

Problem-Solving Methods:
Making Assumptions for Efficiency Reasons

Dieter Fensel & Remco Straatman

1

Department of Social Science Informatics (SWI), University of Amsterdam, The Netherlands
{fensel | remco}@swi.psy.uva.nl, http://www.swi.psy.uva.nl/usr/dieter/home.html

Abstract.

 In this paper we present the following view on problem-solving
methods for knowledge-based systems: Problem-solving methods describe an

efficient reasoning strategy

 to achieve a goal by introducing

assumptions

 about
the available domain knowledge and the required functionality. Assumptions,
dynamic reasoning behavior, and functionality are the three elements necessary
to characterize a problem-solving method.

1 Introduction

The concept

problem-solving method

 (PSM) is present in a large part of current
knowledge-engineering frameworks (e.g.

 GENERIC TASKS

[Chandrasekaran et al.,
1992];

ROLE-LIMITING METHODS

[Marcus, 1988], [Puppe, 1993];

KADS

[Schreiber et al., 1993] and

CommonKADS

 [Schreiber et al., 1994]; the

METHOD-TO-
TASK

approach

[Musen, 1992];

COMPONENTS OF EXPERTISE

[Steels, 1990];

GDM

 [Terpstra et al., 1993]). Libraries of PSM are described in [Benjamins, 1993],
[Breuker & Van de Velde, 1994], [Chandrasekaran et al., 1992], and [Puppe, 1993]. In
general a PSM describes which reasoning steps and which types of knowledge are
needed to perform a task. Such a description should be domain and implementation
independent. Problem solving methods are used in a number of ways in knowledge
engineering: as a guideline to acquire problem-solving knowledge from an expert, as a
description of the main rationale of the reasoning process of the expert and the
knowledge-based system, as a skeletal description of the design model of the
knowledge-based system, and to enable flexible reasoning by selecting methods during
problem solving.
However, a question that has not been answered clearly is the relation between PSMs
and

efficiency

 of the problem-solving process. Most descriptions of PSM frameworks
do point to PSMs as being somehow related to efficiency, however no framework
makes this relation explicit. Others claim to have no concern for efficiency since their
PSMs are only used to capture the expert's problem-solving behavior. But one must be
aware that experts also have to solve the task given their real-life limitations. In fact a
large part of expert-knowledge is concerned exactly with efficient reasoning given
these limitations. The conceptualization of a domain from an expert differs from the
conceptualization of a novice as the former reflects the learning process which yields
to efficiency in problem solving.
According to us the main point of a PSM is:

providing the desired functionality in an
efficient fashion

. In general, most problems tackled with knowledge-based systems are
inherently complex and intractable, i.e., their time complexity is NP-hard (see e.g.
[Bylander, 1991], [Bylander et al., 1991], and [Nebel, 1995]).

2

 A PSM has to describe
not just a realization of the functionality, but one which takes into account the

1. Supported by the Netherlands Computer Science Research Foundation with financial support
from the Netherlands Organization for Scientific Research (NWO).

In N. Shadbolt et al. (eds.), Advances in Knowledge Acquisition,
Lecture Notes in Artificial Intelligence (LNAI), no 1076,
Springer-Verlag, 1996.

constraints of the reasoning process and the complexity of the task. The constraints
have to do with the fact that we do not want to achieve the functionality

in theory

 but
rather

in practice

. When this relation between PSMs and efficiency is ignored or kept
as an implicit notion, both the selection and design of PSMs cannot be performed in an
informed manner. Besides the efficiency in terms of computational effort of a PSM,
there are further aspects which can influence design decisions of appropriate PSM:
The efficiency of the entire knowledge-based system, the optimality of the combined
problem solver user and system (e.g. minimizing the number of tests a patient has to
suffer from in medical diagnosis), and efficiency of the development process of the
knowledge-based system.

3

After stating the claim that PSMs provide functionality in an efficient way, the next
question then is: how could this be achieved if the problems are intractable in their
general form? In our view, the way problem solving methods achieve efficient
realization of functionality is by making

assumptions

. The assumptions put restrictions
on the context of the PSM, such as the domain knowledge and the possible inputs of
the method or the precise definition of the functionality (i.e., the goal which can be
achieved by applying the PSM). These restrictions enable reasoning to be performed in
an efficient manner.
The role that assumptions play in the efficient realization of functionality suggests that
the process of designing PSMs must be based on these assumptions. [Akkermans et al.,
1993] and [Wielinga et al., 1995] introduce a general approach that views the
construction process of PSMs for knowledge-based systems as an assumption-driven
activity. A formal specification of a task is derived from informal requirements by
introducing assumptions about the problem and the problem space. This task
specification is refined into a functional specification of the PSM by making
assumptions about the problem-solving paradigm and the available domain theory.
Further assumptions are introduced in the process of defining an operational
specification of the method. A task is decomposed into declaratively described
subtasks and the data and control flow between these subtasks are defined. We will use
this approach as a general framework and try to make it more concrete. Our focus lies
thereby on assumptions which are related to efficiency of a PSM. We propose to view
the process of constructing a PSM for a given function as the process of incrementally
adding assumptions that enable efficient reasoning. Summarizing, we want to make
the following claims in this paper:

• PSMs are concerned with

efficient

 realization of functionality. This is an
important characteristic of PSMs and should be dealt with explicitly.

• PSMs achieve this efficiency by making

assumptions

 about resources provided by
their context (such as domain knowledge) and by assumptions about the precise
definition of the task. It is important to make explicit these assumptions to reason
about PSMs.

• The process of

constructing

 PSMs is assumption-based. During this process
assumptions are added that facilitate efficient operationalization of the desired
functionality.

One type of assumptions of a PSM defines the relation between the method and the
domain knowledge which is required by it. These assumptions describe the domain
dependency of a PSM in domain-independent terms. The assumptions can be viewed

2. Exceptions are classification problems which have often known polynomial time complexity
(see [Goel et al., 1987]).
3. See [Landes & Studer, 1995] for a discussion of further non-functional requirements which
could influence design decisions.

as an index of a method since a method can only be chosen if its assumptions are
fulfilled by domain knowledge. We can then view the assumptions as proof obligations
for the domain knowledge. The assumptions can also define goals for the knowledge
acquisition process. Making explicit the assumptions of a PSM about the domain
knowledge is a way to deal with the

interaction

problem

. The interaction problem
[Bylander & Chandrasekaran, 1988] states that domain knowledge cannot be
represented independently of how it will be used in reasoning. Vice versa, a PSM and
its specific variants cannot be constructed independently of assumptions about the
available domain knowledge. Developing reusable PSMs as well as reusable domain
theories requires the explicit representation of the assumptions of the method about the
domain knowledge;

and

 the explicit representations of properties of the domain
knowledge that can be related to these assumptions.

Ontologies

 (i.e., meta-theories of domain theories) are proposed as a means to
explicitly represent the commitments of a domain theory (cf. [Top & Akkermans,
1994], [Wielinga & Schreiber, 1994]). Ontologies introduce generic terminologies
which are instantiated by a domain theory. These generic terminologies can be viewed
as representations of the ontological commitments of a domain theory and could define
a link to the assumptions of a PSM.
The paper is structured as follows: In section 2 we discuss why and how PSMs
introduce efficient reasoning and section 3 sketches the different parts of PSMs as well
as their relationships.

2 Why Are Problem-Solving Methods Necessary

We use the task parametric design and the PSM

propose & revise

to illustrate the
main points of our paper. We use this example since our experiences in the Sisyphus-II
project inspired our current point of view. Sisyphus-II [Schreiber & Birmingham,
1996] aimed at comparing different approaches to knowledge engineering. The task is
to configure a vertical transportation system (an elevator) which was originally
described in [Marcus et al., 1988] who developed the PSM

propose & revise

 to
solve this configuration task.
In the following, we formally define the task

parametric design

. Then, we define a
PSM

generate & test

that can theoretically be used to solve this task. This method
can be derived straightforwardly from the task specification. Because this method is
very inefficient, we then discuss a more efficient PSM

propose & revise

 as
introduced by [Marcus, 1988] and [Marcus et al., 1988].

Propose & revise

 weakens
the task and makes additional assumptions about available domain knowledge in order
to gain efficiency. The purpose of this section is neither to define the appropriate way
to specify the task parametric design nor the PSM

propose & revise

; their only use
is to illustrate our ideas on PSM.

2.1 A Definition of Parametric Design

A parametric design problem can be defined by a problem space, requirements,
constraints, and a preference (see [Tank, 1992] for more details). The

problem space

describes the space which contains all possible designs. The definition of the problem
space is domain-specific knowledge. Further, a finite set of

requirements

 is assumed to
be given by the user. A design that fulfils all requirements is called a

desired design

. In
addition to the case-specific user input, a finite set of

constraints

 model additional
conditions for a valid design. These constraints are domain knowledge describing the
regularities in the domain in which the design is constructed. A design that fulfils all
constraints is called a

valid design

. A design that is desired and valid is called a

solution

. The

preference

 defines a preference function on the problem space and can
be used to discriminate between different solutions.
In the case of

parametric

 design, a design artifact is described by a set of attribute-
value pairs. Let

A

1

,...,

A

n

 be a fixed set of parameters (i.e. attributes) with fixed ranges

R

1

,...,

R

n

.

Def 1. Problem Space

The

problem space

 is the cartesian product

R

1

 ×

...

×

 R

n

Def 2. Requirements and Constraints

The set of

requirements

 and

constraints

 are represented by two relations

R

 and

C

 on the problem space defining subsets of the problem space.

Def 3. Possible designs, desired design, valid design, solution

A

possible design

 is an element of the problem space, a

 desired design

 is an
element of

R

, a

valid design

 is an element of

C

, and a

possible solution

 is an
element of

R

 and

C

.
By applying the

preference P

, an

optimal solution

 is selected out of all solutions.

Def 4. Preference

 The

preference P

 is a partial function on all possible designs.

Def 5. Optimal solution

An

optimal solution

 is a solution for which no other solution exists which has a
higher preference value.

In general, several optimal solutions could exist. Therefore, one can further distinguish
whether the user gets all of them or a non-deterministic selection of some. This
definitions can be extended by introducing priorities on requirements and constraints,
or by distinguishing between constraints which always hold and constraints which
should hold etc, but this is beyond the scope of this paper.

2.2 A Non-Efficient Solution by Generate & Test

A straightforward operationalization of the declarative task specification can be
achieved by applying a variant of

generate & test

. The method defines four
different inferences and four different types of knowledge that are required by it. The
inference structure of this method is given in Fig. 1.

• The inference action

generate

 requires knowledge that describes what
constitutes a possible design.

• The inference action

R-test

 requires knowledge that describes what constitutes a
desired designs.

• The inference action

C-test

 requires knowledge that describes what constitutes a
valid design.

• The inference action

select

 requires knowledge that evaluates solutions, i.e.,
knowledge that describes what constitutes a preferred design.

We have to complete the operational method description by defining its control. Again
we do this in a straightforward manner (see Fig. 2). The control flow specifies the
following reasoning process: First, all possible designs are derived. Second, all valid
designs are derived. Third, all desired designs are derived. Fourth, valid and desired
designs are intersected. Fifth, an optimal solution is selected. The sequence of the
second and third steps is arbitrary and could also be specified as parallel activities.
The advantage of this method is that it clearly separates the different types of
knowledge that are included in the functional specification of the parametric design
task. On the other hand, it is precisely this separation that prevents the development of
an efficient problem-solver. The knowledge about what is a correct (i.e., valid and
desired) and good solution is clearly separated from the generation step, and there is no

feedback from the results of the test and evaluation step.This method is clearly not
very efficient as it has to derive and test all possible designs (i.e., the complete problem
space). Still, the method is able to realize the functionality specified by the task if the
problem space is finite. With respect to infinite problem spaces, three remarks could be
made.
(1) At the knowledge level in its original sense, one should abstract from all
computational concerns like limited space or computation time by describing a
completely rational agent. Therefore, it is not at all clear whether an infinite search
space should be regarded as a problem. In fact the problem of tractability of the
method arises not only for infinite search spaces, but also for finite spaces, because the
size of the space increases exponentially with the number of parameters and their
ranges. Dealing with the size of the search space therefore immediately leads to

limited

rationality

4

. Even for realistic settings with finite search spaces, no computational
agent can be implemented that realizes the method in an acceptable way.
(2) One can always transform each infinite search space into a finite one by making
some pragmatic assumptions. These domain and task-specific assumptions improve
the efficiency of our method by reducing the search space.

4. Decision procedures with perfect rationality try to find an optimal solution, whereas decision
procedures with limited rationality reflect also on the costs to find such an optimal solution.

generate

possible

valid design

C-testconstraints

problem space

select preference

optimal

R-test requirements

desired design

design

solution

Fig. 1 Inference structure of generate &test.

solution

inference

data flow

store

domain view

Fig. 2 Control flow I of generate &test.

possible design := generateall;
valid design := C-test(possible design);
desired design := R-test(possible design);
solution := valid design ∩ desired design;
optimal solution := select(solution)

(3) One could think of

reducing the functionality of the method

. In the task description
(see Def. 5), we required that an optimal solution should be found. A weaker definition
of the functionality of the method is to require that an

acceptable solution

 is a solution
which has a preference higher than some threshold

t

.

Def 6. Acceptable solution

An

acceptable solution

 is a solution

s

 with

P

(

s

) >

t

.
We also see here the problem of using worst-case analysis: In the worst case it takes
the same effort to find an optimal solution (i.e., a global optimum), or an acceptable
solution as defined now. The technique of weakening the task definition to improve the
efficiency of the computation is commonly used. A well-known example from the
field of model-based diagnosis is the

single-fault assumption

 [de Kleer & Williams,
1987]. It assumes that the symptoms of a device are caused by one fault. This can be
used to improve the efficiency of the methods, but prevents these methods from
dealing with situations where the device suffers from several faults.
The weakened functionality of Def. 6 enables us to define a new control flow for the
method that allows the method to deal with infinite problem spaces (see Fig. 3).
The sequence of the four inference actions is repeated until an acceptable solution is
found. The inference action

generate

 should now derive one possible design per step,
which is further on treated by the two test steps and the

select

 step. For each given
probability 0 <

α

 < 1 one can guarantee that the method finds a solution (if one exists)
in finite time with probability greater than 1 -

α

 if each element of the problem space
has the same chance to get proposed by

generate

.
Making the search finite by introducing domain-specific assumptions or reducing the
functionality by weakening the solution criteria transforms

generate & test

 into a
method that can solve the problem in theory. Still we cannot expect to get an agent
which solves this task in a realistic amount of time by implementing the method. We
have not really described a PSM but rather a kind of uninformed theorem prover.
Arbitrary generated designs are tested whether they are desired, valid, and preferred or
not. Still, we have an operational description of how to achieve the goal. From the
point of view that one does not want to care about efficiency, this could be a legal point
to describe the essence of the reasoning process of a system that solves the task. For
example, [Rouveirol & Albert, 1994] define a knowledge level model of machine-
learning algorithms by applying the

generate & test

 scheme and [Bredeweg, 1994]
uses it to define a top-level view on the diagnostic task.

2.3 An Efficient Solution with Propose & Revise

The main advantages of

generate & test

as it is developed above are:
• It requires only the knowledge given by the functional specification, and the four

types of knowledge (considering the requirements as knowledge) are clearly
separated: each inference uses precisely one knowledge type. The description of
the problem space is used in the generation step, the requirements and the
constraints are used in two test steps, and the preference is used in the select step.

Fig. 3 Control flow II of generate &test.

repeat
possible design := generateone;
valid design := C-test(possible design);
desired design := R-test(possible design);
solution := valid design ∩ desired design;
acceptable solution := select(solution)

until ∅ ≠ acceptable solution

• Its inference structure is cycle-free. That is, its operational specification does not
contain feedback loops that introduce non-monotonicity into the reasoning
process.

Generate & test

leads to a precise and clear distinction of different conceptual types
of knowledge and defines the dynamic behavior of the problem-solving process in a
highly understandable manner. On the other hand, these advantages are precisely the
reasons that cause the inefficient problem-solving behavior. The PSM

propose &
revise

as discussed in [Marcus et al., 1988] adds efficiency to the problem-solving
process by regarding the given properties of

generate & test

as disadvantages, and
introducing static and dynamic feedback into the problem-solving process. An expert
has learned which design decisions led to desired, valid, and preferred solutions and
which did not. Therefore, expertise compiles test knowledge into the generation step.
New types of knowledge arise that enable the efficient generation of solutions.

•

Generate & test

 requires only the knowledge given by the functional
specification: An expert includes feedback based on experience from solving
earlier design problems. In

generate & test

 the knowledge about what is a
desired, correct, and preferred solution is clearly separated from the generation
step: A much more clever strategy is to use these knowledge types to guide the
generation step of possible designs.

• There is

no

 dynamic feedback in

generate & test

 from the results of the test
and evaluation step of a given design: If a design derived during problem solving
is not a solution, a new design is derived in the next step. Dynamic feedback
would include the reported shortcomings of the first proposed design as guidance
for its modification by the next derived design.

The use of the test and evaluation knowledge as guidance for the generation step and
the use of the feedback of the test step as input for the generation step are precisely the
main improvements which are incorporated into the

propose & revise

method. In a
pessimistic manner this can be expressed as destroying the clear conceptual
distinctions of

generate & test

. Optimistically, this can be viewed as introducing
new types of knowledge which glue these different aspects together, thereby adding
expertise.
The

generate

 step becomes decomposed into two different activities. The

propose

step derives an initial design based on the requirements and the

revise

step tries to
improve an incorrect design based on the feedback of the

C-test

 step. To this end, it
uses the meta-information that this design is incorrect as well as constraint violations
reported by

C-test

. We get the following conceptual structure of the method (see Fig.
4): The

propose

step requires

knowledge which enables it to derive desired designs
using the requirements as input. The

 revise

step requires

knowledge which enables it
to fix constraint violations of desired designs. Additionally it uses the reported
violations to guide the repair process. Revise delivers an acceptable solution as its
output. The third inference action

C-test

 requires constraints to check desired
designs. As output it derives the set of constraints violated by a design.

Propose & revise

 requires a number of assumptions to justify its I/O behavior with
the specified task.

Propose & revise

 as described in [Marcus et al., 1988] does not
require an R-test. That is, designs are not checked on the requirements. Propose is
assumed to derive desired designs, instead of possible designs as delivered by the
generate step. It is also assumed that the revise step delivers designs that are desired
(i.e., this would be an assumptions about the domain specific repair knowledge) or that
requirements violations which are not fixed by it must be accepted (i.e., this would
weaken the functionality of the method).

5

 Finally,

propose & revise

 does not
contain a selection of a solution using the preferences. That is, it is either assumed that

the propose step as well as the revise step deliver acceptable (or optimal) solutions or
that the functionality of the task is reduced to finding just a solution.
When we take a closer look at

revise

 by distinguishing several substeps, we see that
the

C-test

 inference appears also as sub-step of

revise

 (cf. [Fensel, 1995a]). After
applying some repair rules on an invalid design,

revise

 has to check whether the
given violations are overcome and whether no new violations are introduced by
applying the repair rules. Again, test knowledge that was originally separated from the
generation step now appears as sub-activity of it. The

revise

 step causes the main
computational effort of the method (and also the main effort in precisely specifying the
behaviour of the method). The actual efficiency of the method therefore heavily relies
on the quality of the repair rules that are required by

revise

, but also on the propose
knowledge. The propose knowledge is responsible for ensuring preferred desired
designs that require less repair activities. The main point of the method in gaining
efficiency is not so much to get rid of the R-test and selection step, but to reduce the
search space from the set of all possible designs (i.e., the complete problem space) to
the set of preferred desired designs which should be nearly valid.
Two possible control flows for

propose & revise

 are shown in Fig. 5. Control flow I
tries to find an acceptable solution in one attempt (i.e., the assumption is that this can
be done), whereas control flow II includes a loop of

propose

,

test

, and

revise

 until an
acceptable solution is found.

Stepwise propose & revise

. Our current characterization of propose and revise

5. One can also argue that

 propose & revise

extends

the competence of the method
because it can modify the problem space by overwriting requirements.

Generate & test

 can
only search through the defined problem space.

propose
design

violations

Fig. 4 Inference structure of propose & revise.

require-
test

constraints

revise

ments

revisegenerate
acceptable

knowledge

propose
knowledge

desired

solution

inference

data flow

store

domain view

C-

Control flow I of propose & revise
desired design := propose(requirements);
violations := test(desired design);
acceptable solution :=

revise(desired design,violations)

Control flow II of propose & revise
repeat

desired design := propose(requirements);
violations := test(desired design);
acceptable solution :=

revise(desired design,violations)
until ∅ ≠ acceptable solution

Fig. 5 Different control flow of propose & revise.

works with complete designs. But, as discussed in [Marcus et al., 1988], it also makes
sense to regard repair activities as soon as possible. That is, instead of proposing a
complete design that is then repaired, we can also incrementally develop a design, and
repair at each step where a constraint violations occurs. We have not yet exploited the
fact that we specify

propose & revise

 for a subclass of design tasks, namely, for
parametric designs. A natural decomposition of the entire design is provided by the
parameters describing it. In each

propose

 step we can assign one or some parameters a
value; and we can apply

revise

 to these incomplete designs before we propose the
next parameter values. This

divide & conquer

 strategy with intermediate repairs
requires that the constraints do not interact much (see [Marcus et al., 1988]).
Otherwise, one always has to redo earlier repair activities when new constraint
violations are reported for another parameter. The stepwise derivation of incomplete
designs requires the introduction of the new inferences

select-parameter

 and

check-completeness

 which causes a structure-altering transformations of the
original version of

propose & revise

.

2.4 A List of Assumptions

[Poeck et al., 1996] present a specification of

propose & revise

applied to the VT
problem (configuring a vertical transportation system). [Fensel, 1995a] has analysed
this variant of

propose & revise

 and reported several assumptions about domain
knowledge. This variant of

propose & revise

 consists of four steps where each
requires different types of knowledge.

Select

. A parameter is selected which should get a value in the next

propose

 step. In
the given application domain, a set of propose rules is given. Each rule can be used to
derive the value of the parameter that forms its conclusion from the values of the
parameters of its premises. Each rule could be further accomplished with guards
defining applicability criteria for the rule depending on already derived parameter
values. The

select

 step uses these implicitly given dependencies between the
parameter as domain-specific meta-knowledge, and assumes that this network defines
a partial strong ordering on the set of parameters. At each step each parameter that
depends only on already computed parameters according to the applicable propose
rules is regarded as a possible choice. One parameter is non-deterministically chosen
from this set of possible candidates. That is,

select

 does not make further
assumptions about knowledge that would guide this second selection step. The implicit
assumption is that this selection does not change performance and quality of the
problem-solving process and its result.

Propose

. The

propose

 step assumes that

either precisely one

applicable

 propose rule

or one

 user input is given to derive the value of the selected parameter. A parameter
should not depend on itself (i.e., no recursive derivation rules requiring a fixpoint
operation are allowed). This requirement is not as trivial as it seems to be, as it depends
on the rules that become applicable during the problem-solving process.

6

Test

. The

test

 step requires constraints that define a solvable problem and that
exclude all non-valid possibilities.

Revise

. The

revise

 step is decomposed into a set of more elementary inferences. A

select

 step non-deterministically selects one constraint violation from the set of all
violations that were detected by

test

. Again, the implicit assumption is that this
selection does not influence performance and quality of the problem-solving process

6. There may exist several propose rules for a parameter, but depending on the already derived
values only one should be applicable (see for more details [Fensel, 1995a]).

and its result. This is a very critical assumption because the method does not backtrack
from this selection.

Derive

 computes the set of all possible fix combinations (i.e., the
set of all sets of elementary fixes) that could possibly resolve the selected constraint
violation. Each fix combination (i.e., each set of elementary fixes) as well as the set of
all fix combinations must be finite. This requirement is not trivial because some fixes
(e.g., increment the value by one) can be applied several times, and specific constraints
are required to restrict the number of legal repetitions of these fixes to guaranty
finiteness. From the set of all possible fix combinations one is selected by another

select

 step. A cost function is used to guide this selection step. The application of a
fix decreases the quality of a design product because it overwrites user requirements or
it increases the cost of the product. The cost function defined on the fixes (more
precisely on the fix combinations) must be defined in a way that reflects the
preferences between possible designs.

Apply

 applies a fix combination. It is again
realized by a set of elementary inferences, because it requires the propagation of
modified values according to the dependency network of parameter. The precise
definition of this step and further aspects of the revise step are beyond the scope of our
paper.

2.5 Resume

The

propose

 step as well as the

revise

 step glues together types of knowledge that
were treated separately by

generate & test.

 These new knowledge types define
strong assumptions about the domain knowledge required by the method. The only
reason for doing this is trying to gain

efficiency

. That is, we assume that the “refined”
PSM

propose & revise

 will be able to find a solution faster than

generate & test

(or a better solution in the same amount of time). Therefore, developing PSMs means
to blur conceptual distinctions and to introduce assumptions about new types of
domain knowledge for reasons of efficiency. The pure and very clear separation of
four types of knowledge in

generate & test

 is destroyed by forcing parts of the test
and evaluation knowledge into the generation step in order to improve the efficiency of
the problem-solving process. We can conclude that

propose & revise

 provides the
same or less functionality as

generate & test

. It makes stronger assumptions to
achieve this functionality. Finally,

propose & revise

 is much harder to understand in
detail than

generate & test

. Especially the

revise

 step requires several levels of
refinement to define it precisely (see [Fensel, 1995a]) and “the non-monotonic nature
of the

Propose and Revise

 method is difficult to capture in intuitively understandable
theories.” [Wielinga et al., 1995]. Given this we must face the fact that the only reason
why we still would prefer

propose & revise

 is for reasons of efficiency.

2.6 Principles of Efficient Reasoning

A large part of the problem types tackled by PSMs are hard problems. This means that
there is no hope of finding a method that will solve all cases in polynomial time. [Rich
& Knight, 1991] even define AI as “... the study of techniques for solving
exponentially hard problems in polynomial time by exploiting knowledge about the
problem domain.” Most PSMs in knowledge engineering implement a heuristic
strategy to tackle problems for which no polynomial algorithms are known. There are
basically three general approaches:

• Applying techniques to define, structure and minimize the search space of a
problem. An appropriate definition of the problem space can immediately rule out
most of the effort in finding a solution. In

generate & test

 this implies the
transfer from test knowledge into the generate step to shrink the problem space

generate

 is working on, and to define the sequence in which possible solutions

are generated. Such techniques cannot change the complexity class of a problem
but can drastically change the actual behavior of a system. The ordering on
different search alternatives can have a

heuristic

 or a

 non-heuristic

 nature.
• Introducing assumptions about the domain knowledge (or the user of the system)

which reduces the functionality or the complexity of the part of the problem that
is solved by the PSM. In terms of complexity analysis, the domain knowledge or
the user of the system is used as an oracle that solves complex parts of the
problem.

• Weakening the desired functionality of the system and reducing therefore the
complexity of the problem by introducing assumptions about the precise problem
type. An example of this type of change is to no longer require an optimal
solution, but only an acceptable one, or the single-fault assumption in model-
based diagnosis (see [van Harmelen & ten Teije, 1995] for further examples in
diagnostic reasoning).

The second and the third approach tackle the problem by solving a different, more
restricted, problem. In the second approach this restriction is already part of the
domain which implies that the provided functionality of the entire system does not
change. The third approach explicitly changes the functionality. Studying these
assumptions and restrictions and their influence on the efficiency defines a link to the
work in complexity analysis. [Nebel, 1995] proposes different strategies to deal with
complex problems. He proposes different ways to restrict the functionality of the
system, but he also mentions that additional domain knowledge can change the
complexity class of a problem.

3 Problem-Solving Methods: Parts and Relations

In the following, we briefly sketch the different parts of a description of a PSM. Then
we discuss the relationships between these parts and between a PSM and its
environment.

3.1 The Different Parts of A Problem-Solving Method

The description of a PSM consists of four main parts: a

functional specification

, a

cost
description

, an

operational specification,

and its

assumptions

 over available resources
for the reasoning process (cf. Fig. 6). The functional specification,

PSM

f

, is a
declarative description of the input-output behavior the PSM was designed for. The
functional description can be seen as a description of what can be achieved by the
PSM. The functional specification is enriched by a cost description,

PSM

c

, which
describes the costs that are associated with using this PSM. The operational
specification,

PSM

o

, describes how to realize the functionality in a reasoning system.
The assumptions,

PSM

A

 describe conditions under which the structure described in the
operational description will achieve the functional specification (with the described
costs). Given the functional description, the assumptions and the cost description, we
are able to express what the utility of the PSM is. The method provides the
functionality described in

PSM

f

 with costs

PSM

c

 and it expects domain knowledge in
return that fulfils the assumptions described in

PSM

A

.

The functional description

 describes the input-output behavior of the PSM. The
simplest form of

functional description

 is a list of input-output tuples. However, in
practice, this will often not be possible or feasible because of the size of such a
specification. In practice, some form of mathematical representation of the relation
between input and output is needed (see e.g. [Levesque, 1984] and [ten Teije & van
Harmelen, 1994] for knowledge-based systems and for [Fensel, 1995b] a survey on

functional specification techniques in software engineering).

The cost of a method

 could include the computing time, the number of interactions
with the user, the costs of external tests etc., required by the method. We want to
mention however, that in concern to computational complexity we are less interested
in the

worst case behavior,

 because a significant part of the applied methods are of a
heuristic nature which do not improve the worst-case behavior. The worst case is
precisely the case where the heuristics do not bring any improvement. Also,

average-
case behavior

 analysis often introduces assumptions about the problem distribution
which are hard to justify. Therefore, we want to look at the complexity of typical cases
and assume the expert as oracle that can provide typical cases.

The operational specification

 consists of inferences and the data- and control-flow
between them. The

inferences

 specify the reasoning steps that are used to accomplish
the functionality of the method. They are described by their input/output relation and
can be achieved by a method or a primitive inference. Inferences can be realized by
either

methods

 (i.e., the description of a PSM can be hierarchically composed) or

primitive inferences

. These primitive inferences are atomic reasoning steps which are
not decomposed any further and are described by their input/output relation. In fact
one can think of primitive inferences as a special type of problem solving method
which has no operational specification. The

roles

 are either

stores

 that are used to act
as input and output of the inferences or

domain views

 in which case they get their
values from the domain knowledge. A syntactical variant of first-order logic including
semantical data modelling primitives is an appropriate mathematical notation for these
static aspects of the operational specification (cf. [Kifer et al., 1995]). Finally, the

Fig. 6 The PSM and its environment.

I1 I3

I2

(I1 ; I2) *; I3

Goal

PSMf

PSMo

Domain Knowledge

hold-true-in

Pr
ob

le
m

-s
ol

vi
ng

 m
et

ho
d

Assumptions

is-based-on

is-realised-by has-cost

PSMc

matches is-acceptable-for

control

 of a PSM describes the ordering of execution of the inferences. Dynamic logic
[Kozen, 1990] is a natural candidate for this part of the specification. A survey of
languages which were developed to specify KADS models of expertise and which
could also be used as a starting point for specifying reusable PSMs can be found in
[Fensel & van Harmelen, 1994].
Notice, that we do not make any claim whether the decomposition and control of the
reasoning process as defined by the operational specification corresponds to the design
model or the structure and control of the implementation of the PSM. The operational
specification defines a reasoning process that achieves the desired functionality if the
assumptions are fulfilled. That is, the operational specification is the rationalize of
these assumptions or the structure of the proof that these assumption enable the
functionality (under the specified costs of the reasoning process).

The assumptions

 of a method are both necessary and sufficient criteria for the
application of the method. The assumptions can define restrictions on the possible
input of the method, and on the availability and the properties of domain knowledge.
Examples of input assumptions are for example the fact that the requirements for a
design should not conflict, or that an input list must be sorted according to some
criterion. Examples of assumptions about domain knowledge are the availability of
heuristics that link violated constraints to possible repair actions, or the fact that a
preference relation must describe a complete ordering. As the assumptions describe
properties of the domain knowledge, meta-logic seems a good candidate language for
formally specifying the assumptions.

3.2 The Different Relationships between the Parts of a PSM and its
Environment

The relation between the functional specification, the operational specification, and the
assumptions is essential for understanding PSMs. Given that the assumptions hold, the
reasoning system defined by the operational specification will exhibit the input-output
behavior specified in the functional specification. One can view

the assumptions as the
missing pieces in the proof that the behavior of the method satisfies its goal

. Four types
of proof obligations arise:
(1) the external relation between the goal (i.e., the task) and the functionality of the
PSM has to be established. One has to ensure that the functionality of the method is
strong enough to fulfil the goal if its assumptions are fulfilled.
(2) the external relation between the method and the domain knowledge has to be
established. One has to ensure that the domain knowledge fulfils the assumptions of
the method. Depending on the type of an assumption, we have to ensure either that the
domain knowledge implies an assumption or that it does not violate it.
(3) the internal relationship between the functional and operational descriptions of the
method has to be established. One has to ensure that, given the assumptions the
operational description describes a way to achieve the functionality. Because the
description of the operational specification requires a logic over states, we use
dynamic logic [Kozen, 1990] to formalize this obligation (that ensures the termination
of the program and the desired functionality):

|=

PSM

A

→

 (<

PSM

o

> true

∧

 [

PSM

o

]

 PSM

f

)
(4) a statement about the efficiency of the method has to be made. In the ideal case,
given the assumptions, each alternative operational description requires at least the
same effort as the chosen one to achieve the functionality of the method.

7

 A simpler
obligation is to proof a lower bound for the efficiency complexity of a chosen method
(see [Straatman & Beys, 1995]).

4 Conclusions

Our paper tries to answer two questions: What are problem-solving methods and why
are they necessary? In a nutshell, we provided the following answer: A PSM translates
a declarative goal descriptions into a set of assumptions about domain knowledge
required to achieve the goal in an efficient manner. The dichotomy of a declarative
goal description and an efficient implementation must be bridged by a level where one
rationalizes an efficient problem solver, that is, a problem solver with limited
resources. A part of expertise is knowledge about achieving goals under bounded
rationality. An operational description of a problem-solving method defines the
appropriate level to elicit, acquire, interpret, and model this kind of knowledge.
Assumptions about domain knowledge or the precise functionality are introduced,
strengthened, or modified in order to achieve efficiency. The point of view on
problem-solving methods as presented in our paper defines a number of research
topics.
(1) An adequate framework for describing problem-solving methods has to be
established: A formal notation for the functionality of a method is required. A logic
over states is needed to express the operational specification of a method. This
language must be able to express control over functionally specified basic building
blocks. A formal notation for the assumptions is needed. A variant of meta-logic could
be used to specify the assumptions of the method. Finally, a feasible calculus must be
provided to specify the computational behavior of a method.
(2) A proof calculus is necessary that enables to prove relationships between the
different parts of the specification of a method. A first step into this direction is
achieved by [Fensel & Groenboom, 1995] where proof rules are defined for languages
like KARL and (ML)

2

. Based on these proof rules, automated support by theorem
provers is possible. As the description formalisms include logic over states like
dynamic logic, we will investigate the possibility to use theorem provers like the
Karlsruher Interactive Verifier KIV [Reif, 1995] developed for program verification
based on dynamic logic.
(3) Methods and tools are necessary that support the cyclic development of appropriate
PSMs. This includes a library with problem-solving methods schema indexed by their
functionality, assumptions, and cost, and operations working on assumptions and
deriving PSM instantiations. [Van de Velde, 1994] defines three components of a
modelling library: Modelling components are structures useful for the construction of
complete models. Generic models are frames representing a class of complete models.
Modelling operators transform a model into another one. Substantiating these ideas
seems to be a promising research direction.

Acknowledgments

. We would like to thank Ameen Abu-Hanna, Kees de
Koning, Guus Schreiber, Annette ten Teije, Peter Terpstra and Bob Wielinga for
helpful discussions that enabled this paper. We would also like to thank
Manfred Aben, Jürgen Angele, Richard Benjamins, Gertjan van Heijst, and
Rudi Studer for comments on earlier versions of the paper. We especially would
like to thank Frank van Harmelen, for his contributions to earlier versions of the
paper, and Joost Breuker, for discussions that stimulated most of the presented
work.

7. This would require perfect rationality of the decision process that constructs the optimal
problem solver with limited rationality.

References

[Akkermans et al., 1993] J. M. Akkermans, B. Wielinga, and A. TH. Schreiber: Steps in
Constructing Problem-Solving Methods. In N. Aussenac et al. (eds.):

Knowledge-Acquisition
for Knowledge-Based Systems

, Lecture Notes in AI, no 723, Springer-Verlag, Berlin, 1993.
[Benjamins, 1993] V. R. Benjamins:

Problem Solving Methods for Diagnosis

, PhD Thesis,
University of Amsterdam, Amsterdam, The Netherlands, June 1993.

[Bredeweg, 1994] B. Bredeweg: Model-based diagnosis and prediction of behaviour. In
[Breuker & Van de Velde, 1994], pp. 121—153.

[Breuker & Van de Velde, 1994] J. Breuker and W. Van de Velde (eds.):

The CommonKADS
Library for Expertise Modelling

, IOS Press, Amsterdam, The Netherlands, 1994.
[Bylander, 1991] T. Bylander: Complexity Results for Planning. In

Proceedings of the 12th
International Joint Conference on Artificial Intelligence (IJCAI-91)

, Sydney, Australia,
August 1991.

[Bylander & Chandrasekaran, 1988] T. Bylander and B. Chandrasekaran: Generic Tasks in
Knowledge-Based Reasoning. The Right Level of Abstraction for Knowledge Acquisition. In
B. Gaines et al. (eds.):

Knowledge Acquisition for Knowledge-Based Systems

, vol I, pp. 65—
77, Academic Press, London, 1988.

[Bylander et al., 1991] T. Bylander, D. Allemang, M. C. Tanner, and J. R. Josephson: The
Computational Complexity of Abduction,

Artificial Intelligence

, 49, pages 25—60, 1991.
[Chandrasekaran et al., 1992] B. Chandrasekaran, T.R. Johnson, and J. W. Smith: Task Structure

Analysis for Knowledge Modeling,

Communications of the ACM

, 35(9): 124—137, 1992.
[David et al., 1993] J.-M. David, J.-P. Krivine, and R. Simmons (eds.):

Second Generation
Expert Systems

, Springer-Verlag, Berlin, 1993.
[de Kleer & Williams, 1987] J. H. de Kleer and B. C. Williams: Diagnosing Multiple Faults,

Artificial Intelligence

, 32():97—130, 1987.
[Fensel, 1995a] D. Fensel: Assumptions and Limitations of a Problem-Solving Method: A Case

Study. In

Proceedings of the 9th Banff Knowledge Acquisition for Knowledge-Based System
Workshop (KAW´95)

, Banff, Canada, February 26th - February 3th, 1995.
[Fensel, 1995b] D. Fensel: Formal Specification Languages in Knowledge and Software

Engineering,

The Knowledge Engineering Review

, 10(4), 1995.
[Fensel & Groenboom, 1995] D. Fensel and R. Groenboom: A Formal Semantics for Specifying

the Dynamic Reasoning of Knowledge-based Systems. In

Proceedings of the Knowledge
Engineering: Methods and Languages Workshop (KEML'96)

, January 15-16, 1996.
[Fensel & van Harmelen, 1994] D. Fensel and F. van Harmelen: A Comparison of Languages

which Operationalize and Formalize KADS Models of Expertise,

The Knowledge
Engineering Review

, 9(2), 1994.
[Goel et al., 1987] A. Goel, N. Soundararajan, and B. Chandrasekaran: Complexity in

Classificatory Reasoning. In

6th National Conference on Artificial Intelligence

 (

AAAI’87

),
Seattle, Washington, July 13-17, 1987, pages 421—425.

[Kifer et al., 1995] M. Kifer, G. Lausen, and J. Wu: Logical Foundations of Object-Oriented and
Frame-Based Languages,

Journal of the ACM

, 42:741-843, 1995.
[Kozen, 1990] D. Kozen: Logics of Programs. In J. v. Leeuwen (ed.),

Handbook of Theoretical
Computer Science

, Elsevier Science Publ., B. V., Amsterdam, 1990.
[Landes & Studer, 1995] D. Landes and R. Studer: The Treatment of Non-Functional

Requirements in MIKE. In

Proceedings of the 5th European Software Engineering
Conference ESEC'95

, Barcelona, Spain, September 25-28, 1995.
[Levesque, 1984] H. J. Levesque: Foundations of a functional approach to knowledge

representation,

Artificial Intelligence

, 23(2):155—212, 1984.
[Marcus, 1988] S. Marcus (ed.).

Automating Knowledge Acquisition for Experts Systems

,
Kluwer Academic Publisher, Boston, 1988.

[Marcus et al., 1988] S. Marcus, J. Stout, and J. McDermott VT: An Expert Elevator Designer
That Uses Knowledge-based Backtracking,

AI Magazine

, 9(1):95—111, 1988.
[Musen, 1992] M. A. Musen: Overcoming the Limitations of Role-Limiting Methods,

Knowledge Acquisition

, 4 (2): 165—170, 1992.
[Nebel, 1995] B. Nebel: Artificial intelligence: A Computational Perspective. To appear in G.

Brewka (ed.),

Essentials in Knowledge Representation

.
[Poeck et al., 1996] K. Poeck, D. Fensel, D. Landes, and J. Angele: Combining KARL And

CRLM For Designing Vertical Transportation Systems. In [Schreiber & Birmingham, 1996].
[Puppe, 1993] F. Puppe:

 Systematic Introduction to Expert Systems: Knowledge Representation
and Problem-Solving Methods

, Springer-Verlag, Berlin, 1993.
[Reif, 1995] W. Reif: The KIV Approach to Software Engineering. In M. Broy and S. Jähnichen

(eds.):

Methods, Languages, and Tools for the Construction of Correct Software

, Lecture
Notes in Computer Science (LNCS), no 1009, Springer-Verlag, Berlin, 1995.

[Rich & Knight, 1991] E. Rich and K. Knight:

Artificial Intelligence

, McGraw-Hill, New York,
2nd edition, 1991.

[Rouveirol & Albert, 1994] C. Rouveirol and P. Albert: Knowledge level model of a
configurable learning system. In Lecture Notes in Aritificial Intelligence (LNAI), no 867
Springer-Verlag, Berlin, 1994.

[Schreiber & Birmingham, 1996] A. Th. Schreiber and B. Birmingham (eds.):

Special Issue on
Sisyphus, The International Journal of Human-Computer Studies

, to appear, 1996.
[Schreiber et al., 1993] A. Th. Schreiber, B. J. Wielinga, and J. A. Breuker (eds.):

KADS: A
Principled Approach to Knowledge-Based System Development, vol 11 of Knowledge-Based
Systems Book Series

, Academic Press, London, 1993.
[Schreiber et al., 1994] A. TH. Schreiber, B. Wielinga, J. M. Akkermans, W. Van De Velde, and

R. de Hoog: CommonKADS. A Comprehensive Methodology for KBS Development,

IEEE
Expert

, 9(6):28—37, 1994.
[Steels, 1990] L. Steels: Components of Expertise,

AI Magazine

, 11(2), 1990.
[Straatman & Beys, 1995] R. Straatman and P. Beys: A Performance Model for Knowledge-

based Systems. In M. Ayel and M. C. Rousset (eds.):

EUROVAV-95 European Symposium
on the Validation and Verification of Knowledge Based Systems

, pages 253—263.
ADEIRAS, Universite de Sovoie, Chambery, 26-28 June 1995.

[Tank, 1992] W. Tank:

Modellierung von Expertise über Konfigurationsaufgaben

, Infix, Sankt
Augustin, Germany, 1992.

[ten Teije & van Harmelen, 1994] A. ten Teije and F. van Harmelen: An Extended Spectrum of
Logical Definitions for Diagnostic Systems. In

Proceedings of DX-94 Fifth International
Workshop on Principles of Diagnosis

, 1994.
[Terpstra et al., 1993] P. Terpstra, G. van Heijst, B. Wielinga, and N. Shadtbolt: Knowledge

Acquisition Support Through Generalised Directive Models. In [David et al., 1993], pp.
428—455.

[Top & Akkermans, 1994] J. Top and H. Akkermans: Tasks and Ontologies in Engineering
Modeling,

International Journal of Human-Computer Studies

, 41():585—617, 1994.
[van Harmelen & ten Teije, 1995] F. van Harmelen and A. ten Teije: Approximations in

Diagnosis: Motivations and Techniques. In C. Bioch and Y.H. Tan (eds.),

Proceedings of the
Dutch Conference on AI (NAIC'95)

, Rotterdam, June 1995.
[Van de Velde, 1994] W. Van de Velde: A Constructivist View on Knowledge Engineering. In

Proceedings of the 11th European Conference on Artificial Intelligence (ECAI'94)

,
Amsterdam, August 1994.

[Wielinga & Schreiber, 1994] B. J. Wielinga and A. Th. Schreiber: Conceptual Modelling of
Large Reusable Knowledge Bases. In K. von Luck and H. Marburger (eds.):

Management
and Processing of Complex Data Structures

, Springer-Verlag, Lecture Notes in Computer
Science, no 777, pages 181—200, Berlin, Germany, 1994.

[Wielinga et al., 1995] B. Wielinga, J. M. Akkermans, and A. TH. Schreiber: A Formal Analysis
of Parametric Design Problem Solving. In B. R. Gaines and M. A. Musen (eds.):

Proceedings
of the 8th Banff Knowledge Acquisition for Knowledge-Based Systems Workshop

 (

KAW-95

),
vol II, pp. 31/1—37/15, Alberta, Canada, 1995.

