
Universität Karlsruhe
Institut für Mikrorechner und Automation
Prof. Dr.rer.nat. U. Brinkschulte
Dipl. Inform M. Siormanolakis
Dipl. Inform. H. Vogelsang

Haid-und-Neu-Str. 7
76131 Karlsruhe

brinks@ira.uka.de
sior@ira.uka.de

vogelsang@ira.uka.de

Man-Machine-Service

1 Overview

The main task of any man-machine-service MMS is to inform a human user of a system’s state and
to enable modifications of this state. Due to the fact that man can perceive and handle information
fastest in a visual way this is the best channel to inform about complex system states. The optical
channel is also a good choice to support human interaction. This is achieved in feeding back the
user’s actions. A MMS has to provide two services:

� the visualization of structured information

� the supported modification of structured information

Based upon these services any communication between user and machine can be realized. The fol-
lowing picture shows the flow of information from the structured data to the graphical display and
reverse.

structured
data

tools
database

MMS

images of
structured

data
(symbols) graphical

in-/
output

Man-Machine-Service

2 Symbols

A symbol is a graphical representation of a structured data-type. The user can define symbols very
flexible with a tool called “Symbol-Editor”. The defined symbols are stored in a configuration
database for the usage with the application. Symbols can be defined hierarchicaly — a symbol can
contain other symbols or base-symbols. Changing a value of a data-type connected to a symbol leads
to a different graphical representation. Changing the graphical representation (e.g. the user moves a
symbol interactive) leads to a different data-type value. The relations between data-type values and
the resulting images can be defined. This relation is either discrete or continuous where we provide
linear or logarithmic functions. Possible graphical modifications of symbols and base symbols are:

position: move a symbol or a part of it

scale: scale a symbol or a part of it

orientation: rotate a symbol or a part of it

visibility: show/hide a symbol or a part of it

Base symbols have additional attributes likelinecolor, linetype, fillpattern , . . . which can be modi-
fied. These attributes depend on the type of the base symbol — a line has two specific points defining
it, a polygon hasn characteristic points. One data-type value can act on many of these modifications
simultaneously.

2.1 Examples

We want to visualize a signal light with a motor-off-sign. The structured data is a record of an
enumeration and a boolean type. One for representing the state of the signal light and one for the
motor-off-sign. We create a base representation for this symbol which isn’t changed by our values.
Additional we define the images which represent our values. The values simply modify the visibility
of the value representations. The following picture shows the images and representations we defined
and the resulting images we get dependent on the state values.

Motor
off

base
representation

value
representations

values stop goattention

true falsevalues

Man-Machine-Service

Motor
off

Motor
off

Motor
off

Motor
off

values

resulting
images

stop
true

stop
false

attention
false

go
false

Two more examples for the possibilities of defining symbols for data-visualization follow:

� The value of the user’s data-type is represented by a slider and a bargraph which are moved
respectively scaled linear.

� A sequence of values ist represented in a histogram.

structured data type: INTEGER
range: 0 ... 100
value: 38

resulting image:
0 10050

structured data type: INTEGER
range: 0 ... 100
value sequence: 10, 20, 40, 50, 20

resulting image:

0

50

3 Special Symbols

Normal symbols can be used to visualize a big amount of user-defined data-types, but they aren’t
powerful enough to handle complex structured objects. Therefore a new type of symbol — the
presentation-object — is introduced to offer the developer the facility to group symbols together,
creating images of complex data-types. There are different types of presentation-objects predefined:

� A Picture is a set of symbols as an image of a set of objects of the application. There are no
restrictions for the object-types.

� A Menu is an image for a variable of an enumeration type, each button shows a selectable
value. Nearly any kind of symbol can be used as a button.

Man-Machine-Service

Color Selection

� A Mask is an image for an object: Modifyable components of the object can be changed by the
manipulation of the corresponding symbols (sliders, buttons, textfields,. . .)

Coordinate

Color:

X-Pos: 20

OK Abort

Blue

Y-Pos: 9

Width: 66

Height: 42

Color

Yellow

Green

Blue

White

Red

� A Table is an image of an array of objects.

Color X-Pos

20

OK Abort

Black

Y-Pos Width HeightIndex

9 66 421

Coordinates

40Blue 66 422

25White 66 423

80Green 66 424

45Black 66 425

20Black 66 426

17

10

34

80

10

Search

Presentation-objects can be build automaticly by the service if the type of the corresponding object
is known. Because every presentation-object is derived from the same common class, they share the
same (small) set of operations.
Based on thePicturethere are two higher-level presentation-objects, which are usefull in many ap-
plication:

Man-Machine-Service

� Hierarchical graphs as an image of objects with relations and

� Textdocuments, consisting of symbols representing text and other graphical images.

4 Planes — Windows

All symbols are arranged and positioned inplanes. Each plane defines a unit of measurement re-
spectively a scale. One symbol can only be assigned to one plane. A plane allows the grouping of
symbols.
The user can define rectangular areas on the screen. We call such areaswindows. Windows can
superpose each other and the sequence in the window stack can be changed.
Planes with all their symbols can be displayed in windows. A window can hold multiple planes
simultaneously and a plane can be displayed with different scales in multiple windows. Each window
holds a stack of the assigned planes and their scales. The stack sequence can be changed. The
following picture shows an example with three planes displayed in one window.

341

339

340

Productioncell: Overview

341

339

340

PDC

Insert

Details

Start/Stop

Counter

Pieces

Display

PDC

Insert

Details

Start/Stop

Counter

Pieces

Display

5 Bindings

It is possible to createbindingsbetween symbol-events and operations or between events on presen-
tation-objects and operations. The main ideas behind this are:

Man-Machine-Service

� Several internal operations of the man-machine-service can be bound to events, so that typical
interactions can be created by the gui-tool (see below) without writing any line of code.

� Presentation-objects can be bound together to create hierarchical menus, masks and tables.

� User-defined operations can be bound to events to create callback functions. An application is
able to catch an event using this technique.

6 Graphical User Interface

The graphical user interface is a group of presentation-objects and windows, which are needed at the
same point of time to solve a given task. It is placed in a database to seperate the application from
the gui. This allows the reuse of the entire gui or parts of it in other applications and the on-line
modification of the gui through the application itself.
Any number of gui’s can be used at the same time simultaneously.

7 Tools

The presented approach for a man-machine-interface requires tools to allow an interactive and com-
fortable way to create symbols and gui’s.

� The symbol-editor is an interactive tool, which enables the user to construct symbols as an
image of predefined data-types. Furthermore: It makes it possible to describe the kind of
relation between the image and the data-type (proportional display, text display of a value,
range of values, . . .).

� The gui-editor is used to build graphical user interfaces as a set of presentation-objects and
windows. A library-management simplifys the reuse of prior constructed objects.

8 Summary

The following picture shows the component structure of the entire man-machine-service. The features
of the system are appended.

Man-Machine-Service

Man-Machine basic service

Symbol Window Plane Event

Presentation object

Menu Mask TableSymbol Picture

Bindings layer

Binding Event

High-level presentation object

Textdocument Graph

Helpsystem

Graphical user interface layer

� Plattform independence

Several systems are already supported: X11 (Sparc, Linux-386, Mips), DOS, Windows 3.11

� Resolution independence by planes

Symbols are arranged in planes, using a resolution independend coordinate system.

� Symbols

Complex symbol-types make it easy to handle state display and manipulation. The construction
of presentation-objects as groups of symbols is possible.

� Tools and editor services

The use of the symbol-editor and gui-editor enables the user to create complex symbol-types
and user-interfaces. These editors are also available as services to be used inside an application.

� Separation of gui and application

Gui’s are stored in a database to ensure reusability.

� Client/Server-Concept

Distributed operation in heterogeneous systems: With a given communication plattform it is
possible to place the service on different hardware systems independent of the functional spec-
ification of the given task.

� Recording and playing of sounds

