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Abstract.

 

 The paper introduces a formal approach for the specification
and verification of knowledge-based systems. We identify different
elements of such a specification: a task definition, a problem-solving
method, a domain model, an adapter, and assumptions that relate these
elements. We present abstract data types and a variant of dynamic
logic as formal means to specify these different elements. Based on our
framework we can distinguish several verification tasks. In the paper,
we discuss the application of the Karlsruhe Interactive Verifier (KIV)
for this purpose. KIV was originally developed for the verification of
procedural programs but it fits well for our approach. We illustrate the
verification process with KIV and show how KIV can be used as an
exploration tool that helps to detect assumptions necessary to close the
gap between the task definition and the competence of a problem-
solving method.

 

1 Introduction

 

During the last years, several conceptual and formal specification
techniques for knowledge-based systems (KBS) have been developed
(see [18], [15] for surveys). The main advantage of these modelling or
specification techniques is that they enable the description of a KBS
independent of its implementation. This has two main implications.
First, validation and verification of the functionality, the reasoning
behavior, and the domain knowledge of a KBS is already possible
during the early phases of the development process of the KBS. A
model of the KBS can be investigated independently of aspects that are
only related to its implementation. Especially if a KBS is built up from
reusable components (based on libraries of problem-solving methods
[33], [5], [2] and domain ontologies [49]) it becomes an essential task
to verify whether the assumptions of such a reusable building block fit
to the actual provided task and knowledge. Second, such a
specification can be used as golden standard for the validation and
verification

 

1

 

 of the implementation of the KBS. It defines the
requirements the implementation must fulfil.

The work that is presented in this paper provides three
contributions to the field. 

First, we will develop a conceptual and formal framework for the
specification of KBSs. The conceptual framework is developed in

accordance to the CommonKADS model of expertise [42] because this
model has become widely used by the knowledge engineering
community. The formal means applied are based on combining
variants of algebraic specification techniques [4] and dynamic logic
[24]. We could not completely rely on existing specification languages
for KBS since most of them cover only a subset of a complete
specification of a KBS or lack from a appropriate semantics and
axiomatization.

Second, we identify several proof obligations that arise in order to
guarantee a consistent specification. The overall verification of a KBS
is broken down into five different types of proof obligations that
ensure that the different elements of a specification together define a
consistent system with appropriate functionality.

Third, we show how the Karlsruhe Interactive Verifier (KIV) [37],
developed in the area of program verification, provides support in
proceeding these proofs. Our view of verification is not restricted to
the task of decorating software with a 

 

verified

 

 stamp after its
construction. We believe that verification techniques can be valuable
already in the development process (cf. [28]). Especially in the context
of the development process for KBS as proposed here we think of
detecting (hidden) assumptions of PSMs by analysing failures of proof
attempts.

The paper is organised as follows. In section 2, we discuss the
different elements of a formal specification of a KBS and which kinds
of proof obligation arise in their context. In section 3 we introduce an
example of a task definition. We discuss the task of selecting a best
explanation in abductive diagnosis. In section 4, we provide the
definition of the weak PSM 

 

hill-climbing

 

 that finds a 

 

local

 

 optimum.
We will then discuss in section 5 how ontology mappings and
additional assumptions relate the task description with the competence
of 

 

hill-climbing

 

. In section 6 is shown, how the Karlsruhe Interactive
Verifier (KIV) can be used for these verification tasks. We
demonstrate termination and equivalence proofs and show how KIV
can be used as an exploration tool that helps to find the appropriate
assumptions necessary to link a competence of a PSM with a task
definition. Section 7 summarizes the paper and defines objectives for
future research.

 

2 A Formal Framework for the Specification of

 

1.  There is no clear consensus in the literature over the precise definition of the
terms validation and verification. In our context, a formal proof that a
specification or a program fulfils some properties postulated by another
specification will be called verification. A formal specification can be used to
validate the behavior of a program in the case it is operational. The
implementation should then produce output that corresponds to the output
produced by the operational specification. We use the term 

 

correspondence

 

instead of 

 

equivalence

 

 to cover non-deterministic specifications and partial
evaluation techniques. During the paper, we focus on the internal verification of
a specification and its different parts.
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Knowledge-Based Systems

 

During the following, we first introduce the different elements of a
specification. Then we discuss, how they are related and which proof
obligations arise from these relationships.

 

2.1. The Main Elements of a Specification

 

A framework for describing a knowledge-based system consists of
four elements (see Figure 1): a 

 

task

 

 definition that defines the problem
that should be solved by the KBS; a 

 

problem-solving method

 

 (PSM)
that defines the reasoning process of a KBS; and a 

 

domain model

 

 that
describes the domain knowledge of the KBS. Each of these elements
are described independently to enable the reuse of task descriptions in
different domains [5], the reuse of PSMs for different tasks and
domains (cf. [33], [5], [2]), and the reuse of domain knowledge for
different tasks and PSMs (cf. [44], [49]). A fourth element of a
specification of a KBS is an 

 

adapter

 

 that is necessary to relate the
functionality of a PSM and the provided domain knowledge with the
desired functionality as it is defined by the task definition. Additional
assumptions have to be introduced and the different terminologies
have to be mapped. The necessity of adapters arise from the reusability
of the other building blocks of a specification. They must be adjusted
to each other and to the specific requirements of a given application
problem.

The description of a 

 

task

 

 specifies some goals that should be
achieved in order to solve a given problem. This functionality is
specified as a relation between input and output of a KBS. A second

part of a task specification is the definition of 

 

assumptions

 

 over
domain knowledge. For example, a task that defines the selection of
the maximal element of a given set of elements requires a preference
relation as domain knowledge. Assumptions are used to define the
requirements on such a relation (e.g. transitivity, connexitivity, etc.). A
natural candidate for the formal task definition are 

 

algebraic
specifications

 

. They have been developed in software engineering to
define the functionality of a software artefact (cf. [4], [11], [50]) and
have already been applied by [43] and [31] for KBS. In a nutshell,
algebraic specifications provide a signature consisting of types,
constants, functions and predicates and a set of axioms that define
properties of these syntactical elements.

The description of the 

 

reasoning process

 

 of the KBS by a PSM
consists of three elements. First, the definition of the functionality of
the PSM. Such a functional specification defines the 

 

competence

 

 of a
PSM independent from its realization (cf. [46], [1], [48]). Again
algebraic specifications can be used for this purpose. Second, an

 

operational description

 

 defines the dynamic reasoning process of a
PSM. Such an operational description explains how the desired
competence can be achieved. It defines the main reasoning steps
(called 

 

inference actions

 

) and their dynamic interaction (i.e., the
knowledge and control flow) in order to achieve the functionality of
the PSM. Dynamic logic [24] or temporal logic [45] are required to
specify the dynamic interaction of these inferences. The definition of
such an inference step could recursively introduce a new (sub-)task
definition. This process of stepwise refinement stops when the
realization of such an inference is regarded as an implementation issue

Goals

Assumptions

Task definition (see Fig. 2)
Competence 

Operational Specification 

Problem-solving method (PSM)

Assumptions

Assumptions

Domain model

Fig. 1    The four elements of a specification of a KBS.
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that is neglected during the specification process of the KBS. The third
element of a PSM are 

 

assumptions

 

 over domain knowledge. Each
inference step requires a specific type of domain knowledge. These
complex requirements on the input of a PSM distinguish it from usual
software products. Pre-conditions on valid inputs are extended to
complex requirements on available domain knowledge.

 

2

 

The description of the 

 

domain model

 

 introduces the domain
knowledge as it is required by the PSM and the task definition.
Ontologies (i.e., meta-theories of domain knowledge) are proposed in
knowledge engineering as a means to explicitly represent the
commitments of a domain knowledge (cf. [44], [49]). For our purpose,
we require three elements for defining a 

 

domain model

 

: First, a
description of properties of the domain knowledge at a meta-level. The

 

meta knowledge

 

 characterizes properties of the domain knowledge. It
is the counter part of the assumptions on domain knowledge of the
other parts of a specification. They reflect the assumptions of task
definitions and PSM on domain knowledge. Second, the 

 

domain
knowledge

 

 and

 

 case data

 

 necessary to define the task in the given
application domain and necessary to proceed the inference steps of the
chosen PSM. Third, 

 

external

 

 

 

assumptions

 

 that relate the domain
knowledge with the domain (i.e., the system model with the actual
system). These assumptions link the domain knowledge with the actual
domain. These assumptions can be viewed as the missing pieces in the
proof that the domain knowledge fulfils its meta-level
characterizations. Some of these properties may be directly inferred
from the domain knowledge whereas others can only be derived by
introducing assumptions on the environment of the system.

The description of an 

 

adapter

 

 maps the different terminologies of
task definition, PSM, and domain model and introduces assumptions
that have to be made to relate the competence of a PSM with the
functionality as it is introduced by the task definition (cf. [13], [3]). It
relates the three other parts of a specification together and establishes
their relationship in a way that meets the specific application problem.
Each of the three other elements can be described independently and
selected from libraries of reusable task definitions, PSM

 

3

 

, and domain
models. Their consistent combination and their adaption to the specific
aspects of the given application (because they should be reusable they
need to abstract from specific aspects of application problems) must be
provided by the adapter. Its assumptions are necessary as in general,
most problems tackled with knowledge-based systems are inherently
complex and intractable, i.e., their time complexity is NP-hard ([7],
[8], and [30]). A PSM can only solve such tasks with reasonable
computational effort by introducing assumptions that restrict the
complexity of the problem or strengthen the assumptions over domain
knowledge. In the following, we illustrate the adaption of a PSM in
accordance to a formal description of a task by introducing
assumptions. These assumptions either weaken the task definition or
introduce additional requirements on the domain knowledge that is
expected by the PSM. In the first case, the task is weakened to meet the
competence of the PSM and in the second case, the competence of the
method is strengthened by the assumed domain knowledge.

 

2.  In terms of [47], a task definition is an 

 

extensional

 

 specification and a PSM
combines 

 

extensional

 

 with 

 

intensional

 

 specification elements. The entire
competence of the PSM and their elementary reasoning steps are specified
extensionally. The interaction of the elementary reasoning steps in order to
achieve the competence is specified intensionally.
3.  As a consequence, PSM can be described independent from domains and
tasks as proposed in [27].

 

2.2.  The Main Proof Obligations

 

Following the development process for task and domain specific
PSMs as proposed in this paper the overall verification of a KBS is
broken down into five kinds of proof obligations (see Figure 1):

(i) the consistency of the task definition ensures that a model of
the task definition exist

 

4

 

Task definition

 

 

 

 

 

⊥

 

;

 

(ii) the operational description of the PSM exhibits the
functionality described in the competence theory, i.e., 

 

PSM

 

assumptions

 

 |

 



 

 
(<

 

PSM

 

operational

 

> true 

 

∧

 

 
[

 

PSM

 

operational

 

]

 

 PSM

 

competence

 

)
this proof obligation recursively returns for each inference
action of a PSM;

(iii) the internal consistency of the domain model
 

 

Domain model

 

assumptions

 

 

 

∧

 

 
Domain model

 

domain knowledge

 

 
|

 



 

 Domain model

 

meta knowledge

 

;
(iv) under certain assumptions, the functionality described in the

competence theory is sufficient for solving the task, i.e., 

 

Adapter

 

assumptions

 

 

 

|

 



 

 
(

 

PSM

 

assumptions

 

 

 

∧

 

 PSM

 

competence

 

 

 

→

 

 

 

Task definition

 

);
(v) the domain model fulfils these assumptions, i.e.,

 

Domain model

 

meta knowledge

 

 |

 



 

 Task

 

assumptions

 

 
Domain model

 

meta knowledge

 

 |

 



 

 PSM

 

assumptions

 

 

 

Domain model

 

meta knowledge

 

 |

 



 

 Adapter

 

assumptions

 

.
Notice that PO-i deals with the task definition internally, PO-ii

deals with the task definition internally, and PO-iii deals with the
domain model internally, whereas PO-iv and PO-v deal with the
external relationships between tasks, PSM, assumptions, and domain
knowledge. Thus a separation of concerns is achieved which
contributes to the feasibility of the verification (cf. [25]). The
conceptual model applied to describe knowledge-based system is used
to brake the general proof obligations into smaller pieces and makes
parts of them reusable. As PSMs can be reused, the proofs of PO-ii
does not have to be repeated for every application. Only when a new
PSM is introduced into the library (cf. [33], [5]), these proofs have to
be done. Similar proof economy can be achieved for PO-i and PO-iii
by reusable task definitions and domain models. Application specific
proof obligations are PO-iv and PO-v. The first links the competence
of the PSM to the functionality of the task introducing some
assumptions. PO-v ensures that the assumptions over domain
knowledge are fulfilled.

 

3 The Task “Select A Best Explanation”

 

The task 

 

abductive diagnosis

 

 requires a set of observations as input
and tries to deliver a correct, complete and most plausible diagnosis as
output (see e.g. [8]). Roughly, one can identify three reasoning tasks of
abductive diagnosis:
• generating possible diagnoses;
• testing whether these possible diagnoses are correct and complete;
• selecting the diagnosis with the highest plausibility.

In the following we will focus on the third subtask selecting the
explanation with the highest plausibility. The task assumes a set of
correct and complete hypotheses for a given abductive problem as

 

4.  The proof is usually done by constructing a model via an (inefficient)
generate & test like implementation.
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input. As output, it provides a diagnosis having the maximal
plausibility.

Figure 2 defines the signature of the task under concern. The sort

 

H

 

all

 

 defines the set of all possible hypotheses that can explain possible
faults in the domain. The sort 

 

plausibilities

 

 is used to express the
plausibility of a hypothesis.

 

 H

 

all

 

 and 

 

plausibilities

 

 must be data or
knowledge types in the given domain and introduce ontological
commitments. The function 

 

pl

 

 must be provided as domain knowledge.
It relates hypotheses to their property that gets optimized.

The predicate 

 

hypothesis

 

 defines the set of actual hypotheses from
which we search for the optimal element. The interpretation of the
predicate 

 

hypothesis 

 

must be provided as data input to the task. The
assumption over input is that it is not empty (see (3)).

A further predicate 

 

pref

 

 is required to distinguish between different
elements of 

 

hypothesis

 

 by imposing an ordering in them. More
precisely spoken, it is used to distinguish their values of the function

 

pl

 

. It defines an additional ontological commitment as this preference
(i.e., the interpretation of the predicate 

 

pref

 

) must be provided as
domain knowledge. This semantical requirement for a preference
relation must be further characterized by its properties. The precise
definition of the preference predicate by axioms (4) - (7) defines
requirements on the domain relationship that is used to interpret it.
These axioms ensure that pref defines a 

 

linear ordering

 

 (sometimes

also called total ordering). 
We still have to define the functionality that should be provided by

the task. That is, we have to define the predicate 

 

diagnosis

 

 with the
predicate symbols 

 

hypotheses

 

, 

 

pref

 

 and the function symbol 

 

pl

 

. With
axioms (1) + (2) we ask for a

 

 maximal 

 

element of input as goal of the
task.

 

4 The Weak Problem-Solving Method Hill-climbing

 

There exist several techniques (see e.g. [40]) and PSMs (see [33],
[5]) that are available to solve a given task. Three main decisions have
to taken for deciding which problem-solving technique should be
applied:
• Is the problem-solving technique or method suitable for the given

type of task and how large is the effort to map the terminology of
the task onto the terminology of the method ([12], [16])?

• What types of domain knowledge are required by it? For example, a
problem-solving method like propose & revise can only be applied
to a parametric design problem if knowledge is available that can be
used to propose initial parameter values and knowledge that can be
used to repair constraints violations. Different variants of propose
& revise can be identified by making these requirements on domain
knowledge more precise [13].

• How important and problematic is the efficiency aspect? Blind

task Select Best Diagnosis
sorts 

Hall, plausibilities
functions

pl: Hall → plausibilities
predicates 

hypothesis : Hall
diagnosis : Hall
pref : plausibilities × plausibilities1

variables x,y,z : Hall
axioms

goal
(1) Each diagnosis is a hypothesis

 ∀ x (diagnosis(x)  → hypothesis(x))
(2) The diagnosis is a global optimum

 ∀ x (diagnosis(x) → ∀ y (hypothesis(y) → pref(pl(y),pl(x))))
input requirement

(3) Non-emptyness of hypothesis 
∃ x hypothesis(x)

knowledge requirement
(4) reflexivity of pref: 

∀ x pref(pl(x),pl(x))
(5) transitivity  of pref: 

∀ x,y,z (pref(pl(x),pl(y)) ∧ pref(pl(y),pl(z)) → pref(pl(x),pl(z)))
(6) antisymmetry  of pref: 

∀ x ,y (pref(pl(x),pl(y)) ∧ pref(pl(y),pl(x)) → pl(x) = pl(y))
(7) connexivity  of pref: 

∀ x ,y (pref(pl(x),pl(y)) ∨  pref(pl(y),pl(x)))
endtask

1.  Read pref(x,y) as y is preferred over x.

Figure 2.    The task definition select best diagnosis.
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generate & test like methods have low efficiency but are easy to
understand and implement. More sophisticated methods that
compile test knowledge into the generate step provide higher
efficiency but provide less understandability and require more effort
in implementing and maintaining them ([10], [19]).
The main distinction between the algorithmic techniques of [40] or

so-called weak problem-solving methods (actually heuristic and non-

heuristic search techniques, [6]) at the one hand and problem-solving
method at the other hand is that the latter make stronger commitments
on the terminological structure of the tasks they can be applied to and
the type of knowledge they require. For example, the task-specific
board-game method is gained from the weak search strategy
chronological backtracking by posing an internal terminological
structure on the states of the search process and using this structure to
define state transitions ([12], [16]) that define stronger requirements on

Figure 3.    Refinement hierarchy of algorithm theories (see [40]).

Problem Theory
generate & test

Problem Reduction Local Structure
local search

steepest ascent
simulated annealing
closure algorithms

Complementation And/Or-reduction
dynamic programming
branch-and-bound(AO*)
game tree search

And-reduction
divide-and-conquer
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Or-reduction
global search
binary search
backtrack
branch-and-bound (A*)
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hill-climbing, ...

generate

Fig. 4    Knowledge flow diagram of hill-climbing.
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available domain knowledge. 
Because for reasons of simplicity we have chosen a simple task

definition, we can choose a weak problem-solving method for solving
it. The task is a simple selection task where the elements are
characterized by one property that should be optimized.5 We decided
to choose the local search method hill-climbing for our example (cf.
Figure 3). Hill-climbing is a local search algorithm that stops when it
has found a local optimum. 

The main requirement on domain knowledge that is introduced by
hill-climbing (and by other local search methods) is the existence of a
neighbourhood relationship between nodes (called graph during the
following) that is used to guide the local search process. In general,
several domain-specific possibilities exist to define such a graph
relationship. In component-based diagnosis where each hypothesis is a
set of defect components that explain the fault behaviour of a device

5.  In terms of CommonKADS such a simple task would be solved by an
elementary inference action select that is part of several more complex problem-
solving methods [5].

this graph relation could be defined between two hypotheses by:
graph(hypothesis1,hypothesis2) :↔ 
∃  c (hypothesis1 = hypothesis2 ∪  {c} ∧  c ∉  hypothesis2).
That is, the neighbour of a hypothesis are all hypotheses that

contain one less defect component . It is clear that such a definition
only makes sense if the preference of a hypothesis is related to the
number of components it assumes to be defect. A further example for
such a graph os provided in machine learning when one searches
locally for rules or decision trees that cover a set of examples (cf. [34]).
The graph relation is defined between rules that can be derived from
each other by adding or deleting one premise. In general, hill-climbing
can only be applied if a relation in the domain exist that can be used to
define a graph for its search process.

One could argue why we do not just use a method that pairwise
compares elements of the given set of hypotheses in random order as
the complexity of the problem is only linear in the number of nodes.
Still for large hypotheses sets, heuristic techniques must be applied.
For example, the number of hypotheses increases exponentially in
component-based diagnosis in the number of components (the set of

inf init
sorts nodes
static predicates input, start : nodes
dynamic predicates node : nodes
variables x,y : nodes
axioms 

[init] ∀ x (node(x) → (input(x) ∧  start(x)))
[init] ∀ x,y (node(x) ∧ node(y) → x = y)

implementation 
init =def node :↔ εx.(input(x) ∧  start(x))

endinf

inf generate
sorts nodes
static predicates input : nodes, node : nodes, graph : nodes × nodes
dynamic predicates new nodes : nodes
variables x,y : nodes
axioms 

[generate]∀ y (new-nodes(y) → input(y) ∧ ∃ x (node(x) ∧ graph(x,y)))
implementation 

generate =def new-nodes :↔ λy.(input(y) ∧ ∃ x (node(x) ∧ graph(x,y)))
endinf

inf select
sorts nodes, pref-values
static functions h : nodes → pref-values
static predicates new nodes : nodes, pref : nodes × nodes
dynamic predicates new node : nodes
variables x,y : nodes
axioms 

[select] ∀ x (new-node(x) → new-nodes(x) ∧ ∀ y (new-nodes(y) → pref(h(y),h(x))))
[select] ∀ x,y (new-node(x) ∧ new-node(y) → x = y)
∃ x new-nodes(x) → [select] ∃ x new-node(x)

implementation 
select =def new-node :↔ εx.(new-nodes(x) ∧ ∀ y (new-nodes(y) ∧ pref(h(y),h(x))))

endinf

Figure 5.    The inferences init, generate and select.
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hypotheses is the power set of the set of components). Therefore,
efficiency of the search process becomes important and a heuristic
approach is necessary.

In the following we provide the operational specification together
with its knowledge requirements, the competence theory, and finally
the proof obligations of this method.

4.1. Operational Specification of Hill-Climbing
Hill-climbing finds a local optimum. The entire method is

decomposed into the following three steps. The inference action init
selects the start node. An inference action generate generates all
neighbours of a node. The inference action select selects the node with
the highest value. Figure 4 gives the knowledge flow diagram of the
method. 

4.1.1     Inference Actions.
We use algebraic specifications enriched by the modality operators

of dynamic logic to specify the functionality of inference actions. We
distinguish between predicates that have the same truth values in the
initial state and in the state after the execution of an inference action
(called static predicates) from the predicates that change as a result of
executing the inference action (called dynamic predicates).6 Figure 5
provides the definition of the three inference actions of the PSM. The
functional specification is extended by an operational specification

6.  Dynamic knowledge roles and static knowledge roles should not get mixed
with static and dynamic predicates. The former are determined in the context of
the entire problem-solving method and the latter are determined in the context
of an individual inference action.

dkr output
sorts nodes
predicates output : nodes

enddkr
dkr node

sorts nodes
predicates node : nodes

enddkr

Figure 6.    The dynamic knowledge roles of hill-climbing.

dkr input
sorts nodes
predicates input : nodes
axioms 

∃ x input(x)
enddkr

dkr new-node
sorts nodes
predicates new-node : nodes

enddkr
dkr new-nodes

sorts nodes
predicates new-nodes : nodes

enddkr

skr preference
sorts 

nodes, pref-values
functions

h : nodes → pref-values
predicates 

pref : pref-values × pref-values
variables x,y,z : nodes
axioms1

(1) reflexivity of pref: 
∀ x pref(h(x),h(x))

(2) transitivity  of pref: 
∀ x,y,z (pref(h(x),h(y)) ∧ pref(h(y),h(z)) → pref(h(x),h(z)))

(3) antisymmetry  of pref: 
∀ x ,y(pref(h(x),h(y)) ∧ pref(h(y),h(x)) → h(x) = h(y))

(4) connexivity  of pref: 
∀ x ,y(pref(h(x),h(y)) ∨ pref(h(y),h(x)))

endskr

Actually, the axioms of preference are stronger than required. For hill-climbing, the linear ordering
property of pref must hold only between neighborhoud nodes. That is, between nodes that are linked by the
graph relationship.

Figure 7.    The static knowledge roles of hill-climbing.

view graph
sorts 

nodes
predicates 

graph : nodes × nodes
endview

view start
sorts 

nodes
predicates 

start : nodes
endview
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(called implementation) that express the inference in a procedural way.
We use a variant of dynamic logic for this purpose. The Modal Logic
for Predicate Modification (MLPM) [17] was developed as a
generalization of specification languages KARL [14] and (ML)2 [26].
In addition, it provides an axiomatization that enables automated proofs.
MLPM represents a state by the truth values of the predicates. An
elementary state transition is achieved by changing the truth values of a
predicate according to the truth values of a formula that is used to define
the transition. Two different types of such elementary state transitions
exist:

p :↔ εx.ϕ and p :↔ λx.ϕ 
The ε-operator expresses non-deterministic selection of one ground

literal. A formula ϕ can be used to restrict the set of possible ground
literals from which one is chosen. All other ground literals of the
predicate p are set to false. The λ-operator allows updates of all ground
literals of a predicate p according to the truth values of a formula ϕ. All
ground literals are set to true for which the according variable
assignments evaluate the formula to true. All other ground literals of the
predicate p are set to false.

MLPM provides the usual procedural constructs such as sequence,
if-then-else, choice, and while-loop to define complex transition. We
will make use of these constructs in section 4.1.4 when we define the
operational specification of the entire hill-climbing method. As
inference actions are regarded to be primitive they are defined by only
one elementary transition.

An interesting feature of the inference action select is that it
recursively repeats the definition of the original optimization task. In
addition, select requires to find a global maximum (of all
neighbourhood nodes) whereas the competence of hill-climbing can
only guarantee to find a local one.

4.1.2     Dynamic Knowledge Roles
Dynamic knowledge roles (dkr) are means to represent the state of

the reasoning process and are modelled by algebraic specifications (see
Figure 6). Axioms can be used to represent state invariants. We define
the requirement that the input provided to the method has to be non-
empty.

4.1.3     Static Knowledge Roles
Static knowledge roles (skr) are means to include domain

knowledge into the reasoning process of a PSM. Again, they are
modelled by algebraic specifications. Axioms are used to define
assumptions over the domain knowledge. Hill-climbing requires three
types of domain knowledge. A preference is required to select an
optimal neighbourhood node and a graph is required that defines the
search space of hill-climbing, i.e. the neighbourhood relationship. The
properties of this relation (i.e., the topography of the search space)
heavily influence behavior and result of hill-climbing. Finally,
knowledge is required that selects the initial node used to start the
search process. The static knowledge roles are defined in Figure 7.

4.1.4     Control Flow
The operational description of a PSM is completed by defining the

control flow (see Figure 8) that defines the execution of the inference
actions. Again, we use Modal Logic for Predicate Modification
(MLPM) (see section 4.1.1). An elementary state transition is achieved
by changing the truth values of a predicate according to the truth
values of a formula that is used to define the transition. Complex
transitions are built up by defining procedural control (i.e., sequence,
branch, and loop) on top of these elementary transitions.

The methods works as follows: First, we select a start node with
init. If init fails to select a start node (i.e., no node in input is an
element of the predicate start, see Figure 5), we randomly select one
node from input for this purpose. After having selected this first node,
a while loop is executed that stops when a local optimum is written to
output. Within the loop we first generate all neighbours of the current
node. If generate fails to generate new nodes (i.e., the current node has
no neighbours) we are finished and write the current node to output.
Otherwise, we select a best neighbour and compare it with the current
node. If the best neighbour is better than the current node we use it for
the next iteration of the loop. In the other case, we are finished and
write the current node to output.

4.2. Competence Theory
The competence theory describes the functionality of the PSM.

Again algebraic specifications enriched by the modality operators of

Figure 8.    The control flow of hill-climbing.

init
if ¬∃ x node(x) then node :↔ εx.input(x) endif
output :↔ λx.false;
while ¬∃ x output(x) 
do

generate; 
if ∃ x new-nodes(x) 

then 
select 
if ∀ x ∀ y ((new-node(x) ∧  node(y) → ¬pref(h(x),h(y)))

then node :↔ λx.new-node(x)
else output :↔ λx.node(x)

endif
else output :↔ λx.node(x)

endif
od
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dynamic logic can be used for this purpose (see Figure 9). As in the
description of inference actions we distinguish static and dynamic
predicates.

The competence theory in Figure 9 defines that hill climbing is able
to find a local optimum of the given set of elements.

4.3. Proof Obligations PO-ii
Does the operational specification of hill-climbing in section 4.1.

have the competence as defined in 4.2. and can we guarantee
termination of the method? Both proofs are sketched in section 6.
Actually, several “small” errors were found in the original
specification (compare section 5). As hill-climbing is a very simple
PSM this illustrates the need for verification and tool support during
this activity. As PSMs are designed for reuse these proofs need not to
be repeated for every application. They have to be done only once
when a PSM is added to a library of reusable PSMs.

5 Adapter: Linking the Task Definition with the

Competence of the PSM
Linking a task definition and a domain model with a PSM requires

two activities. First, the different terminologies have to be related (i.e.,
the different ontologies have to be mapped). Second, we have to relate
the strength of the PSM with the desired goal of the task definition.

To relate the given task definition with the PSM, we have to relate
the sorts Hall and plausibilities, the function pl, and the predicates
hypotheses, pref, and diagnosis of the task definition (see Figure 2)
with the sorts nodes and pref-values, the function h, and the predicates
input, pref, and output of the competence of the PSM (see Figure 9).7

The PSM hill-climbing has the competence to find a local optimum
in a graph. The task under concern requires to select an optimal
element from a set. In general, there are two possible strategies to close
this gap (see [3]). One can introduce additional requirements on

7.  In KIV, this mapping can be achieved by defining hill-climbing as a generic
module that gets actualized by the signature and the axioms of the task (see [35]
for more details).

competence hill-climbing
sorts 

nodes, pref-values
static functions

h : nodes → pref-values
static predicates 

input : nodes
pref : pref-values × pref-values

 graph : nodes × nodes
dynamic predicates 

output : nodes
variables x,y,z : nodes
axioms

input requirement
(1) non-emptyness of input: 

∃ x input(x)
knowledge requirement

(2) reflexivity of pref: 
∀ x pref(h(x),h(x))

(3) transitivity  of pref: 
∀ x,y,z (pref(h(x),h(y)) ∧ pref(h(y),h(z)) → pref(h(x),h(z)))

(4) antisymmetry  of pref: 
∀ x ,y(pref(h(x),h(y)) ∧ pref(h(y),h(x)) → h(x) = h(y))

(5) connexivity  of pref: 
∀ x ,y(pref(h(x),h(y)) ∨  pref(h(y),h(x)))

post condition
(6) Each output was an element of input

[hill-climbing] ∀ x (output(x)  → input(x))
(7) Only one output is provided

[hill-climbing] ∀ x ,y(output(x)  ∧ output(y) → x = y)
(8) There is an output

[hill-climbing] ∃ x output(x)
(9) local optimality of output:   

[hill-climbing] ∀ x (output(x) → ∀ y (input(y) ∧  graph(x,y) → pref(h(y),h(x))))
endcompetence

Figure 9.    The competence theory of hill-climbing.
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domain knowledge that enable hill-climbing to find a global optimum
or one can weaken the task definition. The first type of assumptions is
expressed by formulas over the terminology as it is defined in static
knowledge roles and dynamic input knowledge roles of the PSM.
Static knowledge roles define the requirements for domain knowledge.
Assumptions that weaken the task definitions are defined in terms of
the task definition.

A trivial assumption which ensures that hill-climbing finds a global
optimum is to require that each node is directly connected with each
node.

assumption1: ∀ x ∀ y (node(x) ∧ node(y) → graph(x,y))
In this case, hill-climbing collapses to a complete search in one step

as all nodes of the graphs are neighbours of each possible start node. If
we would improve the init inference action we could weaken the
assumption to: Every starting node must be connected with all nodes.
The requirement on init would be to select such a node.

A less drastic assumption is to require that each node (except the
maxima) has a neighbour with a higher preference.

assumption2: ∀  x (node(x) → 
∃ y (graph(x,y) ∧  pref(h(x),h(y)) ∧  h(x) ≠ h(y)) ∨  
∀ z (node(z) → pref(h(z),h(x))))

Actually, we will see that this assumptions is too weak to guarantee
equivalence of task definition and PSM competence. One has to add an
assumption over the input of the task (cf. section 6.3.). We realized this
as a result of applying the theorem prover KIV. The missing piece of
the assumption was detected as a remaining open premise of an
interactively constructed, partial proof that failed to show the
equivalence of task definition and PSM competence.

The definition of the second if-then-else choice in Figure 8 is very
critical for the competence of the PSM. Originally, we had the
following definition (1):

∀ x ∀ y (new-node(x) ∧  node(y) → pref(h(y),h(x))) (1)
As (1) can lead to infinite loops it was modified to (2) as an

outcome of the termination proof. 
∀ x ∀ y (new-node(x) ∧  node(y) → ¬pref(h(x),h(y))) (2)
The disadvantage of (2) is that hill-climbing stops the search

process when it reached a plateau in the search space (i.e., no
neighbour node is better, only worse or equal neighbour exist).
Therefore, an alternative solution would have been to work with
condition (1) but introduce stronger requirements on the graph relation
which guarantee termination of the PSM. If this relation does not
contain direct or indirect cycles termination can be proven.

global−optimum

better−module

better

better−neighbor

base

start

node

prefgraphnodes

set

elem

optimum

hill−climbing−module

actions

nat

total−module

total

totaly−connected

Figure 10.    Specification and implementation of the PSM hill-climbing in KIV.
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6 Verification with KIV
In software verification, tool support is extremely important. Large

proofs and lemma bases with their (inter)dependencies have to be
managed. Since in realistic applications correct programs (and
specifications) are the exception rather than the rule, one has to keep
track of (repeated) changes of lemmas and proofs. Thus, tool support
for correctness management and reuse of proofs is necessary.
Furthermore, the use of deduction systems permits to construct proofs
substantially more accurate than can be done by hand. This increase in
accuracy means an increase in reliability.

The KIV system (Karlsruhe Interactive Verifier) [36] is an
advanced tool for the construction of provably correct software. It
supports the entire design process starting from formal specifications
(algebraic full first-order logic with loose semantics) and ending with
verified code (Pascal-like procedures grouped into modules). It has
been successfully applied in case-studies up to a size of several
thousand lines of code and specification (see e.g. [20]).

Our aim is to adapt the KIV system, originally designed for
conventional software engineering, for development and verification
of KBSs. For this purpose the KIV system is quite attractive. KIV
supports dynamic logic which has been proved useful in specification
of KBSs (cf. KARL, (ML)2, and MLPM). Since the deduction
machinery of KIV is basically a tactical theorem prover (in the LCF-
style [21]), it is prepared for extensions and modifications. KIV allows
structuring of specifications and modularisation of software systems.
Finally, the KIV system offers well-developed proof engineering
facilities:

• With the interactive proof environment even complicated proofs
can be constructed.

• A high degree of automation is achieved by a number of
implemented heuristics.

• Proof trees are visualized and can be manipulated with the help of a
graphical user interface.

• Generation of counterexamples for unprovable goals is supported.
• An elaborated correctness management keeps track of lemma

dependencies (and their modifications).
• Automatic reuse of proofs allows an incremental verification of

corrected versions of programs and lemmas [38].

6.1. Applying KIV to the Hill-Climbing Example
In this section we report on results and experiences we gained in

applying the KIV system to the hill-climbing example. Since we did
not adapt the KIV system, we had to apply some small transformation
on the formalization of hill-climbing. For example, dynamic predicates
are modelled by variables and inference actions (init, generate, select)
are represented by functions. 

Figure 10 (which is original output from the KIV system using the
graph visualization tool daVinci) shows how the modularisation
facilities are employed. The actual algorithm is implemented in the
hill-climbing-module (compare Figure 8). The inference actions are
specified through axioms in the import of the module, i.e. in the
specification actions (compare Figure 5, Figure 6 and Figure 7). The
specification optimum corresponds to the competence of the hill-
climbing method (compare Figure 9) and states that it computes a weak

Figure 11.    Verifying the PSM hill-climbing with KIV.
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local optimum. Extra assumptions are needed to get the global
optimum required in the task. The two assumptions from section 5 are
introduced by means of the specifications totally-connected
(assumption1) resp. better-neighbour (assumption2) which restrict the
import (domain) of the method. 

In KIV proof obligations (formulated in dynamic logic) ensuring
that an implementation (module) meets its export specification are
automatically generated. For the hill-climbing-module these
obligations are termination of the hill-climbing algorithm and its
partial correctness with respect to the optimum specification (i.e., proof
obligations PO-ii of section 2.2). The module total-module contains
the proof obligation that total connectedness of the graph implies that
the local optimum is also a global one (i.e., PO-iv of section 2.2 using
assumption1). The other module better-module contains the
corresponding obligation for the assumption, that every node except
the global maximum is connected to a better node (i.e., PO-iv of
section 2.2 using assumption2).

6.2. Verifying the PSM Hill Climbing
The obligations for the hill-climbing-module correspond to proof

obligation (PO-ii) from section 2.2. Both, termination and partial
correctness (i.e. hill-climbing yields a local optimum, if terminating)
were proved within the KIV system. For the termination proof it is
shown that the number of nodes in the input set that are strictly better
than the selected node decreases in each iteration. The proof of partial
correctness was done by induction on the number of iterations
necessary to terminate. Necessary for succeeding with these proofs
was the introduction of the requirement that ensures non-emptiness of
the input of the method. The introduction of this requirement was a
result of our proofs. In addition, several errors in our original

specification were found concerning the case when the inference
actions init and generate do not provide output (the start predicate is
not defined for the input of the PSM or the current element of node has
no neighbours).

Figure 11 is a screen dump of the KIV system when proving the
termination of the PSM hill-climbing. The current proof window on
the right shows the partial proof tree currently under development.
Each node represents a sequent (of a sequent calculus for dynamic
logic); the root contains the theorem to prove. In the messages window
the KIV system reports its ongoing activities. The KIV-Strategy
window is the main window, which shows the sequent of the current
goal, i.e. a open premise (leaf) of the (partial) proof tree (here goal
number 2). The user works either by selecting (clicking) one proof
tactic (the list on the left) or by selecting a command from the menu
bar above. Proof tactics reduce the current goal to subgoals and thereby
make the proof tree grow. Commands include the selection of
heuristics, backtracking, pruning the proof tree, saving the proof, etc.

6.3. Verifying Assumptions and Detecting Hidden 
Assumptions

The obligations for the total-module (assumption1) and the better-
module (assumption2) correspond to proof obligation (PO-iv) from
section 2.2. It has to be proven whether the competence of the PSM
fulfils the task definition by introducing assumptions. The proof
obligation for assumption1 states that total connectedness of the graph
(each node is directly linked with each node) implies that the local
optimum is also a global one. Whereas this obligation has a rather
trivial proof in KIV, the attempt at proving the obligation for the
better-module failed, i.e. ends up with a remaining open premise (see
Figure 12, the sequent window shows the unprovable premise). This

Figure 12.    A partial proof gives hint for hidden assumptions.
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result was a bit surprising for us. Supported by the graphical interface
of KIV, interactively analysing the partial proof provides the
explanation for the unexpected failure: the formula we wanted to prove
was not true at all, i.e. the assumption that every node except the global
maximum is connected to a better node, is not sufficient for the PSM
hill-climbing to find a global optimum.

The analysis of the partial proof gives some hint for the
construction of possible counter examples, but also a hint on how the
assertion could be repaired. Here it leads straightforwardly to a
strengthening of the assumption: the “better node” has to be member of
the input of hill-climbing (cf. the sequent in Figure 12). That is, the
assumption over the domain knowledge that is provided by the
relationship graph must be supplemented by an assumption over the
actual input of the PSM. Only if a better neighbour as required by
assumption2 is an element of the actual input the equivalence can be
proven. 

assumption2’: 
∀  x (node(x) → 

∃ y (input(y) ∧  graph(x,y) ∧  pref(h(x),h(y)) ∧  
h(x) ≠ h(y)) ∨  ∀ z (node(z) → pref(h(z),h(x))))

Thus, the KIV system was used as an explorative tool to detect a
(further) hidden assumption. To prove the corrected assertion in KIV,
the partial proof of the original assertion can be reused, such that no
further interaction is required.

7 Conclusion and Future Work
In the paper, we introduce a formal framework for specifying and

verifying knowledge-based systems. One can specify tasks, problem-
solving methods, domain knowledge and can verify whether the
assumed relationships between them are guaranteed, i.e., which
assumptions are necessary for establishing these relationships. Besides
verification, the interactive verification tool KIV can be used to
explore hidden assumptions necessary to relate the competence of a
problem-solving method to the task definition. 

As an experiment we have applied the KIV system to the hill-
climbing example. The lessons learned from this case-study can be
summarized as follows: 
• Current software verification techniques can be valuable for the

development of reliable KBSs; especially, for verification of PSMs
and for detection of hidden assumptions. With interactive deduction
system the proof obligations seem feasible. In the hill-climbing
example the proofs constructed with KIV took a total of 73 proof
steps, 50 of which were chosen automatically by heuristics.

• Formal development of KBSs requires tool support for
modularisation of specifications and programs and for constructing,
analysing, and reusing proofs. The KIV system offers these
facilities.

• Even the small toy example provides a strong argument for formal
methods. An additional hidden assumption and several specification
errors and necessary modifications in the definition of the PSM
were detected.
For a general assessment of our results further experience,

especially in larger more realistic case studies has to be gathered (e.g.,
the VT task and the problem-solving method propose & revise [32]). 

We also had to overcome some differences in our representation
language and the language provided by KIV. Currently, KIV represent
the state of a reasoning process by value assignments of dynamic
variables whereas MLPM applies the state as algebra approach. That

is, a state is represented by an algebra and state changes are expressed
as changes of this algebra (compare [22], [23]). [41] provides an
extension of KIV for a subset of evolving algebras [23] that makes a
step in overcoming this difference. Still, the grainsize of the state
transitions as they can defined in MLPM and the extended version of
KIV differ. The latter only provides pointwise updates of functions
whereas MLPM enables the complete update of a predicate as an
elementary transition. A point for future work concerns the adaption of
the KIV system, specialized to development and verification of KBSs.
That includes extension of the current representation formalism and
the development of appropriate proof tactics and heuristics.
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