
How efficient is the ASO algorithm? The total computa-
tional effort for both optimization and training is always
greater than the effort for training of a known optimal
handtuned architecture. This is not surprising because in
this comparison it is assumed that the optimal handtuned
architecture is already known, which hardly ever is true.
How many training runs does an experienced engineer
need to find an equivalent architecture? Observations of
colleagues suggest that the number of trials can grow as
large as 50, even if the training runs need several days of
computation time1. Such a high number of trials is only
feasible in a research environment and not in a develop-
ment environment. If we assume that a well-trained engi-
neer needs 5 trials to develop a good architecture and that
each trial requires the same computational effort as the
best architecture, then the comparison strongly favors the
ASO algorithm (see Table 3).

5. CONCLUSIONS

The results with the ASO algorithm suggest that the algo-
rithm can construct efficient architectures in a single train-
ing run that achieve comparable or better recognition
accuracies than manually tuned architectures (see also [1],
[2], and[3]). In particular, it has been shown that

• The computational efficiency of the ASO algorithm
compares favorably with the computational effort
of manual tuning under realistic assumptions. The
high optimization efficiency is possible because the
allocation of resources starts as early as possible.

• The performance in all tested applications (two on-
line handwriting recognition tasks and two speech

1. The MS-TDNN system that was used for performance com-
parison was probably trained more than 50 times. However, no
detailed records are available.

TABLE 3. The relative computational effort for the
optimization by the ASO algorithm and training
compared to training of a handtuned architecture
assuming that 5 trials are needed by the human
developer to develop an equivalent architecture.

Task Relative compu-
tational effort of
ASO optimiza-

tion/training

single on-line handwritten digits 29.2%

single on-line handwritten capital let-
ters

27.6%

segmented spoken alphabet recognition 26.4%

connected spoken alphabet recognition 24.6%

recognition tasks, see [3]) was comparable or better
than the performance of handtuned architectures.

• The ASO algorithm can be used for systems from
~5,000 trainable parameters to systems with
~20,000 trainable parameters. The ASO algorithm
should scale well for even larger systems.

The results obtained with the ASO algorithm suggest that
automatic optimization algorithms on top of todays speech
recognizers can make speech technology easily adaptable
to new, customized domains. Automatic optimization
algorithms can make the already complex speech technol-
ogy (that is likely to become even more complex) trans-
parent to developers of software that includes speech
recognition asone feature. If software developers start
including speech recognition in their products, there is a
chance that end users get introduced and used to this excit-
ing new input modality. The same applies to other new
input modalities like on-line handwriting, gesture recogni-
tion, or lipreading.

ACKNOWLEDGMENTS

This research was partly funded by grant 413-4001-01IV101S3
from the German Ministry of Science and Technology (BMFT)
as a part of the VERBMOBIL project and by a grant from
Landesschwerpunktprogramm Neuroinformatik of Baden Wür-
temberg, Germany. The views and conclusions contained in this
document are those of the authors. The authors would like to
thank A. Waibel, S. Fahlman, S. Manke, and M. Finke for helpful
comments.

REFERENCES

[1] Bodenhausen, U. and Manke, S. Connectionist Architectural
Learning for High Performance Character and Speech Recog-
nition. In:Proceedings ICASSP-93, Minneapolis, April 1993.

[2] Bodenhausen, U., and Waibel, A. Tuning By Doing: Flexibil-
ity Through Automatic Structure Optimization In: Proceed-
ings Eurospeech 93, Berlin, September 1993

[3] Bodenhausen, U. Automatic Structuring of Neural Networks
for Spatio-Temporal Real-World Applications, Doctoral The-
sis, University of Karlsruhe, 1994

[4] Chen, E. C., and Lippmann, R. P. A Boundary Hunting Radial
Basis Function Classifier Which Allocates Centers Construc-
tively. In: Advances in Neural Information Processing Sys-
tems 5,1993

[5] Haffner, P., Franzini, M., and Waibel, A. Integrating Time
Alignment and Neural Networks for High Performance Con-
tinuous Speech Recognition. InProceedings of the ICASSP-
91.

[6] Hild, H., and Waibel, A., Connected Letter recognition with a
Multi-State Time Delay Neural Network, Neural Information
Processing Systems 5, 1993

[7] Lee, K. F. Speech Recognition for Pesonal Computing In:
Proceedings 1993 IEEEWorkshop on Automatic Speech Rec-
ognition Snowbird, Utah, USA, December 1993

[8] Wilpon, J. G. Applications of Speech Recognition Technol-
ogy in Telecommunications In: Proceedings 1993 IEEE
Workshop on Automatic Speech Recognition Snowbird, Utah,
USA, December 1993

Both systems were trained with standard Back-Propaga-
tion and were validated and tested with exactly the same
data sets. The results are summarized in Table 1. The man-
ually tuned MS-TDNN system performs comparably
(97.5% vs. 97.4%) as the MS-TDNN/ASO system. The
small difference between these two results is surprising
given the fact that 1.) no phoneme labels were used, 2.) a
simpler duration control was used and 3.) the great amount
of manual tuning that was applied to the other system over
several years.

4. SCALING OF ASO DEPENDING ON
THE SIZE OF THE SYSTEM

The ASO algorithm was developed and tested with classi-
fication tasks with 10 (on-line handwritten digits) to 27
classes (connected spoken letter recognition) so far. The
smallest system (for on-line handwritten digits) was ini-
tialized with 10 state units (one state unit for each digit),
no hidden units and an input window of one frame, each
consisting of 8 features. This makes a total of ((8 * 10) +
10) = 90 independently trainable weights for the initial
architecture1. After optimization of the architecture, the
average architecture had an average number of 2.6 states
per digit, 3.4 hidden units and a window width of 13.2 for
the direct weights from the input to the state units, a width
of 8.7 for the windows from the input to the state units,
and an average width of 7.8 for the weights from the hid-
den units to the state units. The average number of inde-
pendently trainable parameters was 3956 in 10 different
optimization runs. This was the smallest problem that the
ASO algorithm was applied to so far.

1. The bias weights are left out in this comparison for simplicity.

TABLE 1. Performance comparisons on the connected
spoken alphabet recognition task (500 training
sentences, 100 validation sentences, and 400 test
sentences) under comparable conditions.

System description %Word
accuracy

Manually tuned MS-TDNN, trained with pho-
neme labels, handtuned number of states per

phoneme, number of hidden units and window
sizes, Gaussian modeling of duration con-

straints

97.5%

MS-TDNN optimized by ASO, trained with
letter labels only, automatic optimization of

the number of states per letter, number of hid-
den units and window sizes, simple duration

control

97.4%

When the ASO algorithm was applied to the connected
spoken letter recognition task with 27 classes (26 letters
plus silence), the system was again initialized with one
state per letter, no hidden units and input windows of one
frame, each consisting of 16 features (spectral coeffi-
cients). This makes a total of ((27 * 16) + 27) = 459 inde-
pendently trainable connections. In an average of five
optimization runs, the ASO algorithm constructed net-
works from 17,000 connections to 26,000 connections,
with an average of 19,231 connections. This was the larg-
est problem that the ASO algorithm was applied to so far.

In all applications tested with ASO so far, the generaliza-
tion performance was comparable or better than the per-
formance of a handtuned system [3].

4.1 Computational Efficiency of ASO

For an evaluation of the efficiency of the ASO algorithm it
is necessary to compare the total computational effort for
both optimization of the architecture and the training of
the weights with the effort for training of an already hand-
tuned architecture. This comparison can only be based on
the total computation time on a certain machine. Table 2
shows the relative computational effort for four tasks
including the connected letter recognition task from the
last section. The handtuned architecture is assumed to be
known and the computational effort for training of this
architecture is set to 100%. The relative computational
effort varies from 146% for the classification of single on-
line handwritten digits to 122% for the connected spoken
letter recognition task described in the last section. Fortu-
nately, the relative computational effort is high (146%) for
the smallest task and lower (123%) for the largest task.

TABLE 2. The relative computational effort for the
optimization by the ASO algorithm and training
compared to training of a handtuned architecture. The
effort for the handtuned architecture (assumed to be
known in advance) is set to 100%

Task # Experi-
ments

Relative compu-
tational effort of
ASO optimiza-

tion/training

single on-line handwritten
digits

10 146%

single on-line handwritten
capital letters

5 138%

segmented spoken alphabet
recognition

10 132%

connected spoken alphabet
recognition

5 123%

2. THE AUTOMATIC STRUCTURE
OPTIMIZATION ALGORITHM (ASO)

For the application of neural networks to speech recogni-
tion all of the following architectural parameters have to
be well adapted to the task and the given amount of train-
ing data (see Fig. 1):

• the number of hidden units,

• the size of input windows and

• the number of states that model an acoustic event.

The Automatic Structure Optimization (ASO) algorithm
([1], [2], [3]) automatically adaptsall of these architec-
tural parameters to the given task and amount of training
data. The algorithm uses a constructive approach to opti-
mize the architecture of the system for best possible gener-
alization performance for the task and the amount of
training data. The ASO algorithm uses the following tun-
ing strategies:

• The confusion matrix on the training data is evalu-
ated to selectively improve certain parts of the neu-
ral network.

• The number of states is increased if the acoustic
modeling is too complex for the given number of
states.

• Hidden units are allocated to specifically solve pair-
wise confusions (class “A” is confused with class
“B” and vice versa) which are caused by inadequate
decision boundaries. The approach is similar to the
Boundary Hunting Radial Basis Function classifier
[4], but it allocates hidden units with sigmoid acti-
vation functions instead of radial basis functions.

Unlike the human developer, the ASO algorithm starts
making decisions about resource allocations very early in
the training run, i.e. it is tuning the architecture while the
network is learning the task (“tuning by doing”). This
allows the algorithm to complete the optimization process
in a single training run.

3. RECOGNITION PERFORMANCE
WITH ASO

The ASO algorithm was applied to a speaker dependent
connected letter recognition task1. Letter recognition is not
considered a typical customized application, but the task
provides a good test for speech recognition systems
because of the high confusability of spoken letters. In
addition, good manually tuned systems exist for perfor-
mance comparison. The ASO system was compared with a
system developed by Haffner and Hild for the same data-
base [5], [6]. Some of the recent improvements like sen-
tence level training were switched off to allow for
comparable experimental conditions2. However, some dif-
ferences between the systems remain:

• The handtuned MS-TDNN was trained with labels
for phonemes. In practical customized applications
of the ASO algorithms these labels are unknown
and the user should not be required to label the data.
Thus, the ASO algorithm was used without these
phoneme labels in order to investigate its perfor-
mance under realistic conditions.

• The handtuned MS-TDNN used a better duration
control based on Gaussian modeling of letter/pho-
neme durations [6]. This improved duration model-
ing was not included in the ASO system.

1. For applications to other tasks and performance measure-
ments, see [1], [2], and [3].

2. The performance of Hermann Hild’s MS-TDNN system with
sentence level training is 98.5% on the test set (speaker MJMT).

Fig. 1: Overview of the speech recognizer (Multi-
State Time Delay Neural Network [MSTDNN] which
combines a Time Delay Neural Network [TDNN]
with Dynamic Time Warping [DTW]) and the relevant
architectural parameters for the optimization process:
1.) How much temporal context is needed from spec-
trogram? 2.) How many hidden units are necessary for
the mapping? 3.) How many states are necessary for
the sequential modeling?

how much temporal context
from the spectrogram?

how
many
hidden
units?

how
many
states
for the
sequenti
al model-
ing?

TDNN

spectrogram

time

MSTDNN

DTW

ABSTRACT

The successful application of speech recognition systems
to new domains greatly depends on the tuning of the archi-
tecture to the new task, especially if the amount of training
data is small. For example, the application of Multi-Layer
Perceptrons (MLPs) to speech recognition requires the
optimization of the number of hidden units, the size of the
input windows over time and the number of states that
model an acoustic event. Previously, we have proposed the
Automatic Structure Optimization algorithm (ASO) that
optimizes all of the above architectural parameters auto-
matically. In this paper we 1.) present results for the suc-
cesful application of the ASO algorithm to connected
spoken letter recognition, 2.) show the suitability of the
algorithm for various sizes of the system and 3.) analyze
the computational efficiency of the automatic optimization
process for four different tasks.

1. INTRODUCTION

Despite the aim to develop a general purpose, speaker
independent, very large vocabulary, spontaneous speech
recognizer there is a considerable number of applications
that require the best possible performance on small, well
defined, and customized domains. For these applications,
manual tuning of the architecture (for example optimiza-
tion of the number of states, the number of hidden units
and the width of the input windows of a neural network) is
too costly and not tolerable because each application
requires its own optimization. Many of todays speech rec-
ognition systems are very powerful, but the complexity of
these systems is such that these systems are far from being
intuitive and easy to use for the developer. In general it is
not possible to develop applications on top of the technol-
ogy without understanding the underlying speech algo-
rithms. This makes quick prototyping impossible, which is
very important for the creation of new products and ser-
vices [7], [8]. Developers of software thatincludes speech

recognition should not be required to invest months or
years in an understanding of details of speech recognition
technology or in the tuning of these systems.

The current situation of speech technology is rather pecu-
liar: Complex systems have been developed, but the final
user is demanding even more general systems (with a
much larger vocabulary, even higher word accuracy and
less restrictions concerning speaking style) and developers
of customized applications are demanding simpler systems
that are much easier adaptable to small domains and allow
quicker prototyping. The result is that end users do not
accept the current off-the-shelf general purpose systems
and that developers of customized applications do not dare
to include speech recognition into their products.

How can this situation be improved? Further development
of general purpose systems demands a considerable effort
and expertise in research (acoustics, search, language, ...)
as well as the availability of considerable computational
resources. It is important to pursue these developments
because the current results suggest that real general pur-
pose speech recognition will actually be possible in the
future. In the meantime it is important to make end users
accustomed to this new technology, both to its advantages
and peculiarities. This can be done by small, customized
applications or applications where speech is not the pri-
mary input modality. This paper

• summarizes the development of an automatic opti-
mization algorithm on top of state-of-the-art speech
technology which make this technology easily
usable for developers of customized applications;

• presents results from the successful application of
this algorithm to connected letter recognition;

• discusses the suitability of the algorithm depending
on the size of the system;

• presents an empirical analysis of the computational
efficiency of the automatic optimization process for
several tasks compared to manual tuning.

AUTOMATIC CONSTRUCTION OF NEURAL NETWORKS FOR SPECIAL
PURPOSE SPEECH RECOGNITION SYSTEMS

Ulrich Bodenhausen and Hermann Hild

Interactive Systems Laboratories, University of Karlsruhe,

Computer Science Department, ILKD, 76131 Karlsruhe, Germany

