
T. Schulenberg, M. Ozawa, G. Grötzbach, (Ed.) Proceedings of the German-Japanese Workshop on Multi-Phase Flow, 
Karlsruhe, Germany, August 25-27, 2002 FZKA 6759, Forschungszentrum Karlsruhe, March 2003, pp. G10-G21 

 

INVARIANCE OF THE VELOCITY FIELD INDUCED BY A BUBBLE RISING 
STEADILY THROUGH LIQUID UNDER VARIATION OF THE  

GAS-LIQUID DENSITY RATIO 
 
 

M. Wörner 

Forschungszentrum Karlsruhe GmbH 
Institut für Reaktorsicherheit 

Postfach 3640, 76021 Karlsruhe, GERMANY 
Phone: +49 7247 82-2577, Fax: +49 7247 82-3718, 

E-mail: woerner@irs.fzk.de 
 
 
 

ABSTRACT 

We investigate the influence of the density ratio on the buoyancy driven motion of a single bubble 
rising through still liquid by two series of volume-of-fluid simulations. In each series the values of 
the Morton number (Mo) and bubble Eötvös number (EöB) are fixed while the density ratio is 
varied, so that the liquid density is two to fifty times the gas density. The runs of series A  
(Mo = 3.09·10-6, EöB = 3.06) result in an ellipsoidal bubble, those of series B (Mo = 266, EöB = 243) 
in an ellipsoidal-cap bubble. In both cases the bubble rises along a rectilinear path. We find that the 
density ratio affects the bubble acceleration. Once the bubble rise is steady, the bubble shape, the 
bubble Reynolds number and the properly scaled bubble driven liquid motion are virtually 
independent of the density ratio. 

1. INTRODUCTION 

1.1. Motivation 

Despite the enormous amount of research that has been devoted to the buoyancy-driven motion 
of bubbles and drops in the past, there are still some aspects that are not fully clarified. For 
example, the influence of the disperse-to-continuous phase density ratio (Γρ) as one of the 
fundamental similarity parameters determining the shape and rise of fluid particles has attracted 
rather little attention up to now. Associated with the development of advanced methods for direct 
numerical simulation (DNS) of interfacial flows and the availability of more and more powerful 
computers there is, however, an increased interest to quantify the influence of Γρ. This is because in 
two-phase flow a DNS is often not performed for a density ratio of about 1/1000, as it is typical for 
air bubbles in water. Instead, in order to avoid numerical problems and to minimize the 
computational costs, a density ratio of about 1/100 is often chosen. Ye et al. [1], for example note 
that for very small values of Γρ the disparity of the fluid property across the interface makes the 
computation stiff and often leads to numerical instability. Bunner & Tryggvason [2] observe that 
their multi-grid solver fails to converge in the solution of the pressure Poisson equation if the 
density ratio is very small. They state that a SOR solver is more robust, but its use is impractical 
because it increases the computational time required to achieve the same accuracy by one to two 
orders of magnitude. Another drawback of values of Γρ substantially different from unity is the 
difference in diffusive time scale of both phases. Wörner [3] reports that the maximum time step 
size allowed for numerical stability of an explicit time integration scheme decreases almost linear 
with Γρ. For all these reasons it appears favorable to perform simulations with a density ratio of 
order 1/10 or 1/100 instead of 1/1000. This, however, raises the question to what extent results 
obtained from such simulations can be transferred to gas-liquid systems of higher density ratio. 
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1.2. Literature survey 

For a fluid particle rising with its terminal velocity through an infinite liquid there are eight 
physical quantities of influence [4]: ρc

*, ρd
*, µc

*, µd
*, σ*, g*, dB

*, VT
*. Here ρ* denotes the density, µ* 

the dynamic viscosity, σ* the coefficient of surface tension, g* the acceleration of gravity, dB
* the 

sphere-equivalent diameter of the fluid particle and VT
* its terminal rise velocity. The subscripts d 

and c denote the dispersed and continuous phase, respectively, and * is used to indicate a 
dimensional quantity. These eight quantities obey three basic dimensions (length, time, mass). 
Dimensional analysis therefore yields that there are five independent dimensionless groups [4], 
namely the bubble Reynolds number (ReB), the bubble Eötvös number (EöB), the Morton number 
(Mo), and the ratios of disperse-to-continuous phase density (Γρ) and viscosity (Γµ): 

( )* * * * 2* * * * * * *4 * *

* * *2 *3 * *

( ), , , ,c d Bc B T c d c d d
B B

c c c c

g dd V gRe Eö Mo ρ µ

ρ ρρ ρ ρ µ ρ µ
µ σ ρ σ ρ µ

− −≡ ≡ ≡ Γ ≡ Γ ≡  (1) 

Therefore, there exists for example a functional relationship of type ReB = f (Mo, EöB, Γρ ,Γµ). We 
note that any of the non-dimensional groups ReB, Mo, EöB can be replaced by the Weber number in 
virtue of the identity * * *2 * 2

B c B T B BWe d V Re Mo Eöρ σ≡ = . The set of non-dimensional groups 
according to Eq. (1) has the advantage that there is only one group (ReB) that incorporates the rise 
velocity and only one group (EöB) that incorporates the equivalent diameter. 

Experimental studies on the influence of the density ratio as a similarity parameter are rare. The 
reason is that Γρ is not a parameter which can be easily varied in an experiment, while at the same 
time all the other parameters are kept constant. In the course of an experimental series, usually one 
specific continuous phase and various dispersed phases are used, or vice versa. In general, by this 
approach together with the density ratio also the viscosity ratio and the Morton number are varied. 
This procedure is therefore unsuited to reveal the specific functional dependence of ReB from Γρ. 
Nevertheless, Grace [4] notes that for bubbles rising in liquids Γρ and Γµ tend to be very small so 
that the density and viscosity of the dispersed phase become unimportant causing ReB = f (Mo, EöB). 

The specific influence of the density ratio can be investigated more easily by means of 
numerical simulation. Dandy & Leal [5] study the steady axisymmetric motion and deformation of 
a fluid particle in a streaming flow by a finite-difference scheme using the stream function-vorticity 
formulation of the Navier-Stokes equation and a boundary-fitted orthogonal coordinate system. The 
authors consider both the case of a bubble and a drop. For the bubble the viscosity ratio is 1 and the 
values of the Reynolds and Weber number are fixed to ReB =100, WeB = 4, while two values of the 
density ratio are considered: Γρ = 0.1 and 0.01. For the drop they use ReB = 60, WeB = 4, Γµ = 100 
and the values of the density ratio are Γρ = 10, 100, and 1000. The authors find that the variation of 
the density ratio produces only a slight change in shape and flow field. They state that “the only 
surprise is that the effect of variation of the density ratio is so weak”. Recently, Ye et al. [1] 
developed a combined Eulerian-Lagrangian method where the Navier-Stokes equation is solved on 
a fixed grid and the interface is explicitly defined by geometric curves in the computational domain. 
They compute the rise of an axisymmetric bubble for the same constant parameters as Dandy & 
Leal (i.e. ReB = 100, WeB = 4, Γµ = 1), but consider values of the density ratio that span three orders 
of magnitude: Γρ = 0.1, 0.01, 0.001. They confirm that the differences are small, but observe that for 
the higher values of Γρ the bubble is slightly less deformed. 

Oka & Ishii [6] performed 3D level-set simulations of a single bubble rising through liquid in a 
square duct. They introduce the reduced Morton number Mo† = Mo /(1 - Γρ) and reduced Eötvös 
number Eö† = Eö /(1 − Γρ) and perform simulations for fixed values Mo† = 3.125·10-3, Eö† = 20 for 
the three different density ratios Γρ = 0.02, 0.01, 0.001. They find that the effect of variation of Γρ 
on the cap-type bubble shape and the flow field is extremely weak when Γρ is smaller than 0.02. 
Additionally, they perform a run with Γρ = 0.1 and Mo† = 3.125·10-3 / (1 − 0.1) = 3.472·10-3 and Eö† 
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= 20 / (1 − 0.1) = 22.22. By this choice of Mo† and Eö† they take into account the effect of the 
change of the density difference ∆ρ* that results from variation of the density ratio and thus ensure 
that in all four runs the values of Mo and EöB are (almost) identical. Oka & Ishii [6] find that in the 
run with Γρ = 0.1 the rise velocity is about 5.5% less than in the run with Γρ = 0.001. 

Bunner & Tryggvason [2] use a front-tracking method to perform simulations of 3D bubbly 
flow for EöB = 1 and Mo = 1.23·10-6 using Γρ = 0.02. They justify this choice by the observation that 
in 2D tests using much smaller density ratios the effect of the density ratio and of the inertia of the 
fluid inside the bubble is small for these values [7]. 

Sabisch et al. [8] performed 3D simulations of a single bubble rising through an initially 
quiescent liquid within a vertical channel by the volume-of-fluid (VOF) method. For the density 
ratio they used Γρ = 0.5 and for the viscosity ratio Γµ = 1. They considered four different 
combinations of (Mo, EöB) which were chosen so that from the diagram of Clift, Grace, and Weber 
(CGW) [9] in which ReB is displayed as function of (Mo, EöB) a spherical, ellipsoidal, oblate 
spherical cap, and a wobbling bubble shape should be expected. Despite the density ratio 0.5, the 
Reynolds number, shape, rising path, and wake type of the bubble agreed qualitatively very well 
with the regime of CGW for all four combinations of (Mo, EöB). From this result one may 
conjecture that the dependence of the bubble Reynolds number on the density ratio is weak in 
general, not only for Γρ < 0.02. These results motivated a study by Wörner [3] who systematically 
investigated the influence of the density ratio on the bubble Reynolds number by a series of 3D 
VOF simulations with the parameters of the ellipsoidal bubble (Mo = 3.09·10-6, EöB = 3.06, Γµ = 1) 
but for different values of the density ratio: Γρ = 0.5, 0.2, 0.1, 0.02. He found that the density ratio 
affects how fast the bubble accelerates from rest towards its terminal velocity. This can be 
explained by the added mass force [3]. However, the terminal value of the bubble Reynolds number 
ReB was found to be virtually unaffected by the density ratio.  

1.3. Objective 

The velocity that enters into the bubble Reynolds number is the velocity of the center-of-mass 
of the bubble. This is an integral quantity. A question that arises is how is the influence of the 
density ratio on the local velocity field, both in the liquid and gas phase. This topic is investigated 
in the present paper. In section 2 we first give the non-dimensional equations governing the local 
motion in both phases. In these equations the five non-dimensional groups mentioned above appear. 
In section 3 we analyze results of direct numerical simulations obtained with the volume of fluid 
method for the rise of a bubble in a vertical channel. Two different cases are considered. The first 
corresponds to the ellipsoidal bubble of [3] and thus represents a medium Morton number system. 
The second case is that of a dimpled ellipsoidal cap bubble in a high Morton number system  
(Mo = 266, EöB = 243, Γµ = 1). For this case a new series of computations has been performed for 
three different values of the density ratio (Γρ =0.5, 0.2, 0.1). In section 4 we present the conclusions. 

2. THEORY 

2.1. Dimensional equations in fixed frame of reference 

We consider the buoyancy driven motion of a single gas bubble rising through an immiscible 
fluid of infinite extend. The fluids reside in domains * * 3 * * 3( ) , ( )c dt tΩ ⊂ Ω ⊂  that change with 
time. Both fluids are considered to be Newtonian with constant viscosity. Also the density of each 
phase is assumed to be constant. Then, the motion of each fluid is described by the incompressible 
conservation equations for mass and momentum: 

( )
* * *

* * * * * * * * * *2 * * * * * *
* *0, ,c c

c c c c c c c c cp t
t

ρ µρ ρ∂∇ ⋅ = + ∇ ⋅ = −∇ + ∇ + ∈Ω
∂

uu u u u g x  (2) 
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( )
* * *

* * * * * * * * * *2 * * * * * *
* *0, ,d d

d d d d d d d d dp t
t

ρ µρ ρ∂∇ ⋅ = + ∇ ⋅ = −∇ + ∇ + ∈Ω
∂

uu u u u g x  (3) 

Here, uc
*, ud

* are the fluid velocities at specified time t* and position in space x* within a fixed 
coordinate system. For  x*  → ∞ we assume the fluid of the continuous phase to be at rest. 

We denote the boundary between both fluid domains by Si
*(t*), a point on the interface by xi

*, 
and the unit normal vector pointing into the continuous phase by ni. We assume that the interface 
thickness is zero and the coefficient of surface tension is constant. At the interface we have the 
conditions of continuity of velocity and the continuity of normal and tangential stresses: 

( )
* * *

* * * 2
* * * * * * * * *T * * * * * T ( )

( ) ( )
c d i

i i
c d i c c c d d d i

S t
p p µ µκ σ

= =  ∈ ⊂ − + = ∇ + ∇ − ∇ + ∇ ⋅   

u u u
x

n u u u u n
 (4) 

Here, κ* is twice the mean interface curvature. 
The interface can be specified geometrically by the equation F(xi

*,t*) = 0. As the boundary 
between the two fluids is a material surface, F is a quantity which is invariant for a fluid particle at 
the interface, so that the interface evolution is described by 

* *
* *

D 0
D i

F F F
t t

∂= + ⋅ ∇ =
∂

u  (5) 

We now introduce some integral quantities of the bubble and denote these by subscript “B”. As 
the disperse phase is incompressible the volume of the fluid particle is constant in time. The bubble 
volume, sphere-equivalent diameter, position vector of the center-of-mass, and the translational 
velocity of the bubble are given by 

* * * *

1
* * *3

* * * * * * * * * * * * *
* *

( ) ( )

6 d ( )1d , , ( ) d , ( ) , ( ) ( )
d

d d

B B
B B B B B B

Bt t

tV d t V t V t t
tπΩ Ω

 
≡ ≡ ≡ ≡ ≡ 

 
∫∫∫ ∫∫∫

YY x V VV
V

V  (6) 

For the analysis that will follow it is convenient to introduce a frame of reference moving with 
the center-of-mass of the bubble. For this purpose we make the following transformation 

( ) ( )* * * * * * * * * * * * * * * * * * * * * *, ( ), , ( , ) ( ), , ( , ) ( )B c c B d d Bt t t t t t t t t′ = = − = − = −z x Y w z u x V w z u x V  (7) 

The acceleration of the moving coordinate system O′  is given by (− dVB
* / dt*). As it is well known 

(see e.g. [10], p. 140) the equation of motion in a moving frame is identical in form with that in an 
absolute frame provided that the fictitious body force per unit mass is added to the real body forces. 

2.2. Non-dimensional equations in moving frame of reference 

To make the above equations dimensionless we use the sphere-equivalent bubble diameter dB
* 

as reference length and the bubble’s center-of-mass velocity VB
* ≠ 0 as reference velocity. The 

reference time is given by dB
*/VB

*. As reference density and viscosity we choose the values of the 
continuous phase. To distinguish a non-dimensional quantity from its dimensional counterpart we 
use the same symbol but omit the superscript *. The non-dimensional density and viscosity of the 
continuous phase are then unity ρc = µc = 1 while the disperse phase values are ρd = Γρ and µd = Γµ. 
The definition of the non-dimensional pressure is different as we incorporate in it the effect of the 
hydrostatic pressure of the continuous phase: 

* * * * * * * *

* *2 * *2,c c d c
c d

c B c B

p pp p
V V

ρ ρ
ρ ρ

− ⋅ − ⋅≡ ≡g x g x  (8) 
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Introducing the unit vector in the direction of gravity ng ≡  g* / g* the non-dimensional equations 
in the moving frame of reference become 

( )2 d10, ,
d

c B
c c c c c c

B

p t
t Re t

∂′ ′ ′ ′ ′∇ ⋅ = + ∇ ⋅ = −∇ + ∇ − ∈Ω
∂
w Vw w w w z  (9) 

( )3
2

4

0

d
d

d

dd B B
d d d d g

B B

tEöp
t Re MoRe t

µ
ρ ρ

′ ∇ ⋅ =
 ′∈ΩΓ  ∂ ′ ′ ′Γ + ∇ ⋅ = −∇ + ∇ − − Γ  ∂  

w
zw Vw w w n

 (10) 

The conditions for → ∞z  are ( )c B t= −w V  while those at the interface are 

T T
4

( )1 ( ) ( )

c d i

i iB
c d i c c d d i

B B

S tEöp p
MoRe Re µκ

= =
 ′∈  ′ ′ ′ ′ − + = ∇ + ∇ − Γ ∇ + ∇ ⋅   

  

w w w
z

n w w w w n
 (11) 

From the Eqs. (9) - (11) we see that the non-dimensional field variables pc, pd, wc, wd, respectively 
uc, ud, and the location of the interface depend on the five independent non-dimensional groups ReB, 
EöB, Mo, Γρ, and Γµ. Unlike in section 1.2 we have received this result not by dimensional analysis 
but directly from the basic governing equations. 

In this paper we are especially interested in the influence of the density ratio. We note that the 
density ratio does neither appear in the momentum equation of the continuous phase, Eq. (9), nor in 
the coupling condition at the interface, Eq. (11). Therefore, the influence of the density ratio is 
restricted to the flow within the bubble. The flow within the bubble is likely to be a circulatory one. 
When there is no internal flow (wd = 0) or in the limit Γρ → 0 the density ratio drops from Eq. (10). 
In this case it is thus without influence and obviously it is ReB = f (Mo, EöB, Γµ). 

2.3. Steady flow in moving frame of reference 

In what follows we consider now the special case of steady motion. We assume that the bubble 
rises with constant velocity VB ≠ 0 and in the moving frame of reference the bubble shape and the 
flow inside and outside the bubble are steady. Then the time derivatives in Eqs. (9) and (10) cancel 
and the domains Ωd′ and Ωc′ are constant in time. The Navier-Stokes equation for the disperse 
phase then reduces to the form 

3
T

4 ,B
d d d d d g d

B B

Eöp
Re MoRe

µ
ρ

Γ
′ ′ ′ ′ ′ Γ ∇ ⋅ = −∇ + ∇ ⋅ ∇ + ∇ − ∈ Ω w w w w n z  (12) 

Making use of the generalized Gauss-Ostrogradskii divergence theorem for dyads we can integrate 
Eq. (12) over the domain Ωd′ and obtain 

3
T

i 4d
i

B
d d d d d B g

B BS

Eöp S
Re MoRe

µ
ρ

′

Γ ′ ′ ⋅ −Γ − + ∇ + ∇ =  
 

∫∫ n w w I w w nV  (13) 

Equation (13) is equivalent to the momentum theorem ([10], pp. 138) where the control surface is 
represented by the gas-liquid interface. The first term in Eq. (13) represents the convective flux of 
momentum out of the region bounded by Si′. Since there is no flow across the interface it follows 
that this term is zero. This can readily be shown for the local term. As the terms on the left-hand-
side of Eq. (13) have to be evaluated at the interface we have wd = wi and thus 

( )i d d i i i i i i i iWρ ρ ⊥′ ′ ′Γ ⋅ = Γ ⋅ = ⋅ =n w w n w w n w w w  (14) 
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Here, Wi⊥  is the component of the interface velocity normal to the interface. As we assumed the 
interface position to be steady in the moving frame of reference it is Wi⊥  = 0 and the momentum 
theorem expressed by Eq. (13) simplifies to the form 

3
T

i 4d
i

B
d d d B g

B BS

Eöp S
Re MoRe

µ

′

Γ ′ ′ ⋅ − + ∇ + ∇ =  
 

∫∫ n I w w nV  (15) 

Equation (15) states that there is a balance between the drag force and the buoyancy force. 

The significance of the momentum theorem is that it shows that the details of the motion within 
the region enclosed are irrelevant and knowledge of the conditions at the surface are sufficient to 
describe the problem. As the gas-liquid density ratio Γρ has cancelled from Eq. (15) this suggests 
that for steady motion and fixed bubble shape the bubble Reynolds number is a function only of 
Mo, EöB, Γµ but not of Γρ. The density ratio may, however, have an influence on the shape of the 
bubble. This topic is investigated in the next section by means of direct numerical simulation. 

3. NUMERICAL SIMULATION RESULTS 

3.1. Physical parameters 

In this section we present results of direct numerical simulations. Two series of simulations for 
two different types of bubbles are analyzed. The physical parameters are chosen so that a steady 
bubble rising along a rectilinear path and an axisymmetric bubble shape should be expected. In 
simulation series A the value of the Morton number is Mo = 3.09·10-6, which is a typical value 
when the liquid phase is of intermediate viscosity. The value chosen for the bubble Eötvös number 
is  EöB = 3.06. From the CGW regime diagram [9] we expect an oblate ellipsoidal bubble. In 
simulations series B the value of the Morton number is Mo = 266 which is characteristic for a very 
viscous liquid. The value of the bubble Eötvös number is EöB = 243. The parameters of series B are 
the same as in an experiment by Bhaga & Weber [12] where a dimpled ellipsoidal cap bubble was 
observed. In all our simulations the value of the viscosity ratio is fixed to unity, while the value of 
the density ratio is varied to investigate its influence on the simulation results. 

3.2. Governing equations and numerical method 

We perform the simulations in a fixed frame of reference. For tracking of the gas-liquid 
interface we use the volume-of-fluid method. The foundation of the method is the definition of a 
scalar quantity f representing the volumetric fraction of the continuous (liquid) phase within an 
averaging volume. Here, the averaging volume is taken to be a mesh cell. For f = 1 the cell is filled 
with liquid, for f = 0 it is filled with gas, while for 0 < f < 1 both phases instantaneously coexist in 
the mesh cell and thus an interface is present. Based on f we define the (non-dimensional) mixture 
density, mixture viscosity, and center-of-mass velocity within a mesh cell: 

* * * * * *

* * * *

(1 ) 1 (1 )(1 ) , (1 ) ,
(1 )

c d c c d d
m m m

c ref c d

f f f ff f f f
U f fρ µ

ρ ρ ρ ρρ µ
ρ ρ ρ

+ − + −≡ = + − Γ ≡ + − Γ ≡
+ −

u uu  (16) 

Based on above quantities the equations governing the motion in the continuous phase (Eq. (2)), in 
the disperse phase (Eq. (3)), and the coupling condition (Eq. (4)) can be combined into one single 
continuity and momentum equation valid in the entire domain Ω = Ωc ∪  Ωd (see [11]): 

0m∇ ⋅ =u  (17) 

T1 (1 ) refm m i i
m m m m m m g

ref ref ref

Eö ap f
t Re We We

ρ κρ µ∂  + ∇ ⋅ = −∇ + ∇ ⋅ ∇ + ∇ − − + ∂
u nu u u u n  (18) 
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Here ai is the non-dimensional interfacial area within the averaging volume. The above equations 
are made dimensionless by a reference length Lref

* and a reference velocity Uref
*. Based on these 

scales - equivalent to the definitions of ReB, EöB , WeB in section 1.2 - a reference Reynolds number 
(Reref), reference Eötvös number (Eöref), and reference Weber number (Weref) can be defined. The 
set of equations is completed by the transport equation for the liquid volumetric fraction 

( ) 0m
f f
t

∂ + ∇ ⋅ =
∂

u  (19) 

For the solution of Eq. (19) by the VOF method we have developed the interface reconstruction 
algorithm EPIRA which belongs to the class of PLIC (Piecewise Linear Interface Calculation) 
methods. Equations (17) and (18) are discretized employing a regular staggered grid and second 
order central differences. The solution strategy is based on a projection method and a third order 
Runge-Kutta time integration method. Details about the numerical method can be found in [8]. 

3.3. Computational set up 

Figure 1 shows the coordinate system and a sketch of the computational domain. The x-, y- and 
z-axes are assigned in vertical, transverse, and wall-normal direction, respectively. The gravity 
vector points in negative x-direction. In x- and y-direction we have periodic boundary conditions; at 
z = 0 and z = 1 we have rigid walls and no-slip boundary conditions. The size of the computational 
domain in terms of Lref

* is 2 × 1 × 1. This domain is discretized by 128 × 64 × 64 uniform mesh 
cells. A spherical bubble with diameter 0.25 is positioned in the domain with its center located at 
(0.5, 0.5, 0.5). The overall void fraction is about 0.4 %. Both, liquid and gas are initially at rest. 

To perform the simulations we must specify the reference quantities. We use Lref
* = 4 m, Uref

* = 
1 ms-1, g* = 9.81 ms-2. To determine the values of the reference Eötvös, Weber, and Reynolds 
number in the Navier-Stokes Eq. (18) we proceed as follows. Choosing a certain value for the 
density ratio and taking the values for Mo and EöB given above we successively compute 

2 0.25* * 2 2

* * *, ,
1

ref ref ref ref ref
ref B ref ref

B ref

L Eö U Eö We
Eö Eö We Re

d g L Moρ

   
= = =   − Γ   

 (20) 

In Table I we give these input values for the different density ratios considered in the present study. 
Additionally, we give the values of Weref and Reref for the asymptotic case Γρ → 0. 

 

  
Figure 1: Sketch of coordinate system and 
computational domain. 

Figure 2: Instantaneous bubble shape and 
velocity vectors in plane y = 0.5 for run A50. 
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Table I: Simulation parameters (∆t = time step, Nt = number of time steps computed). 

Run Γρ 1 / Γρ Eöref Weref Reref ∆t NT 
A2 0.5 2 49.05 2.5 100.00 0.0005 1,100
A5 0.2 5 49.05 1.5625 78.90 0.0003 1,800 
A10 0.1 10 49.05 1.3888 74.39 0.00015 3,200 
A50 0.02 50 49.05 1.2755 71.29 0.00003 13,000 

 0 ∞ 49.05 1.25 70.57   
B2 0.5 2 3,888 792.7 55.05 0.0005 5,000
B5 0.2 5 3,888 495.4 43.52 0.0001 17,000 
B10 0.1 10 3,888 440.4 41.03 0.0001 16,000 

 0 ∞ 3,888 396.3 38.93   

3.4. Bubble Reynolds number 

In Fig. 3 the time history of the vertical position of the bubble center-of-mass is shown for all 
simulations of series A and B. It is apparent that the density ratio affects how fast the bubble 
accelerates from rest towards its terminal velocity and also affects the specific value of the terminal 
velocity. This behavior can be explained by the added mass force [3]. Figure 4, however, shows that 
the terminal value of the bubble Reynolds number ReB is obviously unaffected by the density ratio. 
In case A the value of the terminal bubble Reynolds number is about 56. As shown in [3] this value 
is in good agreement with that of a correlation ReB = f (Mo,Eö) obtained from two-phase wave 
theory [13]. In case B ReB is about 6.5 and thus is about 16% smaller than in the experiment [12], 
where ReB = 7.77. We attribute the lower value in the simulation to the influence of the viscosity 
ratio which is here unity but in the experiment is estimated to be about 10-5. 

 

 
Figure 3: Time history of vertical position of 
bubble center-of-mass (xcom). 

Figure 4: Time history of bubble Reynolds 
number. 

 

3.5. Bubble shape 

Figure 2 shows a snapshot of the bubble shape for run A50. As expected the bubble is of oblate 
ellipsoidal shape. The steady bubble shape for run B2 is displayed in Figure 5. For a better 
visualization of the dimpled ellipsoidal shape only the back half of the bubble is shown. Figure 6 
shows the experimental bubble shape reproduced from [12]. Though in the simulation the density 
ratio is Γρ = 0.5 and in the experiment it is Γρ = 0.0008 the bubble shapes in Figs. 5 and 6 are quite 
similar. However, one can identify a small difference in curvature at the bottom of the bubble. 
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We now make a quantitative comparison of the bubble shape for the runs of case A and B. We 
consider that instant in time when the vertical position of the bubble center-of-mass is xcom = 1.5 and 
thus the bubble has moved four times its initial diameter. Note that this time level differs from run 
to run (see Fig. 3). In Table II we give the ratios of the bubble dimensions ax, ay, az for the different 
runs. We see that the influence of the density ratio on the bubble dimensions is surprisingly small. 
However, as Γρ decreases the values of ax/ay and ax/az slightly increase in case A and thus the 
bubble is less oblate. This is in agreement with the numerical findings of Ye et al. [1]. For case B 
the trend is opposite. The ratio of the horizontal dimensions ax/ay is always close to unity indicating 
that the bubble is axisymmetric. Note that in our 3D simulations on a Cartesian grid no assumption 
regarding axisymmetry is involved. In most cases the ratio ay/az is larger than 1 so that the bubble 
dimension in span-wise direction is slightly larger than in wall-normal direction. This indicates that 
the walls are not sufficiently far away to have any influence. Nevertheless, we conclude that neither 
in case A nor in case B the density ratio has any major influence on the bubble shape. 

Table II: Ratios of the bubble dimensions. 

  Case A Case B 
Γρ 1 / Γρ /x ya a /x za a /y za a  /x ya a  /x za a  /y za a  
0.5 2 0.648 0.659 1.017 0.538 0.556 1.033 
0.2 5 0.652 0.665 1.021 0.528 0.544 1.030 
0.1 10 0.658 0.669 1.016 0.528 0.543 1.029 
0.02 50 0.668 0.666 0.998 - - - 

  
Figure 5: Computed bubble shape for run B2 
(only the back half of the bubble is shown). 

Figure 6: Experimental bubble shape repro-
duced from [12]. 

 

3.6. Local velocity profiles 

We now compare local velocity profiles along a certain line within the flow domain. In Fig. 7 
the vertical velocity component u is shown as function of the vertical co-ordinate x for fixed span-
wise and wall-normal co-ordinates y = z = 0.492 for the runs of series A. Additionally, in Fig. 7 the 
profile of the liquid volumetric fraction is displayed to indicate the bubble position (f = 0). While 
the profiles of f almost collapse to a single curve, the profiles of u are similar, but do not collapse. 
The latter result is not really surprising since in all runs the velocity is normalized by the same value 
Uref

* = 1 ms-1. From the analysis in section 2 we expect similarity of the velocity field when it is 
scaled by the bubble rise velocity. In Fig. 8 we show the velocity profiles normalized by the bubble 
rise velocity of the respective run and indeed find that the profiles collapse to a single curve. 

In Fig. 9 the profiles of f and the scaled vertical velocity u/VB are shown along the wall-normal 
coordinate. This figure illustrates the internal circulation within the bubble. Inside the bubble at z = 
0.5 we can identify a small effect of the density ratio on the velocity profile. However, within the 
liquid phase the profiles again collapse to a single curve. This also holds for the wall-normal profile 
of the scaled wall-normal velocity u/VB at a position within the bubble wake, see Fig. 10. 
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Figure 7: Vertical profile of local instanta-
neous vertical velocity, u, and liquid volume 
fraction, f, for case A and y = z = 0.492. 

Figure 8: Vertical profile of normalized local 
instantaneous vertical velocity u/VB and liquid 
volume fraction, f, for case A and y = z = 0.492. 

 

Figure 9: Wall-normal profile of scaled 
vertical velocity, u/VB, and liquid volume 
fraction, f, for case A and x = 1.5, y = 0.492. 

Figure 10: Wall-normal profile of scaled wall-
normal velocity w/VB for case A and x = 1.242, 
y = 0.492 (bubble wake). 

 

 
Figure 11: Vertical profile of normalized 
local vertical velocity u/VB and liquid volume 
fraction, f, for case B and y = z = 0.492. 

Figure 12: Wall-normal profile of scaled vertical 
velocity, u/VB, and liquid volume fraction, f, for 
case B and x = 1.5, y = 0.492. 
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In Figs. 11 and 12, we show similar graphs as in Figs. 8 and 9 but for case B. Again we find that 
the scaled velocity profiles are independent of Γρ. However, the profiles for case A and B clearly 
differ. For case A, the value of u/VB at x = 0 and x = 2 in Fig. 8 is about 0.05. For case B this value 
is about 0.15, see Fig. 11. This value can be considered to give a measure on the influence of the 
periodic boundary conditions applied in vertical direction. The rather high value in case B indicates 
that the bubble already may experience the influence of the “leading” bubble. In case B the bubble’s 
center-of-mass lies - due to the dimpled ellipsoidal shape - within the liquid phase. As a 
consequence the wall-normal profile of the vertical velocity exhibits a local minimum, see Fig. 12. 

4. CONCLUSIONS 

In the present paper the influence of the gas-liquid density ratio (Γρ) on the buoyancy driven 
motion of a single bubble is investigated theoretically and numerically. Using the volume-of-fluid 
method for tracking the gas-liquid interface, two series of simulation series are performed for fixed 
values of the Morton number and the bubble Eötvös number and a unity viscosity ratio. Case A  
(Mo = 3.09·10-6, EöB = 3.06) corresponds to a liquid phase of intermediate viscosity while case B 
(Mo = 266, EöB = 243) corresponds to a very viscous liquid. In each simulation series various 
density ratios are considered, namely 0.5, 0.2, 0.1 and (only in case A) 0.02. After an initial 
transient, all simulations result in steady bubbles rising along a rectilinear path. In case A the bubble 
shape is oblate ellipsoidal, in case B it is of ellipsoidal-cap type. The results show that the density 
ratio has a notable influence on the initial acceleration of the bubble. Once the bubble reached its 
terminal velocity, however, the bubble shape and Reynolds number are virtually independent of the 
density ratio. This also holds for the local velocity field induced by the rising bubble within the 
liquid phase, when scaled by the bubble rise velocity. For case A a minor influence of the density 
ratio on the internal motion within the bubble is identified. We find the computed bubble shape of 
case B to be in good agreement with an experiment [12] performed for the same values of Mo and 
EöB but for a density ratio of 1/1300 and a viscosity ratio of about 10-5. 

At present the invariance of the density ratio for steady rising single bubbles is demonstrated 
only for the specific parameters of EöB, Mo, and Γµ given above. However, the simulations cover 
two orders of magnitude in the bubble Eötvös number, eight orders of magnitude in the Morton 
number and one order of magnitude in the bubble Reynolds number which is about 56 in case A and 
6.5 in case B. We therefore expect that for steady bubbles the influence of the density ratio is 
marginal in general. For such bubbles then rather universal relations for bubble Reynolds number 
and drag coefficient in terms of Mo and EöB should exist. Furthermore, the scaling of the bubble 
driven liquid motion suggests that rather universal models may be derived in terms of Mo and EöB 
also for the pseudo-turbulence induced by bubbles rising almost steadily in dilute gas-liquid flows. 
Finally, we conclude that for steady bubbles it is possible to perform computationally efficient 
direct simulations with density ratio of order 0.1 while the results can be transferred to gas-liquid 
systems with density ratio of order 0.001. 

It would be interesting to verify the invariance of the density ratio experimentally. This requires 
measurements with at least two sets of different gas-liquid or liquid-liquid systems which have the 
same Morton number but a different density ratio. If the Morton number of both systems is the 
same, then similarity of the Eötvös number can be ensured by properly setting the bubble diameters. 

 
NOMENCLATURE 

ai interfacial area concentration  Γµ gas-liquid viscosity ratio 
ax, ay, az bubble dimensions  Γρ gas-liquid density ratio 
dB bubble diameter  κ interface curvature 
Eö Eötvös number  µ dynamic viscosity 
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f liquid volumetric fraction  ρ density 
g gravity  σ coefficient of surface tension 
Lref reference length  Superscripts 
Mo Morton number  * dimensional variable 
n unit normal vector  ′ coordinate system in moving frame  
p pressure   of reference 
Re Reynolds number  Subscripts 
t time  B bubble 
VB, VB bubble velocity  c continuous phase (liquid) 
Uref reference velocity  com center-of-mass 
u, w velocity vectors  d disperse phase (gas) 
u, v, w velocity components  i interface 
We Weber number  m mixture value 
x, z position vectors  ref reference value 
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