems arise if one tries to optimise these decisions. Therefore, assumptions concerning

 

heuristic knowledge

 

 that guide this process are necessary.

All these assumptions are necessary to optimise the cooperation of the diagnostic system with its
environment. In principle, one could assume that all observations that are possible are provided to the
system before it starts its diagnostic reasoning. However, collecting observations is often a major cost-
determining factor. Therefore, assumptions are introduced concerning the efficiency of gathering
information with minimal costs

 

.

 

5 The Role of Assumptions in Specifying Knowledge-Based Reasoning
Systems

 

In [Fensel et al., 1996], we provided different aspects of a specification of knowledge-based system which
are related by assumptions (see Figure 3): a 

 

task definition

 

 defines the problem to be solved by the
knowledge-based system; a 

 

problem-solving method

 

 defines the reasoning process of the knowledge-based
system; and a 

 

domain model

 

 describes the domain knowledge of the knowledge-based system.
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a. cd = case data, dk = domain knowledge, t = task

 

Table 3: Efficiency-Assumptions in component-oriented diagnosis.

 

name explanation is about

 

a

 

function some references

Possibility of 
additional 
observations

What are further possible 
observations.

dk It is necessary to get further 
information for hypotheses 
discrimination.

[Davis & 
Hamscher, 1988], 
[Benjamins, 
1993]

Utility of additional 
observations

How useful are these further 
observations (information 
gain versus costs).

dk It necessary for optimal 
decisions during hypotheses 
discrimination.

[de Kleer & 
Williams, 1987], 
[Davis & 
Hamscher, 1988], 
[Benjamins, 
1993]

heuristic search 
knowledge

This knowledge is used to 
guide the search process for 
optimal selection of further 
observations.

dk It necessary for efficiently 
making sub-optimal 
decisions.

[de Kleer & 
Williams, 1987], 
[Davis & 
Hamscher, 1988], 
[Benjamins, 
1993]



 

a. cd = case data, dk = domain knowledge, t = task

 

independency The explanatory power of a 
diagnosis is the union of the 
explanatory power of its 
elements.

dk It polynomializes the worst-
case complexity for finding 
one diagnoses.

[Bylander et al., 
1991]

monotonicity The explanatory power of a 
diagnosis increases 
monotonously with its size.

dk It polynomializes the worst-
case complexity for finding 
one diagnoses.

[Bylander et al., 
1991]

Limited-Knowledge-
of-Abnormal-
Behaviour

Valid diagnoses do not become 
invalid by adding further 
correct or fault components to 
it.

dk It polynomializes the 
average-case behaviour for 
finding all diagnoses.

[de Kleer et al., 
1992]

existence of search 
control knowledge

This knowledge is used to 
guide the search process for 
diagnoses.

dk It improves the average-case 
behaviour for finding all 
diagnoses.

[Struss, 1992], 
[Böttcher & 
Dressler, 1994]

existence of a 
hierarchical-layered 
device-model

The device model is 
hierarchically structured.

dk The hierarchical structure of 
the device focuses the search 
process.

[Goel et al., 
1987], [Struss, 
1992], [Böttcher 
& Dressler, 1994]

existence of a 
hierarchical-layered 
behavioural-model

The behavioural description of 
the system is hierarchically 
structured.

dk Abstract descriptions of the 
behaviour should reduce the 
search effort.

[Struss, 1992], 
[Abu-Hanna, 
1994], [Böttcher 
& Dressler, 1994]

existence of 
probabilities 

Faults are annotated by their 
probability.

dk Probabilities of faults focus 
the search process.

[de Kleer & 
Williams, 1987], 
[Struss, 1992], 
[Böttcher & 
Dressler, 1994]

fault probabilities are 
independent

Each fault appears 
independently from other 
possible faults.

cd & dk It is used in computing 
probabilities for hypotheses.

[de Kleer & 
Williams, 1989]

 

Table 2: Efficiency-Assumptions in component-oriented diagnosis.

 

name explanation is about

 

a

 

function some references

Assumptions for Efficiency

minimality

single or N-fault

ingnorance of abnormal behaviour
independence of hypothes

search control knowledge
existence of a hierarchical-layered device model
existence of a hierarchical-layered behavioural model

independence of fault probabilities

Fig. 2    Assumptions for Efficiency.

monotonocity of hypotheses

limited-knowledge-of-abnormal behaviour

existence of probabilities of hypotheses



 

(i.e., the ignorance-of-abnormal-behaviour and limited-knowledge-of-abnormal-behaviour assumptions),
that searches for all diagnoses, does not change the worst-case but only the average-case behaviour of the
diagnostic reasoner.

 

3.3 Search Guidance

 

The complexity of component-based diagnosis (especially when working with fault models) requires
further assumptions that enable efficient reasoning for practical cases (cf. [Struss, 1992], [Böttcher &
Dressler, 1994]). Again, these assumptions do not change the worst case complexity but should reduce the
necessary effort in practical cases. A well-known notion to increase efficiency is a reasoning focus.
Defining a focus for the reasoning process can be achieved by exploiting hierarchies or probability
information. The 

 

hierarchically-layered device-model

 

 assumption assumes the existence of hierarchically
layered models that allow step wise refinement of diagnosis to reduce the complexity of the diagnostic
process (cf. the complexity analysis of hierarchical structures of [Goel et al., 1987]). The large number of
components at the lowest level of refinement is replaced by a small number of components at a higher
level. Only the relevant parts of the model are refined during the problem-solving process. The

 

hierarchically-layered behavioural-model

 

 assumption assumes the existence of more abstract descriptions
of the behaviour that can improve the efficiency because reasoning can be performed at a more coarse
grained, and thus simpler, level (cf. [Abu-Hanna, 1994]). The 

 

existence-of-probabilities

 

 assumption
assumes knowledge about the probability of faults that can be used to guide the search process for
diagnoses by focusing on faults with high probabilities. Usually, these probabilities introduce new
assumptions (e.g., the 

 

components-fail-independently

 

 assumption [de Kleer & Williams, 1989]).

All these knowledge types and their related assumptions rely on further assumptions concerning the utility
of this search control knowledge. For example, the hierarchically-layered device model improves only the
search process when the faults are not distributed in a way that enforces the problem solver to expand each
abstract component descriptions to their lowest levels. It significantly improves the search process if the
problem solver need to refine only one abstract component description at each level.

 

3.4 Summary

 

Figure 2 summarises the assumptions and groups them according to their purpose. All these assumptions
are introduced to reduce the computational effort required to solve the problem. Table 2 provides an
explanation of the assumptions along with the role they play (function), the domain they are about (case
data, domain knowledge or task), and some references where they are discussed in more detail.

 

Table 2: Efficiency-Assumptions in component-oriented diagnosis.

 

name explanation is about

 

a

 

function some references

single fault (SFA),

 

N

 

-fault
There is one or there are at 
most 

 

N

 

 faults.
dk or t It polynomializes the worst-

case complexity for finding 
one or all diagnoses.

[Davis, 1984]

minimality Sets of hypotheses can be 
represented by one minimal 
hypothesis.

dk It polynomializes the 
average-case behaviour for 
finding all diagnoses.

[Reiter, 1987], 
[de Kleer & 
Williams, 1987], 
[Bylander et al., 
1991], [de Kleer 
et al., 1992]

Ignorance-of-
Abnormal-Behaviour

No knowledge that constrains 
possible faulty behaviour is 
provided.

dk It polynomializes the 
average-case behaviour for 
finding all diagnoses.

[de Kleer & 
Williams, 1987], 
[de Kleer et al., 
1992]



 

behaviour of faulty components. Thus, any behaviour that is not correct is considered as fault. A
disadvantage of this is that physical rules may be violated (i.e., existing knowledge about faulty
behaviour). We already mentioned the example provided in [Struss & Dressler, 1989], where a fault (one
of two bulbs does not light) is explained by a broken battery that does not provide power and a broken bulb
that lights without power. Knowledge about how components behave when they are faulty (called fault
models) could be used to constrain the set of diagnoses derived by the system. On the other hand, it
increases the complexity of the task. If for one component 

 

m

 

 possible fault behaviours are provided, this
leads to 

 

m

 

+1 possible states instead of two (correct and fault). The maximum number of candidates
increases from 2

 

n

 

 to (

 

m

 

+1)

 

n

 

.

A similar extension of GDE that includes fault models, is the Sherlock system (cf. [de Kleer & Williams,
1989]). With fault models, it is no longer guaranteed that every super-set of the faulty components that
constitute the diagnosis, is also a diagnosis, and therefore the minimality assumption as such cannot be
exploited. In Sherlock, a diagnosis does not only contain fault components (and implicitly assumes that all
other, not mentioned, components are correct), but it contains a set of components assumed to work
correctly and a set of components assumed to be fault. A conflict is now a set of some correct and fault
components that is inconsistent with the provided domain knowledge and the observations. In order to
accommodate to this situation, [de Kleer et al., 1992] extend the concept of minimal diagnoses to kernel
diagnoses and characterise the conditions under which the minimality assumption still holds. The kernel
diagnoses are given by the prime implicants of the minimal conflicts. Moreover, the minimal sets of kernel
diagnoses sufficient to cover every diagnosis correspond to the irredundant sets of prime implicants

 

6

 

 of all
minimal conflicts. These extensions cause drastic additional effort, because there can be exponentially
more kernel diagnoses than minimal diagnoses, and finding irredundant sets of prime implicants is NP-
hard. Therefore, [de Kleer et al., 1992] characterise two assumptions under which the kernel diagnoses are
identical to the minimal diagnoses. The kernel diagnoses are identical to the minimal diagnoses if all
conflicts contain only fault components. In this case, there is again only one irredundant set of minimal
diagnoses (the set containing all minimal diagnoses). The two assumptions that can ensure these properties
are the 

 

ignorance-of-abnormal-behaviour

 

 assumption and the 

 

limited-knowledge-of-abnormal-behaviour

 

assumption.

The ignorance-of-abnormal-behaviour assumption excludes knowledge about faulty behaviour and thus
characterises the original situation of GDE. The limited-knowledge-of-abnormal-behaviour assumption
states that the knowledge of abnormal behaviour does not rule out any diagnosis indicating a set of fault
components, if there exist a valid diagnosis indicating a subset of them as faulty components, and if the
additional assumed fault components are not inconsistent with the observations and the system
description.
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 The latter assumption is a refinement of the former, that is, the truth of the ignorance-of-
abnormal-behaviour assumption implies the truth of the limited-knowledge-of-abnormal-behaviour
assumption.

A similar type of assumption is used by [Bylander et al., 1991] to characterise different complexity classes
of component-based diagnosis. In general, finding one or all diagnoses is intractable. The 

 

independent

 

 and

 

monotonic

 

 assumption, which have the same effect as the limited-knowledge-of-abnormal-behaviour
assumption, require that each super-set of a diagnosis indicating a set of faulty components is also a
diagnosis.

 

8 In this case, the worst-case complexity of finding one minimal diagnosis grows polynomially
with the square of the number of components. However, the task of finding all minimal diagnoses is still
NP-hard in the number of components. This corresponds to the fact that the minimality assumption of GDE

6.  See [McCluskey, 1956].
7.  [McIlraith, 1994] generalizes these assumptions for the dual case of diagnoses diagnosing a minimal set of
components proven to be correct and applies them for characterizing minimal abductive diagnoses.
8.  More precisely, the explanatory power of a hypothesis increases monotonously by adding fault or correct
components.



3 The Problem Solver: Assumptions for Efficiency

Besides the assumptions that are necessary to define the task, further assumptions are necessary because of
the complexity of model-based diagnosis. Component-based diagnosis is in the worst case exponential in
the number of annotated components ([Bylander et al., 1991]). Every element of the power-set of the set of
annotated components is a possible hypothesis. As we are not interested in problem-solving in principle
but in practice, further assumptions have to be introduced that either decrease the worst-case, or at least the
average-case behaviour.

3.1 Reducing the Worst-Case Complexity: The Single-Fault Assumption

A drastic way to reduce the complexity of the diagnostic task is achieved by the single-fault or N-fault
assumption (SFA) [Davis, 1984], which reduces the complexity to polynomial in the number of
components. If the single-fault assumption holds, the incorrect behaviour of the device is completely
explainable by one failing component. This assumption defines either strong requirements on the provided
domain knowledge, or significantly restricts the diagnostic problems that can correctly be handled by the
diagnostic system (cf. [Benjamins et al., 1996]).

If the SFA has to be satisfied by the domain knowledge, then each possible fault has to be represented as a
single entity. In principle this causes complexity problems for the domain knowledge as each fault
combination (combination of fault components) has to be represented. However, additional domain
knowledge can be used to restrict the exponential increase. [Davis, 1984] discusses an example of a
representation change where a 4-fault case (i.e., 15 different combinations of faults) is transformed into a
single fault. A chip with four ports can cause faults on each port. When we know that the individual ports
never fail, but only the chip as a whole, a fault on four ports can be represented as one fault of the chip.
Even without such a representation change, we do not necessarily have to represent all possible fault
combinations. We can, for example, exclude all combinations that are not possible or likely in the specific
domain (expert knowledge).

Instead of formulating the requirement above on the domain knowledge, one can also weaken the task
definition by this assumption. This means that the competence of the PSM meets the task definition under
the assumption that only single fault occurs. That is, only in cases where a single fault occurs, the method
works correctly and complete. This would imply that the diagnostic system is designed for simple routine
diagnoses.

3.2 Reducing the Average-Case Behaviour: The Minimality Assumption of GDE

As the SFA might be too strong an assumption for several applications, either as a requirement on the
domain knowledge or as a restriction on the task, [Reiter, 1987] and [de Kleer & Williams, 1987] provide
approaches able to deal with multiple faults. However, this re-introduces the complexity problems of
MBD. To deal with this problem, GDE [de Kleer & Williams, 1987] exploits the minimality assumption,
which reduces, in practical cases, the exponential worst case behaviour to a complexity that grows with the
square of the number of components. In GDE, this assumptions helps reducing the complexity in two
ways. First, a conflict is a set of components where it cannot be the case that all components work correctly
given the provided domain knowledge and the observed behaviour. Under the minimality assumption, each
super-set of a conflict is also a conflict and all conflicts can be represented by minimal conflicts. Second, a
hypothesis contains at least one component of each conflict. Every super-set of such a hypothesis is again a
hypothesis. Therefore, diagnoses can be represented by minimal diagnoses. The minimality assumption
requires that diagnoses are independent or monotonic (see [Bylander et al., 1991]): a diagnosis that
assumes more components as being faulty, explains more observations.

A drastic way to ensure that the minimality assumption holds, is to neglect any knowledge about the



weakening them.5 However, this raises another problem in model-based diagnosis, namely its high
complexity or intractability. This will be discussed in the following section.

5.  They can be weakened by representing all desired interactions as components (e.g., wires) that could fail; by
representing additional possibilities of interactions (e.g., electronical devices can interact via heat exchange)
[Böttcher, 1996]; by representing all potential unintended interaction paths between components [Preist & Welhalm,
1990]; by representing additional inputs to get rid of intermittency [Raiman et al., 1991].
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All these assumptions are necessary to relate a model of the device with the actual device under concern.
“There is no such thing as an assumption-free representation. Every model, every representation contains
simplifying assumptions“ [Davis & Hamscher, 1988]. If the assumptions are too strong, one could consider

a. cd = case data, dk = domain knowledge, t = task

existence of a model 
of the component 
interactions

It assumes that the possible 
interactions between 
components are known to the 
reasoner.

dk This model is required to derive 
the overall behaviour of the 
system and the local inputs of 
components from the local 
outputs of the components.

[Davis, 1984], 
[Davis & 
Hamscher, 1988]

no-fault in structure 
assumption

Faulty components are the 
only causes.

dk Only components need to be 
treated as possible causes for 
the faulty behaviour.

[Davis, 1984], 
[Davis & 
Hamscher, 1988]

no-broken-
interactions

The interactions work 
properly, i.e., the connections 
work properly.

dk Only components need to be 
treated as possible causes for 
the faulty behaviour and the 
interaction model describes the 
real interactions.

[Davis, 1984], 
[Davis & 
Hamscher, 1988]

no-unexpected 
direction

The direction of the interaction 
is as represented.

dk Only components need to be 
treated as possible causes for 
the faulty behaviour and the 
interaction model describes the 
real interactions.

[Davis, 1984]

no-hidden 
interactions (closed 
world assumptions)

There are no interactions that 
are not represented in the 
model.

dk Only components need to be 
treated as possible causes for 
the faulty behaviour and the 
interaction model describes the 
real interactions.

[Davis, 1984], 
[Böttcher, 1996]

no assembly error The components are not wired 
incorrectly.

dk Only components need to be 
treated as possible causes for 
the faulty behaviour and the 
interaction model describes the 
real interactions.

[Davis & 
Hamscher, 1988], 
[Böttcher, 1996]

type of explanation 
relation (type of 
hypotheses)

Need an observation be 
consistent with the diagnosis 
or must it be derivable from it.

dk & t The problem solving is either 
constraints satisfaction or 
abductive inference.

[Console & 
Torasso, 1992], 
[de Kleer et al., 
1992], [ten Teije 
& van Harmelen, 
1996]

classification of 
observations

It introduces an distinction 
between observation 
describing normal and 
abnormal behaviour.

dk In abductive inference only the 
abnormal behaviour must be 
explained.

[Console & 
Torasso, 1992]

type of explanation 
(type of diagnosis)

Should the set of fault 
components contain all 
components that need to be 
fault or that could be fault.

dk & t Economy in repair versus 
safety-critical monitoring.

[McIlraith, 1994]

preference 
knowledge on 
diagnoses

It defines preferences between 
diagnoses.

dk Necessary for selecting the 
diagnoses with high 
preferences.

[de Kleer & 
Williams, 1987], 
[Davis & 
Hamscher, 1988]

Table 1: Effect-Assumptions in component-oriented diagnosis.

name explanation is abouta function some references



existence of fault 
identification 
knowledge

Knowledge is required to 
compare the observations with 
the behavioural description.

dk It is necessary for interpreting 
discrepancies.

[Benjamins, 
1993]

reliability of the fault 
identification 
knowledge

The knowledge used to detect 
discrepancies must be reliable.

dk It is necessary for interpreting 
discrepancies correctly.

[Benjamins, 
1993]

no-design-error The discrepancy between 
expected and actual behaviour 
does not result from the design 
of the device.

t The behavioural discrepancy is 
a fault and not just an 
impossibility.

[Davis, 1984]

existence of a set of 
components

The device can be decomposed 
into a set of components.

dk The entire device can be 
decomposed into smaller units 
that constitute the device.

[Davis, 1984], 
[Davis & 
Hamscher, 1988]

localized-failure-of-
function, no-
function-in-structure

Fault components can be 
identified as causes.

dk The reasons for fault 
behaviour do not have to be 
constructed but can be selected 
from a finite set.

[Davis, 1984], 
[de Kleer & 
Brown, 1984]

existence of a set of 
annotations

Components could have several 
behavioural modes that need to 
be provided.

dk The diagnostic reasoner can 
select from the behavioural 
modes provided for each 
component.

[Struss & 
Dressler, 1989], 
[de Kleer et al., 
1992]

completeness of the 
set of annotations = 
complete-fault 
knowledge

All possible modes of the 
components are known.

dk It is used to infer the mode of a 
component if all other 
behaviours do not (even not 
partially) explain the fault.

[Struss & 
Dressler, 1989], 
[de Kleer et al., 
1992]

existence of input-
output descriptions of 
the components

This knowledge defines the 
input-output behaviour of the 
components.

dk The behavioural description of 
the components is required to 
detect their faulty behaviour 
and to derive the overall 
behaviour of the complete 
device.

[de Kleer & 
Williams, 1987], 
[Davis & 
Hamscher, 1988]

existence of output-
input descriptions of 
the components

This knowledge defines the 
output-input relation of the 
components.

dk This knowledge can be used to 
derive additional discrepancies.

[Davis, 1984], 
[Raiman, 1989]

existence of 
functional 
descriptions of faulty 
behaviour of 
components

This knowledge defines the 
input-output behaviour of the 
components in the case a fault 
occurs.

dk The behavioural description of 
the components is required to 
identify different possible faults 
of a component.

[de Kleer & 
Williams, 1987], 
[Struss & 
Dressler, 1989]

complete 
behavioural 
descriptions 
(complete fault-
models)

All possible behaviours of a 
component is modelled by its 
functional description.

dk It is used to completely 
constrain the possible 
behaviour of a component.

[de Kleer & 
Williams, 1987], 
[Struss & 
Dressler, 1989]

no-fault-masking A fault of a component is 
visible in its behaviour and in 
the behaviour of the entire 
device.

cd & dk It is necessary for detecting 
faulty components.

[Davis, 1984], 
[Davis & 
Hamscher, 1988], 
[Raiman, 1992]

non-intermittency The output of a component is a 
function of the input (e.g., the 
behaviour does not change over 
time).

cd It is necessary for interpreting 
the discrepancy between an 
observation and an output of a 
behavioural description of a 
component.

[Davis, 1984], 
[Raiman et al., 
1991]

Table 1: Effect-Assumptions in component-oriented diagnosis.

name explanation is abouta function some references



2.4 Defining Diagnoses

Having established observations, hypotheses and an explanatory relation that relates hypotheses with
observations, one must establish the notion of diagnosis. Not each hypothesis that correctly explains all
observations needs to be a desired diagnosis. One could accept only parsimonious hypotheses as diagnoses
(cf. [Bylander et al., 1991]). An hypothesis or explanation H is parsimonious if H is an explanation and
there exists no other hypothesis H’ that also is an explanation and H’ < H. H is a diagnosis if H is a
parsimonious explanation. One has to make assumptions about the desired diagnosis (cf. [McIlraith, 1994])
in order to define the partial ordering (<) on hypotheses. For example, whether the diagnostic task is
concerned with finding all components that are necessarily fault to explain the system behaviour, or
whether it is concerned with finding all components that are necessarily correct to explain the system
behaviour. In the first case, we aim at economy in repair, whereas in safety critical applications (e.g.,
monitoring of nuclear power plants) one should obviously choose for the second case. 

As shown by [McIlraith, 1994], the assumptions about the type of explanation relation (i.e., consistency
versus derivability) and about the explanations (i.e., definition of parsimony) make also strong
commitments on the domain knowledge (the device model) that is used to describe the system. If we ask
for a consistent explanation with minimal sets of fault components (i.e., H1 < H2 if H1 assumes less
components as being fault than H2), we need knowledge that constrains the normal behaviour of
components. If we ask for a consistent explanation with minimal sets of correct components (i.e., H1 < H2
if H1 assumes less components as being correct than H2), we need knowledge that constrains the abnormal
behaviour of components.

The definition of parsimonious hypotheses introduces a preference on hypotheses. This could be extended
by defining further preferences on diagnoses to select one optimal one (e.g., by introducing assumptions
related to the probability of faults). Again, knowledge about preferences must be available to define a
preference function and a corresponding ordering.

2.5 Summary

Figure 1 summarises the assumptions that are discussed above and groups them according to their purpose.
All these assumptions are necessary to relate the definition of the functionality of the diagnostic system
with the diagnostic problem (i.e., the task) to be solved and with the domain knowledge that is required to
define the task. Table 1 provides an explanation of the assumptions along with the role they play
(function), the domain they are about (case data, domain knowledge or task), and some references where
they are discussed in more detail.  

Table 1: Effect-Assumptions in component-oriented diagnosis.

name explanation is abouta function some references

existence of 
observations

observations must be provided 
to the system

cd It is necessary for detecting 
discrepancies.

[Benjamins, 
1993]

reliability of 
observations

The provided observations 
must be reliable.

cd It is necessary for assuming 
that the discrepancy must be 
explained by a diagnosis.

[Benjamins, 
1993], [Davis & 
Hamscher, 1988]

existence of a 
behavioural 
description

The desired system behaviour 
must be known to the 
diagnostic reasoner.

dk It is necessary for detecting 
discrepancies.

[Benjamins, 
1993]

reliability of 
behavioural 
description

The description of the system 
must be reliable.

dk It is necessary for assuming the 
discrepancy must be explained 
by a diagnosis.

[Benjamins, 
1993], [Davis & 
Hamscher, 1988]



Williams, 1989], [Struss & Dressler, 1989]). If one assumes that these functional descriptions are complete
(the complete fault-knowledge assumption), then components can be considered innocent if none of their
fault descriptions is consistent with the observed fault behaviour. A result of using fault models is that all
kinds of non-specified behaviours of a component are excluded as diagnosis. For example, using fault
models, it becomes impossible to conclude that a fault (one of two light bulbs is not working) is explained
by a defect battery that does not provide power and a defect lamp that lights without electricity (cf. [Struss
& Dressler, 1989]).

Further assumptions that are related to the functional descriptions of components are the no-fault-masking
and the non-intermittency assumption. The former states that the defect of an individual or composite
component, or of the entire device must be visible by changed outputs (cf. [Davis & Hamscher, 1988],
[Raiman, 1992]). According to the latter, a component that gets identical inputs at different points of time,
must produce identical outputs. In other words, the output is a function of the input (cf. [Raiman et al.,
1991]). They argue that intermittency results from incomplete input specifications of components, but that
it is impossible to get rid of it (it is impossible to represent the required additional inputs).

A third assumption underlying many diagnostic approaches is the no-faults-in-structure assumption (cf.
[Davis & Hamscher, 1988]) that manifests itself in different variants according to the particular domain.
The assumption states that the interactions of the components are correctly modelled and that they are
complete. This assumption gives rise to three different classes of more specific assumptions. First, the no-
broken-interaction assumption states that connections between the components work correctly (e.g. no
wires between components are broken).4 If this is not the case, the assumption can be weakened by
representing the connections themselves as components too. Second, the no-unexpected-directions
assumption (or existence of a causal-pathway assumption) states that the directions of the interactions are
correctly modelled and are complete. For example, a light-bulb gets power from a battery and there is no
interaction in the opposite direction. The no-hidden-interactions assumption (cf. [Böttcher, 1996]) assumes
that there are no non-represented interactions (i.e., closed-world assumptions on connections). A bridge
fault [Davis, 1984] is an example of a violation of this assumption in the electronic domain. Electronic
devices whose components unintendedly interact through heat exchange, is another example [Böttcher,
1996]. In the worst case, all potential unintended interaction paths between components are represented
[Preist & Welhalm, 1990]. The no-hidden-interactions assumption is critical since most models (like
design models of the device) describe correctly working devices and unexpected interactions are therefore
precisely not mentioned. A refinement of this assumptions is that there are no assembly errors (i.e., every
individual component works but they have been wired up incorrectly).

2.3 Defining Hypotheses

In addition to knowledge that is required to identify a discrepancy and knowledge that provides hypotheses
used to explain these discrepancies, one requires further knowledge to decide which type of explanation is
required. [Console & Torasso, 1992] distinguish two types of explanations: weak explanations, that are
consistent with the observations (no contradiction can be derived from the union of the device model, the
observations, and the hypothesis), and strong explanations, that imply the observations (the observations
can be derived from the device model and the hypothesis). Both types of explanation can be combined by
dividing observations in two classes: observations that need to be explained by deriving them from a
hypothesis, and observations that need only be consistent with the hypothesis. In this case one requires
knowledge that allows to divide the set of observations. The decision which type of explanation to use, can
only be made based on assumptions about the environment in which the KBS is used.

4.  It is possible to represent the interactions between components as possible hypotheses but this leads to new
problems (compare Section 2.5).



• observations of the behaviour of the device must be provided to the diagnostic reasoner;
• a behavioural description of the device must be provided to the diagnostic reasoner;
• knowledge concerning the (im)preciseness of the observations and the behavioural description as

well as comparison knowledge (thresholds etc.) are necessary (for comparison) to decide whether a
discrepancy is significant. Other required knowledge concerns the interpretation of missing values,
and whether an observation can have several values (i.e., its value type).

Relevant assumptions state that the two types of inputs need to be reliable. Otherwise, the discrepancy
could be explained by a measuring fault or a modelling fault. In other words, these assumptions guarantee
that if a prediction yields a different behaviour than the observed behaviour of the artefact, then the artefact
has a defect [Davis & Hamscher, 1988]).

These assumptions are also necessary for the meta-level decision whether a diagnosis problem is given at
all (i.e., whether there is an abnormality in system behaviour). This decision relies on a further assumption:
the no-design-error assumption [Davis, 1984] which says that if no fault occurs, then the device must be
able to achieve the desired behaviour. In other words, the discrepancy must be the result of a fault situation
where some parts of the system are defect. It cannot be the result of a situation where the system works
correctly, but cannot achieve the desired functionality because it is not designed for this. If this assumption
does not hold, one has a design problem and not a diagnostic problem.

2.2 Identifying Causes

Another purpose of the system description is the identification of causes of faulty behaviour. This cause-
identification knowledge must be reliable [Davis & Hamscher, 1988], or, in other words, the knowledge
used in model-based diagnosis is assumed to be a correct and complete description of the artefact. Correct
and complete in the sense, that it enables the derivation of correct and complete diagnoses if discrepancies
appear.2 In accordance with different types of device models and diagnostic methods, these assumptions
wear different clothes. During the following we restrict our attention to component-oriented device models
that describe a device in terms of components, their behaviours (a functional description), and their
connections.3 The set of all possible hypotheses is the power-set of the set of annotated components

{ (c1), (c1), ..., (cn)}, 

where modeji(cj) describes that the j-th component is in mode i. [Davis, 1984] has pointed out that one
should be aware of the underlying assumptions for such a diagnostic approach and listed a number of them.

First, the localised-failure-of-function assumption: the device must be decomposable in well-defined and
localised entities (i.e., a component) that can be treated as causes of faulty behaviour. Second, these
components have a functional description that provides the (correct) output for their possible inputs. If this
functional description is local, that is, it does not refer to the functioning of the whole device, the no-
function-in-structure assumption [de Kleer & Brown, 1984] is satisfied. Several diagnostic methods can
also use the reverse of the functional descriptions, thus, rules that derive the expected input from the
provided output. If only correct functional descriptions are available, fault behaviour is defined as any
other behaviour than the correct one. Fault behaviour of components can be constrained by including fault
models, that is, functional descriptions of the components in case they are broken (cf. [de Kleer &

2.  A typical problem of diagnosis without knowledge about fault models (i.e., incomplete knowledge) is that the
reasoner provides in addition to the right diagnoses also wrong diagnoses. The derived result is complete but not
correct because the provided domain knowledge is not complete. No correct domain knowledge can lead to
incomplete sets of diagnoses.
3.  It is a critical modelling decision what to view as a component and which types of interactions are represented (cf.
[Davis, 1984]). Several points of view are possible to decide what is regarded as being a component. Different levels
of physical representations result in different entities; the independent entities that are used in the manufacturing
process of the artefact could be used as components; or functional unities of the artefact could be seen as components.

mode11 mode12 modenmn



on domain knowledge. In this paper, we review the work on diagnostic reasoning systems. We focus on
assumptions that are introduced to define the effect of diagnostic reasoners and to improve their efficiency.
The work on diagnostic reasoning provides an interesting empirical basis for our approach as it provides a
more than ten years long history on developing knowledge-based reasoners for a complex task. During this
process, several assumptions have been identified and refined in the literature on model-based diagnostic
systems.

The first diagnostic systems built were heuristic systems, in the sense that they contained compiled
knowledge which linked symptoms directly to hypotheses (usually in rules). In these systems, only
foreseen symptoms can be diagnosed and heuristic knowledge that links symptoms with possible faults
needs to be available. One of the main principles underlying model-based diagnosis is the use of a domain
model (called SBF models in [Chandrasekaran, 1991]). Heuristic knowledge that links symptoms with
causes is no longer necessarily. The domain model is used for predicting the desired device behaviour,
which is then compared to the observed device behaviour. A discrepancy indicates a symptom. General
reasoning techniques as constraint satisfaction or truth maintenance can be used to derive diagnoses that
explain the actual behaviour of the device using its model. Because the reasoning part is represented
separately from domain knowledge, it can be reused for different domains. This paradigm of model-based
diagnosis gave rise to the development of general approaches to diagnosis, such as “constraint suspension“
[Davis, 1984], DART [Genesereth, 1984], GDE [de Kleer & Williams, 1987], and several extensions to
GDE (GDE+ [Struss & Dressler, 1989], Sherlock [de Kleer & Williams, 1989]).

In this paper, we will focus on assumptions underlying approaches to diagnostic problem solving. In
Section 2, we discuss assumptions that are necessary to relate a diagnostic system with its environment.
That is, assumptions on the available case data, the required domain knowledge and the problem type. In
Section 3, we discuss assumptions introduced to reduce the complexity of the reasoning process necessary
to execute the diagnostic task. Such assumptions are introduced to either change the worst-case complexity
or the average-case behaviour of problem solving. In Section 4, we sketch further assumptions that are
related to the efficiency of the interaction of the problem solver with its environment. Section 5 sketches a
general framework for specifying reasoning systems and their underlying assumptions. It discusses how
assumptions can be used to weaken or strengthen the problem-solving method competence. In section 6,
we present conclusions.

2 The Task: Assumptions for Effect

In model-based diagnosis (cf. [de Kleer et al., 1992]), the definition of the task of the KBS requires a
system description of the device under consideration and a set of observations, where some indicate normal
and other abnormal behaviour. The goal of the task is to find a diagnosis that, together with the system
description, explains the observations. In the following, we discuss four different aspects of such a task
definition and show the assumptions related to each of them. The four aspects are: identifying
abnormalities, identifying causes of these abnormalities, defining hypotheses, and defining diagnoses.

2.1 Identifying Abnormalities

Identification of abnormal behaviour is necessary before a diagnostic process can be started to find
explanations for the abnormalities. This identification task requires three kinds of knowledge, of which
two are related to the type of input, and one to the interpretation of possible discrepancies (see [Benjamins,
1993]):

1.   This problem-solving method propose & revise was analysed versus its underlying assumptions and their rationale
in [Fensel, 1995]. 
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Abstract. Mostly, papers on problem-solving methods focus on the description of reasoning
strategies and discuss their underlying assumptions as a side aspect. We take a
complementary point of view and focus on these underlying assumptions as they play three
important roles: first, assumptions are necessary to characterise the precise competence of a
problem-solving method in terms of the tasks that can be solved by it, and in terms of the
domain knowledge that is required by it. Second, assumptions are necessary to enable
tractable problem solving for complex problems. Third, assumptions are necessary for
appropriate interaction of the problem solver with its environment. Their introduction and
refinement can be used to develop new problem-solving methods, or to adapt existing ones
according to task and domain-specific circumstances of a given application. For this purpose,
one requires a framework for dealing with these assumptions. This paper makes a step in this
direction by summarising the assumptions that can be found in the literature on diagnosis
with component-oriented device models. The main contribution of the paper is to collect
these assumptions, to make their role in the reasoning process explicit, and to classify them.

1 There Is No Such Thing As An Assumption-Free Reasoning Strategy

Reasoning about real-world problems is only possible by introducing assumptions about these problems.
Such assumptions are necessary to relate the input and the output of the reasoning process with the actual
problem. Assumptions refer to the provided case data and the precise task that should be executed by the
reasoner. In the case of knowledge-based reasoners, additional assumptions appear that are formulated as
requirements on knowledge as it is necessary for the reasoning process. Another type of assumptions deals
with the complexity of the reasoning task. In general, most problems tackled with knowledge-based
systems are inherently complex and intractable ([Bylander, 1991], [Bylander et al., 1991], [Nebel, 1996]).
A knowledge-based reasoner can only solve such tasks with reasonable computational effort by
introducing assumptions that restrict the complexity of the problem, or strengthen the requirements on
domain knowledge (cf. [Benjamins et al., 1996]). Therefore, this second type of assumptions either
weakens the task definition or introduces additional requirements on the domain knowledge that is
expected by the problem solver. In the first case, the task is weakened (i.e., the application scope is
reduced) to meet the competence of the reasoning system and in the second case, the competence of the
reasoner is strengthened by the assumed domain knowledge.

In [Fensel & Straatman, 1996] we discussed the idea of viewing the development process of an efficient
knowledge-based reasoner as a process of introducing and refining assumptions. A simple generate & test
problem solver is modified to a more efficient problem-solving method (a variant of propose & revise for
parametric design1 by introducing assumptions that weaken the task and that strengthen the requirements


