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Manufacturing systems with manual or automatic material handling usually have only limited bu�ers. In order to

con�gure the bu�ers the system is modeled by queueing network models in discrete time domain. The interarrival

processes as well as the service processes are approximated by general renewal processes. The characterization of

the manufacturing system by a queueing network provides means for analyzing the system's parameters, such as

work in process, sojourn time and the resulting space requirements, e.g. for bu�ers.

In this paper, the impacts of bu�ers and their allocations are discussed and possible bu�er con�gurations are pre-

sented. Then, after modeling the system by queuing network techniques, its performance is evaluated. Analytical

methods are developed for the computation of the system's steady state probabilities, which lead to the bu�er

con�guration.
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1 Problem Description

During the planning process of manufacturing sys-

tems and their material handling systems, queueing

network models could provide data about transport

patterns, expected work in process, sojourn times and

average bu�er requirements (see [1], [2], [3]). In these

models, the manufacturing lots are modeled as jobs

which are processed on one or more groups of ma-

chines, which are represented by queueing systems,

where the number of machines equals the number of

servers of the queueing system.

The jobs that are waiting to be processed on a

machine are kept in a bu�er which is usually adjacent

to the respective machine. In queueing models, the

capacity of these bu�ers is very often considered to

be in�nite. This might be an appropriate modeling

assumption, when very small parts are manufactured,

as is the case of semiconductor manufacturing. In

most manufacturing systems however, the space

allocated to bu�ers is limited, and therefore should

be modeled as being �nite. When designing a layout

for a manufacturing system, the amount of space

which is allocated to bu�ers can have a signi�cant

impact on the total space requirement. Therefore it

is desirable to evaluate the e�ects of bu�er allocation

decisions on the production output and the material

handling requirements in an early planning stage.

For queueing networks with �nite bu�ers, so called

blocking networks, several models with di�erent

blocking strategies have been developed.
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Akyildiz [4] di�erentiates between three types of

blocking, namely transfer blocking, communication

blocking and rejection blocking. All these blocking

strategies could lead to a reduction in total system

throughput because a machine will stop working when

the destination bu�er of the current or next job is al-

ready completely occupied.

This could be avoided if so called independent

bu�ers are added which are not directly connected

to a speci�c group of machines, but are shared be-

tween several groups. Jobs which could not be stored

in the local bu�er of their destination are temporar-

ily stored in the independent bu�er until space in

the local bu�er is available. Most 
exible manufac-

turing systems provide an independent central bu�er

and local bu�ers at every machine to avoid the above

mentioned throughput reductions. For 
exible manu-

facturing systems, Tempelmeier and Kuhn [5] give a

very complete overview about queueing models which

allow the evaluation of 
exible manufacturing sys-

tems with a central bu�er. Most of these models

rely on closed queueing networks and exponentially

distributed service times. In job shop like manufac-

turing systems, other bu�er con�gurations could be

found as well which consist of several bu�ers linked in

several levels.

In [6], an open queueing network model was devel-

oped which captured more general bu�er con�gura-

tions, but required exponentially distributed interar-

rival and service time for numerical evaluations. In

this paper an extension is presented which allows the

approximate calculation of performance measures for

manufacturing systems with interarrival and service

time which are described by general discrete time dis-

tributions. Network con�gurations with Single-staged

Bu�ers, Shared Single-staged Bu�ers and Multiple-
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staged Bu�ers are subsequently described and for-

mulas for their performance evaluation are derived.
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Figure 1: Di�erent bu�er con�gurations and result-

ing job routings. Solid line: planned route for jobs;

dashed line: route via independent bu�er

1.1 Single-staged Bu�ers

In Figure 1 the simplest bu�er con�guration is shown

between queueing systems A and B with bu�er E.

Jobs enter the queueing network at queueing system

A and are stored in the unlimited bu�er of A if they

cannot be processed directly. After completing the

service at A, they proceed to B. If the limited local

bu�er of B is full, the job is transferred instead to the

independent bu�er E, and remains there until space

in the local bu�er of B is available. The transfer to B

is done in a FCFS discipline.

1.2 Shared Single-staged Bu�ers

Shop
oor space can be saved if an independent bu�er

is used by several queueing systems to temporarily

store the jobs that could not be directly transferred

to their destination's local bu�er. In Figure 1 the

independent bu�er G is used to keep jobs that could

not proceed directly from B to C as well as those

which could not be brought from I to K. The transfer

to C or K respectively is also done FCFS separately

for each destination as soon as space in the local bu�er

at the destination is available.

1.3 Multiple-staged Bu�ers

In the previous sections it was assumed that the ca-

pacity of the independent bu�ers is unlimited. In a

job shop environment or a 
exible manufacturing sys-

tem this is usually not the case. Therefore it may be

necessary to transfer jobs from a �rst level indepen-

dent bu�er to a second level independent bu�er with

in�nite capacity. This is shown in Figure 1. Here the

independent bu�er F has a limited capacity, therefore

jobs that have been routed to F because they could

not be stored in the local bu�er of D are rerouted to

the bu�er H with in�nite capacity. H also serves as

�rst stage bu�er for L in this example.

2 Model Description

The manufacturing system is modeled by an open

queueing network, where each machine is represented

by a queueing system with a single server. The net-

work consists of M queueing systems and P indepen-

dent bu�ers. The size of bu�er i is denoted by ci, the

total capacity of a queueing system is c0i = ci+1. The

elements of matrix Q, qi;j describe the routing proba-

bilities between the queueing systems i and j. The

adjacency relations between queueing systems and

bu�ers are de�ned by anM+P -dimensional over
ow-

adjacency matrix R. An element ri;j of matrix R as-

sumes the value '1', if blocked jobs with destination i

are transferred to bu�er j instead, otherwise ri;j = 0.

To calculate performance measures, it is required

that the queueing system satis�es the subsequently

described assumptions:

� there is one class of jobs

� all external interarrival and service times are de-

scribed by renewal processes with discrete time

distributions and �xed interval length tinc

� the service order is FCFS

� the adjacency relations de�ned in R are circular

free

� the routing probabilities de�ned in matrix Q are

independent of the current state of the system

� all queueing systems either possess a bu�er with

in�nite capacity or have direct or indirect access

to a bu�er with in�nite capacity.

3 Computing Performance

Measures

To compute performance measures for a given bu�er

con�guration two steps are necessary. First perfor-

mance measures are computed for each queueing sys-

tem in the network. The queueing systems are treated

as having unlimited bu�er capacities. The emphasis

is set on the number of jobs in the queueing system at

arrival instants. Based on these results, a subsequent

evaluation of the e�ects of the bu�er space assignment

can be done.

3.1 Number of Jobs in Queueing Sys-

tem at Arrival Instants

The �rst step of the suggested evaluation method re-

quires the computation of the distribution of the num-

ber of jobs in system.

It is assumed that all involved stochastic variables

A (interarrival times), S (service times) andW (wait-

ing times) describing a queueing system are identi-

cally and independently distributed for all jobs in a

�nite discrete time domain, with a constant tinc be-

ing the increment between two adjacent steps. No two



jobs arrive in the same instant, thus the distributions

of the service time Sn for an arbitrary job n, as well

as the interarrival times An between the n-th and the

n+ 1st job are given as:

PfSn = i � tincg = si 8i = 0; : : : ; smax

PfAn = i � tincg = ai 8i = 1; : : : ; amax

Using the results described in [7] to compute the

waiting time and interdeparture time distributions for

GjGj1-queueing systems and linking these systems,

and applying the results of [8] to compute the e�ects

of splitting and merging of streams, it is possible to

compute good approximations for the waiting time

distribution of jobs in the bu�ers of the queueing sys-

tems. It is assumed that the system achieves steady

state and the waiting time distribution for the jobs

exists and is described by

PfWn = i � tincg = wi 8i = 0; : : : ; wmax

To calculate the number of jobs in the queueing

system at arrival instants along the lines of [9] we

proceed as follows.

Apparently, the distribution of the waiting times is

closely linked to the distribution of number of jobs in

queue at arrival instants. The task is now to derive

from the distribution of W , the distribution of the

number of N jobs in queue at arrival instants.

The jobs Cj(j = 0; 1; : : :), are coming successively

to the regarded queueing system. When job Cn en-

ters the system at instant Tn it has to wait Wn time

units until it is about to be served. It leaves the sys-

tem at the departure instant Dn. The next instant

after Dn, Dn + tinc, shall be denoted by Dn+. Job

Cn+k+1 enters the system at instant Tn+k+1 > Tn.

The probability of it �nding not more than k jobs in

the system equals the probability of job Cn leaving

after its departure instant Dn not more than k jobs

behind.

PfN (Tn+k+1) � kg = PfN (Dn+) � kg (1)

It can be shown, that the conditions N (Dn+) � k

and N (Tn+k+1) � k are equivalent:

Proof: Assume that N (Tn+k+1) � k. Then the

n-th job has already been served before job Cn+k+1

arrives. Therefore just after Dn, no more than k jobs

could have been present at the queueing system. On

the other hand, in case Cn leaves at Dn+ no more

than k jobs in the system, Cn+k+1 could have found

no more than k jobs in the system.

if N (Tn+k+1)� k ) N (Dn+) � k

if N (Dn+) � k ) N (Tn+k+1) � k

) N (Dn+) � k , N (Tn+k+1) � k (2)

The distribution of the di�erence Tn+k+1 � Tn is

the sum of k + 1 independent realizations of A, and

can be computed by using a k + 1-fold convolution

of the interarrival distribution which shall be denoted

A(k+1). The element a
(k+1)�

l at position l of the prob-

ability vector represents the probability, that the sum

of k+ 1 subsequent arrival intervals add up to length

l � tinc.

PfTn+k+1 � Tn = l � tincg = a
(k+1)�

l (3)

Using (1) and the independence of Tn+k+1, Tn,

Wn, and Sn, another important relation can be es-

tablished. If Cn+k+1 �nds k or less jobs present, then

the interval between Tn+k+1 and Tn must have been

longer than it took Cn to wait and be serviced.

PfN (Tn+k+1) � kg = PfN (Dn+) � kg

= PfTn+k+1 � Tn > Wn + Sng (4)

Considering the n + 1-st job instead of the n-th, a

simpler formula can be obtained.

PfTn+k+1 � Tn > Wn + Sng =

PfTn+k+1 � Tn+1 > Wn + Sn � (Tn+1 � Tn)g

= PfTn+k+1 � Tn+1 > Wn+1g (5)

The service time of the n-th job is not relevant and

it is su�cient to take into account the waiting time

distribution. When using (5) it has to be considered

however, that one job less has arrived. Thus for an

arbitrary job n we get subsequent described probabil-

ities for all k � 0:

PfN (Dn+) � kg =

1X
i=0

wi

2
4 1X
j=i+1

a
(k�1)�
j

3
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=

1X
i=0

wi(1� �ai
(k�1)�)

(6)

with �ai denoting the i-th element of the cumulative

probabilities vector. The initial condition

PfN (Dn+) � 0g = PfWn+1 = 0g (7)

allows the computation of the probabilities for all val-

ues of k � 1 at arrival instants iteratively:

PfN (Dn+) = kg =

PfN (Dn+) � kg � PfN (Dn+) � k � 1g
(8)

Taking the limit for n !1, the probability p(k) for

�nding k � 1 jobs in a queueing system at the arrival

instant results from:

p(k) =

1X
i=0

wi

h
�ai
(k�2)� � �ai

(k�1)�
i

(9)

and p(0) = wi.

3.2 Transformation of Steady State

Probabilities

Using the above described results, the subsequently

described approximation method is proposed to com-

pute the steady state probabilities of the number of

jobs in the limited and unlimited bu�ers at queue-

ing systems and independent bu�ers. The approxi-

mations assume that the steady state probabilities in



the open queueing network are independent for each

queueing system.

The formulas of the previous section give probabil-

ities p(ki) for the the number ki of jobs in queueing

system i at the arrival instant. These probabilities

now have to be transformed in all cases where the

number in queue surpasses the bu�er size. The sub-

sequently described transformations are necessary.

For each queueing system the transformed proba-

bilities p(k0i) are computed as follows. If c0i = 1 no

transformation is necessary. For �nite values of c0i the

transformation is de�ned by:

p(k0i) =

(
p(ki) if k0i < c0i

1�
Pc0i�1

i=0 p(ki) if k0i = c0i (10)

To deal with the independent bu�ers, all bu�ers (lo-

cal and independent) are topologically sorted accord-

ing to the adjacency matrix R. Then the modi�ed

probabilities p(k0i) for queueing systems with limited

bu�ers are computed according to (10). It is then

possible to compute for all bu�ers, the probability of

an over
ow (ki > c0i) in the topological sorted order.

The variable oi denotes the number of jobs that

could not be stored in the local bu�er of system i and

have to be transferred to the adjacent independent

bu�er. The associated probabilities p(oi) are com-

puted as follows:

p(oi) =

(
p(ki = c0i + oi) if oi > 0Pc0i
h=0 p(ki = h) if oi = 0

(11)

The probability vector P o
i of the over
ows is given

by P o
i = (p(oi = 0); p(oi = 1); : : : )T The number

of jobs in an independent bu�er now is computed as

the probability of the sum of the oi of the adjacent

queueing systems and bu�ers using the convolution

operator 
 on the vectors P o
i .

P (j) =
O

j:ri;j=1

P o
i (12)

3.3 Computing the Additional Flow

The additional 
ow froma queueing system to a bu�er

is necessary when a job arrives and the local bu�er is

already completely occupied. Based on the probabili-

ties p(ki), which give the probability of number of jobs

in queueing system i at arrival instants, the additional


ow �oi is easily calculated.

�oi = �ip(k
0
i = c0i) (13)

The 
ow from an independent bu�er h with limited

capacity to another bu�er l has to be traced back to

the probability of a job arriving at i being rerouted to

h and immediately further on to l. This probability is

denoted as pi!h!l. It can be derived from the prob-

ability that in the equivalent network with unlimited

bu�ers, the local bu�er of i already contains ki � c0i
jobs and the sum of jobs swapped out to h already

exceeds c0h � (ki � c0i). The set J contains all queue-

ing systems and bu�ers that have a direct adjacency

relation to h.

J = fjjrjh = 1g

Then probability pi!h!l can be expressed as

pi!h!l =

X
ki

p(ki) � p

2
4X
j2J

oj � c0h � (ki � c0i)

3
5

(14)

Using pi!h!l �oh can be expressed as:

�oh =
X
rih

�i � p
i!h!l (15)

This method can be extended to more than two

stages by determining all nodes i from where an inde-

pendent bu�er h is reachable.

3.4 Examples

3.4.1 Example I

The �rst example is chosen in order to verify the ob-

tained results by a simple example based on M/M/1

queueing systems. In this case the probabilities

for the waiting times and number of elements in

the system are easy to calculate. A manufacturing

system consists of four sequentially arranged queue-

ing systems with local bu�ers and one independent

bu�er. The interarrival and service times of each

system are exponentially distributed with the arrival

rate � = 8 [jobs/time units] respectively, the service

rate � = 10 [jobs/time units], the throughput

was � = �=� = 0:8. For the �rst time units the

well known probabilities for number of jobs in the

M/M/1 system p(k) = �k �(1��) are listed in Table 1.

jobs M/M/1 G/G/1 M/M/1 G/G/1

System System Bu�er Bu�er

0 0.20 0.24 0.39 0.37

1 0.16 0.10 0.08 0.08

2 0.13 0.12 0.07 0.08

3 0.10 0.10 0.06 0.07

4 0.08 0.09 0.06 0.06

5 0.07 0.07 0.01 0.05

6 0.05 0.06 0.01 0.05

7 0.04 0.05 0.01 0.04

8 0.03 0.04 0.00 0.03

9 0.03 0.03 0.00 0.03

Table 1: Probabilities for the number of jobs in the

M/M/1 and G/G/1 queueing systems and in the in-

dependent bu�ers

It is assumed that the bu�er space of each queueing

system is limited to �ve places, i.e. with the job being

served, it is possible for six jobs to stay in the system.



The queueing systems are modelled as G/G/1 sys-

tems and analyzed in the discrete time domain. The

discrete values representing the exponentially dis-

tributed interarrival and service times are obtained

by the following method. The time is split up into

several equi-distant time intervals. For each interval

the corresponding discrete value is the di�erence of

the two boundary values of the continuous exponen-

tial function. In our case, the time intervals have the

length 1=20 [time units], the arrival and service rate

referring to the intervals are now � = 0:4 and � = 0:5.

The waiting time probabilities for the M/M/1 system

is obtained through the waiting time distribution (16)

(see [10]).

wi = 1� � � e�(���)�i (16)

The results for some discrete values of the M/M/1

system and the obtained results for the waiting time

probabilities of the G/G/1 system are listed in Ta-

ble 2.

i 0 1 2 3

wi;M=M=1 0.200 0.076 0.069 0.062

wi;G=G=1 0.237 0.071 0.065 0.059

i 4 � � � 20 21

wi;M=M=1 0.057 � � � 0.011 0.010

wi;G=G=1 0.053 � � � 0.011 0.010

Table 2: Waiting time probabilities for the M/M/1

and G/G/1 system

The average waiting time of the M/M/1 system

equals wM=M=1 = �=(� � (1� �))=8:0 [time units].

The G/G/1 system has the calculated average of

wG=G=1 = 7:779 [time units], which is very close to

wM=M=1.

Having obtained the waiting time probabilities, the

distribution of the number of jobs in each queueing

system is calculated with formula (9). The results for

the M/M/1 system, shown in the table above, can be

compared with the results of the G/G/1 system in

Table 1.

The average number of jobs in a system equals

kG=G=1 = 4:1 which is comparable to the expected

number of jobs in M/M/1 systems:

kM=M=1 = � �wM=M=1 + � = 4:0.

Finally, all jobs that does not �t into the appro-

priate system are transferred into the independent

bu�er. The results for the independent bu�er in the

M/M/1 queueing network, as well as for the bu�er for

the G/G/1 cases, are shown in Table 1.

It can be stated that the probability of having an

empty independent bu�er is slightly higher in the case

of the M/M/1 systems. On the other side, the proba-

bilities with at least one job in the bu�er are smaller

and with at least �ve jobs in the bu�er, the di�erence

to the G/G/1 system is enormous. This is explained

by the fact that the calculation for the M/M/1 system

is an approximation, i.e. the probabilities of number

of jobs in the system is limited to 10 jobs (see [11])

which becomes especially apparent when the distri-

butions of number of jobs that do not �t into the

queueing systems are convoluted in order to get the

probabilities for the bu�er occupation.

3.4.2 Example II

The next example is chosen to demonstrate the ef-

fects of di�erently distributed service and interarrival

times in a queueing network, and the consequences of

independent bu�ers.

The network consists of three queuing systems, see

Figure 2. The external interarrival time distribution

of system A is shown in Table 3, the service time

distributions are documented in Table 4.

A B

C

D

Figure 2: Queueing network

interarrival time 0 1 2 3 4

System A 0.0 0.2 0.5 0.8 1.0

Table 3: Interarrival time distribution for A

service time 0 1 2 3 4

System A 0.0 0.3 0.6 1.0 1.0

System B 0.0 0.5 0.9 1.0 1.0

System C 0.0 0.4 0.7 0.9 1.0

Table 4: Service time distributions for the queueing

network

The resulting probabilities for number of jobs in

each system are shown in Table 5.

Analyzing the results, it appears convenient to al-

locate more bu�er spaces to the systems B and C,

say two and three places, and let one place belong to

system A. Then the number of jobs in the shared inde-

pendent bu�er D would have the probabilities shown

in Table 5.

This means that it would be su�cient to allocate

two places to the independent bu�er D in order to

catch all jobs that do not �t into their designated

bu�ers.

Another solution for the bu�er con�guration is to

direct all transferred jobs to the local bu�er of a sys-



jobs Sys. Sys. Sys. Bu�. A

A B C D (new)

0 0.795 0.778 0.567 0.929 0.733

1 0.138 0.167 0.252 0.070 0.193

2 0.060 0.049 0.130 0.001 0.070

3 0.000 0.005 0.032 0.000 0.004

4 0.000 0.000 0.006 0.000 0.000

5 0.000 0.000 0.001 0.000 0.000

Table 5: Probabilities for the number of jobs in the

systems A.B.C, in the independent bu�er and in sys-

tem A for the new con�guration

tem, system A would be convenient. The new distri-

bution of number of jobs in system A would have the

probabilities shown in Table 5.

The addition of two further places to system A

would have similar performance results as installing

an independent bu�er with two places. There are

other aspects that in
uence the decision where to

place the bu�ers, e.g. if the costs of separate bu�er

space would be greater than those of the local bu�er,

the latter solution would be preferred. Another point

to take into consideration is the distance of the man-

ufacturing systems to the independent bu�er, which

results in di�erent costs for the transport for all sys-

tems to the shared bu�er.
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