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names or addresses. In the latter Figure 1: The MS-TDNN recognizing t
ries the search space can be constrained to vword ‘B’ Only the activations for
arge dictionary of words or nanes. Constraints can are shown.
becone effective within the search process as n- grans
orinafullyconstrained search. They also can be used
to pstpraess the recognized hypotheses by nmapping classifier. Figure 1s
themonto legal strings, or by finding the hi ghest rank- of recognizing

ing legal hypothesis in ann-best list. In this paper, w
will denpnstrate our letter recognizer and the effects
of various language nmodels and search techni ques on

the task of spelled nane recognition. Related work on
isolated letters was reported by Cole et. al.[2].
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The Multi-Sate Tme Iday Nrd Nwoik
(MIXY [ 3, 5] integrates the tine-shift invariant

architecture of a TDNN and a nonlinear time align-

nent procedure (DIW into a hi ghaccuracy word-1evel
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e “Tel ephone Directory” used toconstrainthe search
space contained 111,882 entries, with a total of 32, 267
uni que l ast nanes. After accounting for multiple pro-
nunciation alternatives of sone letters, the final list
of nanes contained 43,181 strings, referred to as the
string set S ={s1,83 ... }. The recognizer was trained
with 8, 133 strings (55,449 letters) spelled by 70 speak-
ers. 'The test set consists of 1,316 strings € S (8, 66]
letters) spelled by 23 additional speakers. S
were sanpl ed at 16 kHz wi th a Sennhei
m crophone. Except for th
sane test setup was u
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the n-best list. For
&% Saturation occurs at a

string acaracy, as show in figwe 2.
(60.7%, the first-best choice matches an ertry i

list. About 5%of these first-best choices are incorrect.

In 5.1%of all cases, mone of the n hypotheses has a
mtch in the dictionary. & expected, the percentage
of msrecogritions increases as the first match occurs
further down the n-best list. Mre detailed statistics
are shom intable 3.
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Figure 5: To p: Conventional DIWsearch techni que.
The matrix contains the prohibitive anount of 57,713
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