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ABSTRACT

With increasing sizes of speech databases, speech recognizers
with huge parameter spaces have become trainable. However,
the time and memory requirements for high accuracy realtime
speaker-independent continuous speech recognition will proba-
bly not be met by the available hardware for a reasonable price
for the next few years. This paper describes the application
of the Bucket Voronoi Intersection algorithm to the JANUS-2
speech recognizer, which reduces the time for the computation
of HMM emission probabilities with large Gaussian mixtures
by 50% to 80%.

1. INTRODUCTION

Although the computation of Gaussians is only a part (for very
large vocabularies, even a small part) of the overall run time,
speeding it up does reduce the reaction time of the recognizer,
and especially the time for training significantly. When com-
puting the log probability of a Gaussian mixture, many speech
recognizer do not use all Gaussians but only the top n. We
have found that in our system using only the one Gaussian with
the highest probability is almost as good as using the sum of
more Gaussians. We have also found that using the Euclidean
distance instead of the Mahalanobis distance for finding that
most probable Gaussian does not decrease recognition accu-
racy too much. This reduces the computation of an HMM
emission probability to a two part process: First, find the cen-
troid that has the smallest Euclidean distance to the current
speech sample, and second, compute the value of the Gaus-
sian (multiplied with its mixture weight) for that centroid. So
instead of computing n Gaussians, where n is the size of the
mixture, we only have to compute one Gaussian plus we have
to run an algorithm for finding the closest centroid. For this
we use the Bucket Voronoi Intersection (BVI) algorithm [1].
It was introduced for high speed vector quantization of low-
dimensional vectors. However, we have found that it is still
good enough for 16-dimensional speech vectors. In this paper
we describe experiments in which we have investigated the ef-
fect of the BVI-algorithm on the run-time behavior and the
recognition accuracy of the JANUS-2 speech recognizer [2, 3].

2. THE BUCKET VORONOI
INTERSECTION ALGORITHM

For a detailed discourse on the Bucket Voronoi Intersection
(BVI) algorithm see [1].

All points in the feature space having the same nearest-
neighbor codebook vector define a Voronoi region. The set of
all Voronoi regions constitutes a disjoint partitioning of the
feature space. The aim of the algorithm is to approximate this
partitioning with a top-down tree search.

The principle behind it is a binary tree. Each node of the
tree represents a hyperplane in the feature space. When clas-
sifying a sample vector, the tree is descended from the root
down to a leaf. At every node, a decision is made to descend
into the left or the right successor node, depending on the sam-
ple vector being on the left or on the right side of the current
hyperplane. So every step down the tree reduces the size of
the search space.

When the tree descending algorithm has finally reached a
leaf node, there will be only a few codebook vectors left whose
Voronoi region is intersecting with the remaining search space,
which is called a bucket. The set of all buckets constitutes a
disjoint partitioning of the feature space. Depending on how
deep we descend the tree, we get different buckets and a dif-
ferent partitioning of the feature space. In higher levels of the
tree we get larger buckets, which contain more Voronoi regions.

Although the bucket sizes decrease monotonically with in-
creasing tree depth, there is no guarantee to reach the optimal
case of having only one codebook vector per bucket. For that
reason, there is a tradeoff between speed up and memory re-
quirements of the tree.

The time for traversing the tree is not the critical factor.
Let d be the depth of the tree, b the average bucket size and
n the codebook size, then we will have to compute d hyper-
plane comparisons, plus b Gaussians instead of n Gaussians.
Since the BVI-algorithm only uses hyperplanes of the form
z; = t, deciding on which side of the hyperplane a vector
y is located takes only one simple floating point comparison
y; < t. A full binary tree of depth d has 2¢ leafs (buckets),
so the memory requirements for storing the tree grow expo-
nentially. Since we are usually using feature spaces that are
at least 16-dimensional, the limit for the depth of the trees
will be determined rather by the amount of available memory,
than by the run-time requirements.

3. COMPUTING THE BVI-TREE

Since it is extremely expensive to compute the real bound-
aries of a high dimensional Voronoi region, we approximate
the Voronoi region with a cuboid whose edges are parallel to
the coordiates. These approximate regions generally overlap
each other. The boundaries of the cuboids are determined by
encoding a sufficiently large set of training vectors. (see Fig.

1).
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Fig. 1: approximated Voronoi regions

A cuboid-approximated Voronoi region is defined entirely
on one side of a hyperplane if all the training vectors that fall
into the region are on the same side of the plane. With this
approach we get a very simple decision rule, but we introduce
a possible classification error (Fig. 2).
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Fig. 2: classification error in approximated Voronoi regions

The error rate can be reduced by increasing the number of
training vectors. The more vectors we use for training the
more it is likely that the approximate cuboid of a Voronoi
region will contain the entire region. Fig. 3 shows the average
classification error rate, depending on the number of training
vectors and the depth of the BVI-trees.

In our experiments, we have found that a low classification
error rate for the nearest neighbor is not important for a good
speech recognition accuracy (see Fig. 4)

The objective of a good BVI-tree is to have as few Voronoi
regions in every bucket as possible. The average size of a
bucket decreases with the depth of the tree, while the memory
requirements and error rate grow exponentially, limiting the
tree size. We have conducted experiments with trees up to a
depth of 12. Fig 5 shows the average bucket size depending on
the depth of the BVI-tree.
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Fig. 4: recognition accuracy using BVI-search

4. RUNTIME BEHAVIOR

The speedup in the HMM-emission probability computation
can be approximated by the average mixture size divided by
the average bucket size. Of course, the relative speedup for

the entire system is smaller. Fig. 6 shows the speedups for
training and testing sessions with the JANUS-2 speech recog-
nizer.
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Fig. 5: average bucket size depending on tree depth
4 T T T T T T T
25k training vectors ——
50k training vectors —=—
35T 100k training vectors ——
200k training vectors —<—
o
=]
=}
(5]
Q
o
w
1 . . . . . . .
4 5 6 7 9 10 11 12

8
tree depth

Fig. 6: speedup of BVI-score computation

5. RECOGNITION ACCURACY

We have found that the recognition accuracy of the speech
recognizer does not suffer from the possible classification errors
of the BVI-algorithm. Fig. 4 shows the word accuracy on
the German Spontaneous Scheduling Task (GSST) [3, 2] for
different amounts of training data for the BVI-algorithm.

6. CONCLUSION

We present first results of our ongoing research on speeding up
the score computation with the BVI-algorithm. Although the
algorithm was developed for data compression applications,
we succesfully integrated this fast vector quantization method
into an HMM speech recognizer.
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