
Searching for Shortest Common Supersequences by Means of

a Heuristic-Based Genetic Algorithm

J�urgen Branke, Martin Middendorf

University of Karlsruhe

Institut f�ur Angewandte Informatik

und Formale Beschreibungsverfahren

D-76128 Karlsruhe, Germany

Email: fbranke, middendorfg@aifb.uni-karlsruhe.de

July 1996

Published in Proceedings of the 2nd Nordic Workshop on Genetic Algorithms and Their Applications,

Vaasa, Finland, Finish Arti�cial Intelligence Society, 1996, pp. 105-114.

Abstract

In this paper we describe a genetic algorithm (GA) for the Shortest Common Su-

persequence (SCS) problem which is a classical problem from stringology. The SCS

problem has applications in arti�cial intelligence (speci�cally planning), mechanical

engineering and data compression. It is NP-complete even under severe restrictions

concerning the alphabet size, the length of the given strings, or their structure. Using

a Genetic Algorithm to solve SCS is not easy, e.g. because the search space contains only

a few valid solutions of reasonable length and a natural representation would lead to va-

rying string lengths. To circumvent these di�culties, we base the Genetic Algorithm on

a slightly modi�ed Majority Merge heuristic. The resulting GA/heuristic hybrid yields

signi�cantly better results than Majority Merge alone and other well-known heuristics,

though its running time is much higher.

Keywords: evolutionary algorithm, genetic algorithm, shortest common superse-

quence, heuristic

1 Introduction

The Shortest Common Supersequence (SCS) problem is a classical problem from stringology
which has applications e.g. in arti�cial intelligence (speci�cally planning), mechanical
engineering and data compression [2, 11]. The problem is as follows: Given a �nite set L
of strings over an alphabet �, �nd a string of minimal length that is a supersequence of
each string in L. A string S is called a supersequence of a string T if S can be obtained
from T by inserting zero or more symbols.

For example, given the alphabet � = fa; b; cg and the set of strings L = fcbbc; abc; cbag,
a shortest common supersequence of L is the string cbabc. Another, longer supersequence
would be for example cabbac.

1

The SCS problem is NP-complete even under various restrictions concerning the alpha-
bet size, the length of the given strings, or their structure [7, 8, 9]. To �nd optimal solutions,
dynamic programming algorithms as well as Branch-and-Bound algorithms have been in-
vestigated by Fraser [4]. However, the dynamic programming algorithms are successful
only for a very small number of given strings, because, otherwise, their space requirements
are too large. And Branch-and-Bound algorithms need too much time to be practical, ex-
cept for very small alphabets. Several deterministic heuristics have been proposed to �nd
approximate solutions for the problem [2, 3, 4, 6].

In this paper, we describe how to tackle the Shortest Common Supersequence problem
by means of a heuristic-based genetic algorithm.

In the next section we mention the special di�culties when applying a GA to the
SCS problem, how we work around it, and how the actual algorithm looks like. Section
3 contains empirical results and comparisons to other heuristics. Conclusions and future
work are given in Section 4.

2 The Genetic Algorithm

The Shortest Common Supersequence problem has some properties that make it hard to
apply a GA:

� a natural representation of candidate solutions, the direct representation as a string,
would lead to genotypes of varying length,

� changing a good solution just slightly will very likely yield an invalid string, i.e. a
string which is not a supersequence,

� most of all possible strings of reasonable length are invalid,

� there exists a trivial solution of size at most j�j times the optimal solution length (if
l is the maximal length of a string in L and S is a concatenation of the characters in
� then Sl is a solution). Thus the GA has to get very close to the optimum to justify
the e�ort.

To still be able to apply a GA successfully, we decided to base the GA on one of the best
known heuristics, Majority Merge. The result is a powerful GA/Majority Merge hybrid
that we henceforth call GA/M for short.

The basic idea is to change the heuristic such that it can be in
uenced by many pa-
rameters, and then to use the genetic algorithm to tune the parameters. Compared to
encoding the problem directly, we thereby gain an easier �tness landscape for the GA. This
idea has already been applied successfully in [1, 5].

The Majority Merge heuristic builds a supersequence starting from the empty string
as follows: It looks at the �rst symbol of every string in L (i.e. the front), appends the
most frequent symbol, say a, to the supersequence and then removes a from the front of
the strings. This process is repeated until all strings in L are exhausted.

For random strings Majority Merge is the best known heuristic when the number of
strings is large compared to the alphabet size. If the number of strings is small and the
alphabet is large then heuristics perform better that iteratively take two strings out of

2

the set L and replace them by their optimal shortest common supersequence until a single
string is left [4].

Clearly, choosing always the most frequent symbol from the front of the strings as the
next symbol in the supersequence is unlikely to be a globally optimal strategy. We therefore
extend Majority Merge

i) by assigning a weight to each symbol of every string, and

ii) by having the heuristic choose that symbol of the front of the strings whose sum of
weights is maximal.

We thus obtain a mapping from the weight assignments to the possible supersequences
(only in the rare case of ties several supersequences may be obtained from one weight
assignment). The mapping has the following properties:

� each weight assignment encodes a supersequence of L, i.e. a valid solution, and

� there exists a weight assignment that produces a shortest common supersequence.

The task of the genetic algorithm then remains to assign appropriate weights to the
symbols of the strings in L. This problem can be encoded by storing a real-valued weight
for each symbol of each string on the chromosome. Thus the length of a chromosome is
given by the sum of the lengths of all strings in L. To keep the weights of the di�erent
chromosomes in a comparable range of values, we normalize the weights such that the sum
of weights equals 1. The quality of each chromosome is just the length of the supersequence
that is produced by the adapted Majority Merge heuristic with the given set of weights.

As it turned out, the ordering of the weights on the chromosome also plays an import-
ant role, presumably for the following reason: to decide which symbol is removed next, the
heuristic only looks at the weights of the symbols at the front, and one might regard this
group of weights as building blocks. Since, in general, the indices (i.e. their position in
the string) of the symbols that appear at the front will not di�er too much, it is favora-
ble to encode symbols with the same index from di�erent strings closely together on the
chromosome.

The GA/Mwas based on the PGA program [10] and uses an island model approach with
10 subpopulations of size 150 each. For most parameters we used the default values of PGA:
mutation probability is 0.02 for each gene 1, crossover probability is 1.0, migration between
the populations is done every 10 generations such that one of the populations selects one
individual by ranking selection and sends it to all other populations. The algorithm is
of steady state type, i.e. in each generation, it selects two parents, according to ranking
selection, performs two-point crossover to obtain one child, perhaps mutates it and installs
the result back into the population. The worst individual of the population is deleted. The
run stops when all individuals have the same �tness (or after 1,000,000 evaluations, but
even for the most di�cult test problems GA/M needed only about 250,000 evaluations on
the average to converge).

In addition to the just described version, we also implemented some variants that are
more strongly biased towards the underlying heuristic by adding a basic value to each

1If a gene is selected for mutation, its value is changed randomly by at most 5 percent of the domain

range.

3

weight before evaluation. In the extreme case, when the basic value is high enough, the
GA/M can merely break ties, i.e. decide only when several symbols occur equally often.
Depending on the basic value we tested the following variants of our genetic algorithm:

{ G0: without a basic value

{ G1=jjLjj: with basic value 1

jjLjj
where jjLjj is the sum of the lengths of the strings in L

{ G1: with basic value 1.

As it turned out, there is no basic value which performs best for all test instances. This
led us to include the basic value in the genotype and have it optimized by the GA/M. This
version of our genetic Algorithm is called Gv. Gv allows the basic value to vary between 0
and 1

jjLjj
.

3 Results

The GA/M was tested on a number of problem instances with di�erent numbers of strings,
di�erent alphabet sizes and di�erent string lengths. Some of the problem instances were
generated randomly, some of them with similar strings, and some were special sets of strings
for which the optimal solution is obvious, but Majority Merge performs badly.

All results are averaged over 4 runs with di�erent random seeds. The results are com-
pared to the average of 150 runs of Majority Merge with ties broken randomly.

We also ran Majority Merge as often as there were evaluations in a GA/M, with ties
broken randomly and keeping track of the best solution found so far. The improvements
that could be obtained by this brute force approach were always much smaller than by
any of the GA/M-variants. This con�rmed that our good results were actually due to the
GA/M-design and not just a result of massive computational power.

3.1 Results on Random Strings

Here, the strings to be merged were generated randomly and independently of each other.
We tested instances with string-lengths 40, 80, and 160, alphabet sizes of 2, 4, and 16 and
numbers of strings in L of 4, 8, and 16. For each combination of parameters, we constructed
5 random instances of sets of strings.

Figure 1 shows the relative improvements of G0, G1=jjLjj, G1, and Gv on Majority Merge.
In general, the relative improvement for a �xed string length increases with a shrinking

number of strings and a growing size of the alphabet. E.g. with l = 40, the least relative
improvement for G0 (G1=jjLjj, G1, Gv) was obtained for j�j = 2 and k = 16 with 4:12% (re-
spectively 4:36%, 2:58%, 4:28%), whereas for j�j = 16 and k = 4 the relative improvement
was 23:43% (respectively 23:26%, 22:42%, 23:54%).

The very high improvement for a small number of strings and large alphabet shows
that the GA/M was able to adapt the heuristic so that the results were good even in
cases where the underlying heuristic is relatively weak. The most interesting cases are the
improvements for large numbers of strings (k � 8) and small alphabet (a � 4). In these
cases Majority Merge was at least as good as all other heuristics investigated by Fraser [4]
(for string length 100), but still the GA/M was able to improve on the results signi�cantly.

4

0

5

1 0

1 5

2 0

2 5

Length 40

1 6

8
4 2

4

1 6

AlphabetNumber of

%

SizeStrings

G

G

G

G

0

1

1/||L||

v

0

5

1 0

1 5

2 0

2 5

Length 80

1 6

8
4 2

4

1 6

AlphabetNumber of

%

Size
Strings

-2

3

8

1 3

1 8

2 3

Length 160

1 6

8
4 2

4

1 6

AlphabetNumber of

%

Size
Strings

Figure 1: Relative improvement of the 4 GA/M-variants compared to simple Majority
Merge on random strings of length 40 (upper left), length 80 (lower left) and length 160
(lower right). Each bar represents the average over 20 runs (5 random instances, 4 random
seeds).

5

j�j = 4 Optimum G0 G1=jjLjj G1 Gv Maj. Merge

n = 90; k = 8 � 100 100.0 100.0 105.4 100.0 115.1

n = 90; k = 16 � 100 100.0 100.0 103.8 100.0 106.8

n = 80; k = 8 � 100 100.0 100.0 122.7 100.0 168.1

n = 80; k = 16 � 100 100.0 100.0 155.3 100.0 179.5

Table 1: Best string length found: Results on similar strings, averaged over 20 runs (5
random instances, 4 random seeds)

For a �xed number of strings and �xed alphabet, the relative improvement of the GA/M
shrinks with a growing length of strings. This is probably because the chromosomes become
very long when the size of the problem instance grows (e.g. for 16 words of length 160 the
chromosome consists of 2560 weight values) which makes it harder for the GA to �nd good
solutions in a limited time.

G1 with basic value 1 is the best version of the GA/M for long strings or a large number
of strings. G0 is better than G1 for l = 80, k = 4, j�j � 4 as well as l = 40, k = 4, or k = 8,
j�j � 4 or k = 16, j�j = 2. In nearly all cases G1=jjLjj shows a performance between that of
G0 and G1. With some exceptions, Gv performs very similar to G1=jjLjj on these random
problems.

3.2 Results on Similar Strings

In the real world, the strings to be merged are usually interdependent and quite similar,
like e.g. the sequences of operations necessary to construct several variants of the same
product. Therefore we also tested the GA/M with sets of strings that were obtained as
randomly chosen subsequences from a random string of length 100 over an alphabet of size
4. Since these strings all originate from the same supersequence, they are relatively similar.
Also, it is very likely that the original supersequence is an optimal supersequence. Tests
were conducted with sets of strings containing 8 or 16 supersequences of length 80 or 90.

The results obtained by G1 and the Majority Merge heuristic are shown in Table 1.
In all cases G0, G1=jjLjj, and Gv obtained a supersequence of length 100 which might be
optimal. G1 performed better than Majority Merge but both are much worse than G0,
G1=jjLjj, and Gv.

Fraser [4] tested several deterministic heuristics on 8 and 16 randomly chosen subse-
quences of a random string of length 100 over an alphabet of size 4. None of the heuristics
found a supersequence of length 100 (averaged over 4 test instances), although the heuristics
that rely on computing optimal supersequences for 2 strings came close to 100.

3.3 Results on Special Sets of Strings

We also tested our GA/M on several instances on which Majority Merge behaves badly and
for which the shortest common supersequence is known. Our test sets were the following:

{ L1: 9 strings a40, 4 strings ba39, 2 strings bba38, and 1 string bbba37.
The optimal solution of length 43 is to �rst remove the b's, and then the a's of

6

Optimum G0 G1=jjLjj G1 Gv Maj. Merge

L1 43 43.0 43.0 157.0 43.0 157.0

L2 79 79.5 94.0 121.0 80.0 121.0

L3 60 60.0 60.0 60.0 60.0 73.2

Table 2: Best string length found: Results on special strings

all strings together. However, Majority Merge would inevitably �rst remove the 9
complete a-strings, then one b, then the newly obtained a-strings, one b, etc.

{ L2: 9 strings a40, 4 strings b13a27, 2 strings b26a14, and 1 string b39a.
Similar to L1, it is optimal to �rst remove all b's and then all a's. Again, Majority
Merge can not �nd the optimum. For the GA/M, the number of necessary "decisions"
against the majority-rule to reach the optimum is higher than for L1 because the
sequence of b's is longer.

{ L3: 8 strings a20b20, 8 strings b20c20.
Here it is optimal to �rst remove all a's, then the b's, and �nally the c's. Since there
are as many strings with pre�x a20 than there are strings with pre�x b20 Majority
Merge can �nd the optimal solution only if it breaks all ties correctly which is quite
unlikely.

Table 2 shows the results for GA/M on L1, L2, and L3. G0 and Gv outperform G1=jjLjj

and G1. The optimum was found by G0, G1=jjLjj, and Gv for L1 and L3. G0 and Gv also
came quite close to the optimum for L2. Since G1 can only break ties it could �nd the
optimum for L3 only, which it did, but otherwise was as bad as Majority Merge.

4 Conclusion and Future Work

Compared to the Majority Merge heuristic alone, the GA/M improved the results signi-
�cantly. On random strings, it was able to overcome the weaknesses of Majority Merge
where it is not as good as other known heuristics, and also improved on the results when
Majority Merge is best compared to other heuristics.

On more regular strings, which are closer to the real world, GA/M found the assumed
optimum in all runs and thus performed much better than any other common heuristic.

The results on special instances showed that Majority Merge can be completely misled
and that it may therefore be dangerous to bias GA/M too much towards Majority Merge,
i.e. to choose a high basic value. GA/M variants with small or variable basic values always
found the optimal solution or came very close to it.

Overall, given the nature of the problem, the improvements obtained by GA/M com-
pared to Majority Merge are remarkable. Naturally, a simple heuristic runs much faster
than it takes GA/M to converge, so there is a tradeo� between accuracy of the solution
and computation time.

Future research in this area will include

7

� testing some other GA/M variants that might better determinine an optimal basic
value; e.g. initializing all weights to the same value, or initializing di�erent subpopu-
lations with di�erent basic values.

� applying similar approaches to related problem domains

� adapting other deterministic heuristics so that the GA can use them as an underlying
strategies.

Acknowledgement

We thank Marcus Engels-Lindemann for interesting discussions and for implementing most
of the code.

References

[1] J. Branke, U. Kohlmorgen, H. Schmeck, and H. Veith. Steuerung einer Heuristik zur Losgr�ossenplanung

unter Kapazit�atsrestriktionen mit Hilfe eine parallelen genetischen Algorithmus. In J. Kuhl and V. Nis-

sen, editors, Tagungsband zum Workshop Evolution�are Algorithmen in Management Anwendungen,

pages 21{31. University of G�ottingen, Institut f�ur Wirtschaftsinformatik, 1995.

[2] D.E. Foulser, Q. Yang, and M. Li. Theory and algorithms for plan merging. Arti�cial Intelligence,

57:143{181, 1992.

[3] C. B. Fraser and R. Irving. Approximation algorithms for the shortest common supersequence. Nordic

Journal on Computing, 2:303{325, 1995.

[4] C.B. Fraser. Subsequences and supersequences. PhD thesis, University of Glasgow, Departement of

Computer Science, 1995.

[5] K. Haase and U. Kohlmorgen. Parallel genetic algorithm for the capacitated lot-sizing problem. In

Kleinschmidt et al., editor, Operations Research Proceedings, pages 370{375. Springer-Verlag, 1996.

[6] T. Jiang and M. Li. On the approximation of shortest common supersequences and longest common

subsequences. SIAM J. Comput., 24:1122{1139, 1995.

[7] D. Maier. The complexity of some problems on subsequences and supersequences. J. ACM, 25:322{336,

1978.

[8] M. Middendorf. More on the complexity of common superstring and supersequence problems. Theoret.

Comput. Sci., 125:205{228, 1994.

[9] K.-J. R�aih�a and E. Ukkonen. The shortest common supersequence problem over binary alphabet is

NP-complete. Theoret. Comput. Sci., 16:187{198, 1981.

[10] P. Ross. About PGA v2.7. University of Edinburgh, 1994.

[11] V. G. Timkovsky. Complexity of common subsequence and supersequence problems and related pro-

blems. Cybernetics, 25:565{580, 1990.

8

