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Zusammenfassung

Das Multiplenproblem

Multiple Reflexionen in der Seismik sind ein bestens bekanntes Problem, da sie im Seis-

mogramm einen Typ von Signalen darstellen, der durch seine starke Energie andere Sig-

nalanteile, die Prim¨arreflexionen, ¨uberlagert und oft zum Verschwinden bringt. Trotzdem

ist dieses Problem bis heute nicht zufriedenstellend gel¨ost, und die Erd¨olindustrie unter-

nimmt große Anstrengungen, um Verfahren zu entwickeln, die wenigstens bei bestimmten

geologischen Gegebenheiten ein verbessertes Abbild des Untergrundes erzeugen k¨onnen.

Eine Primärreflexion ist definitionsgem¨aß die Antwort auf eine Wellenfront, die nach nur

einmaliger Reflexion an einer Inhomogenit¨at registriert wird. Die Wellenausbreitung wird

in diesem Zusammenhang im allgemeinen Fall durch die elastodynamische, inhomogene,

anisotrope Wellengleichung (Aki and Richards, 1980) mit bestimmten Randbedingungen

beschrieben:

(cijkl uk;l);j +fi = %�ui; i = 1; 2; 3; (1)

wobeiuk die Komponenten des Verschiebungsvektors darstellen;();j ist die räumliche

Ableitung in j-Richtung,uk;l ist die räumliche Ableitung derk-ten Komponente vonu

in l-Richtung (Summenkonvention),�ui ist die zweite Ableitung deri-ten Komponente

nach der Zeit.cijkl sind die Komponenten des Elastizit¨atstensors,f die Quellfunktion

und % die Dichte des Mediums. Eine multiple Reflexion ist demnach die Antwort auf

eine Wellenfront, die mehrmals an Diskontinuitten reflektiert wurde, bevor sie von einem

Empfänger aufgezeichnet wird.

Heutzutage wird der Großteil derÖl- und Gasvorr¨ate vor den K¨usten und in den konti-

nentalen Schelfgebieten im relativ flachen Wasser (50 m - 300 m) entdeckt und gef¨ordert.
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Allerdings geht der Trend zur Ressourcengewinnung in tieferem Wasser, da eine aus-

gereifte Technik das erlaubt, und die fortschreitende Ausbeutung in anderen Gebieten

dies notwendig macht. Bevor jedoch ein ¨ol- oder gasproduzierendes Bohrloch abge-

teuft werden kann, m¨ussen Geophysiker ein Abbild der physikalischen Eigenschaften

(Gesteinspor¨ositäten und -permeabilit¨aten) des Untergrundes liefern, das anzeigt, wo ein

Reservoir erwartet werden kann.

In der marinen Exploration stossen wir oft auf das Problem, daß sich das Meer wie ein

Abb. 1: Das Multiplenproblem: Eine

Welle, die von einer Quelle zu den

Empfängern propagiert, wird entweder

nur einmal gestreut - das sind die

Primärreflexionen, deren Laufwege mit

einer durchgezogenen Linie dargestellt

sind, oder es kommt zu Mehrfachre-

flexionen an den Schichtgrenzen. Die

Laufwege dieser Multiplen sind als

gestrichelte Linien dargestellt. Fr

isotrope Medien sind die Strahlen auf der

propagierenden Wellenfront senkrecht

stehende Trajektorien.

Wellenleiter verh¨alt (Backus, 1959), in dem

die seismischen Wellen mehrfach zwischen

der Meeresoberfl¨ache und dem Meeresbo-

den hin- und herreflektiert werden (siehe

Abb. 1). Dies liegt daran, daß die Wasser-

oberfläche ein Reflektor mit sehr hohem

Impedanzkontrast ist, an dem ein sehr großer

Teil der Wellenenergie wieder nach unten

zurückreflektiert wird, und auch der Meeres-

boden oft einen relativ starken Impedanzkon-

trast aufweist. Wellen, die durch den Meeres-

grund transmittiert werden, k¨onnen dann

auch zwischen tieferen Schichtgrenzen rever-

berieren. Diese Art von Multiplen bezeichnet

man als interne Multiple, wohingegen Multi-

ple, die mindestens einmal von der Wasser-

oberfläche nach unten reflektiert wurden als

Freie-Oberflächen-Multiplen bezeichnet wer-

den. Generell wird auch unterschieden zwi-

schen Multiplen 1. Ordnung, 2. Ordnung,

usw., wobei die Ordnung die Anzahl der

Rückstreuungen der Welle von einer Diskon-

tinuität nach unten angibt (siehe Abb. 2,

rechts). Die Energie dieser internen Multiplen und besonders der Wasserreverberationen
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kann so stark werden, daß Prim¨arreflexionen von tieferen Reflektoren, auch von Schicht-

grenzen, die potentiellëOl- und/oder Gasfallen darstellen, komplett verdeckt werden, was

zu falschen Interpretationen der Messungen f¨uhren kann.

Abb. 2: Links: Kurzperiodische Multiple. Wellenanteile, die zwischen Schichtgrenzen
hin- und herreflektiert werden, deren Abstand gr¨oßer ist als eine Wellenl¨ange, werden
als Störsignal betrachtet. Die kleinskaligen Reverberationen zwischen d¨unnen Schichten
dagegen sind f¨ur das Entstehen der Prim¨arreflexionen verantwortlich. Rechts: Die ver-
schiedenen Arten von multiplen Reflexionen: 1) Multiplen der freien Oberfl¨ache, wie z.B.
Wasserreverberationen (links), Peglegmultiple (mitte), und 2) interne Multiple (rechts).

Um einen gew¨unschten Reflektor, der unter Umst¨anden eine Lagerst¨atte anzeigen

könnte, richtig zu lokalisieren, m¨ussen diese interferierenden Multiplen unterdr¨uckt wer-

den, oder, da dies nur selten vollst¨andig möglich ist, zumindest abgeschw¨acht werden.

Ein wichtiger Punkt hierbei ist jedoch, daß das Prim¨arsignal nicht besch¨adigt oder gar

mitunterdrückt wird. Das wird zu einer Herausforderung, wenn Multiple und Prim¨are

direkt interferieren, also an s¨amtlichen Empf¨angern etwa zur selben Zeit ankommen, d.h.

ihre Laufzeitkurven weisen ¨uber die ganze Empf¨angerauslage hinweg nur wenig Abwei-

chung voneinander auf. Dann ist es oft schwer zu entscheiden, ob ein Prim¨arsignal oder

ein multiples St¨orsignal vorliegt, oder einëUberlagerung von beiden.

Im Falle von Multiplen spielt jedoch die Skala, in der diese auftreten, eine große

Rolle. Wir wollen nichtalle Arten von Multiplen unterdr¨ucken: Es gibt Multiple, die

als Störsignal betrachtet werden, aber ebenso gibt es “gutartige” Multiple. Als st¨orend

gelten langperiodische Multiple. Das sind diejenigen Multiplen, die zwischen Material-

diskontinuitäten hin- und herreflektiert werden, deren Abstand gr¨oßer als eine Wellenl¨ange

ist. Die gutartigen Multiplen hingegen sind diejenigen, ohne die gar kein Prim¨arsignal an
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der Oberfläche ankommen w¨urde. Diese Multiplenart ist extrem kurzperiodisch und re-

verberiert zwischen d¨unngeschichteten Strukturen, aus denen im Prinzip jeder, f¨ur die

Erdölexploration interessante, sediment¨are, geologische Untergrund aufgebaut ist (siehe

Abb. 2, links). Die nach oben zur¨uckgestreuten Wellenfelder vieler dieser kleinskali-

gen Reverberationen summieren sich koh¨arent auf. Dadurch wird durch konstruktive

Interferenz gen¨ugend Energie gesammelt und wieder nach oben zur¨uckreflektiert, um an

der Oberfläche registriert werden zu k¨onnen (Shapiro and Hubral, 1999; O’Doherty and

Anstey, 1971).

In geophysikalischen Darstellungen werden Laufwege von Wellen oft als Strahlen

dargestellt. Diese Strahlen stehen fr isotrope Medien senkrecht auf der jeweiligen Wellen-

front der sich ausbreitenden Elementarwelle. Das legt nahe, daß das Problem der Tren-

nung von Prim¨ar- und multiplen Reflexionen mit Methoden aus der geometrischen Optik

angegangen wird und formell mit Hilfe der Wellentheorie beschrieben werden kann.

Die Ausbreitung von Wellen in elastischen, inhomogenen, anisotropen Medien wird

durch die elastodynamische Wellengleichung (Gleichung 1) beschrieben. Ist der Quell-

term f in dieser Gleichung eine zeitliche und r¨aumliche Impulsfunktion, dann ist die

Lösung eine spezielle Funktion, die Green’sche Funktion, die auch als Impulsantwort-

funktion oderÜbertragungsfunktion bezeichnet wird. F¨ur Probleme mit konstanten Ko-

effizienten kann ein analytischer Ausdruck f¨ur die Green’sche Funktion fr isotrope, ho-

mogene Medien gefunden werden. Im allgemeinen Fall ist dies allerdings nicht m¨oglich,

und die Green’sche Funktion kann nur n¨aherungsweise bestimmt werden, zum Beispiel

mit Hilfe der Strahlentheorie.

Eine Welle, die sich durch ein inhomogenes Medium ausbreitet, wird an Streuzen-

tren gestreut und erzeugt ein gestreutes Wellenfeld. Wird das Wellenfeld nur einmal

zwischen Quelle und Empf¨anger gestreut (oder wie oben erw¨ahnt mehrfach zwischen

dünnen Schichten), wird dieser Teil des Wellenfeldes als Prim¨aranteil bezeichnet. Sobald

das Wellenfeld aber von einem zweiten Streuzentrum gestreut wird, das weiter als eine

Wellenlänge entfernt ist, geh¨ort es zum multiplen Wellenfeld. Das Problem, das prim¨are

vom multiplen Wellenfeld zu trennen, l¨auft letztendlich auf die Aufspaltung der Green’-

schen Funktion hinaus, die die Wellengleichung (Gleichung 1) f¨ur eine impulsförmige

Anregungsfunktion l¨ost. Dabei wird die Greensche Funktion in einen Anteil f¨ur das

primäre WellenfeldGP , einen Anteil für das multiple WellenfeldGM , und einen Anteil
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GR für den Teil des Wellenfelds, der weder dem prim¨aren noch dem multiplen Energiean-

teil zugeordnet werden kann, aufgespalten:

G = GP +GM +GR: (2)

Die Green’sche Funktion f¨ur das multiple WellenfeldGM kann noch weiter aufgespalten

werden in Green’sche Funktionen der Teilwellenfelder von Multiplen der freien Ober-

fläche und internen Multiplen:

GM = GF +GI ; (3)

wobeiGF für den Teil der Green’schen Funktion f¨ur die Multiplen der freien Oberfl¨ache

steht, undGI die Green’sche Funktion f¨ur die internen Multiplen darstellt. Nat¨urlich

ist diese Trennung der Green’schen Funktion in verschiedene Anteile auf analytischem

Wege nur in besonderen F¨allen mit einfacher Geometrie, konstanten Koeffizienten, und

in homogenen, isotropen und unbeschrnkten Medien m¨oglich.

Im ersten Kapitel werden sieben bestehende Ans¨atze zur Lösung des Problems der

Heraustrennung spezieller multipler Streuanteile im Wellenfeld beschrieben. Alle diese

Methoden haben eines gemeinsam: Sie funktionieren nur in Spezialf¨allen. Die Grundlage

jeder dieser Methoden ist ein physikalisches Modell, das in der Realit¨at nur begrenzte

Gültigkeit besitzt. Diese h¨angt von der Geometrie im Untergrund, den Messparametern

und den elastischen Eigenschaften des Mediums ab. Nimmt man das physikalische Mo-

dell als bekannt an, so bedeutet das, die modellbeschreibenden Parameter exakt genug

zu kennen, was nicht immer der Fall ist. Oft sind die Modelle zu grob und/oder zu stark

vereinfacht, so daß die darauf basierenden Methoden versagen.

Methoden zur Multiplenunterdr ückung

Traditionelle Methoden zur Unterdr¨uckung oder D¨ampfung von multiplen Reflexionen

in seismischen Daten k¨onnen grob in zwei Klassen eingeteilt werden: Die erste Klasse

von Verfahren versucht, eine physikalische Eigenschaft auszunutzen, mit deren Hilfe sich

Primäre und Multiple unterscheiden lassen. Es handelt sich dabei meist um Filtermetho-

den, wie zum Beispiel das Verfahren der “predictive deconvolution” mit Wiener-Filtern

(Robinson and Treitel, 1980; Peacock and Treitel, 1969). Dabei wird ein Optimalfilter

entworfen, das die Multiplen vorhersagt und anschließend vom Signal subtrahiert. Es
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wird davon ausgegangen, daß der Multiplenanteil im Signal streng periodisch ist, was

allerdings nur f¨ur kleine Quelle-Empf¨anger-Entfernungen gilt. Auch st¨oßt dieses Ver-

fahren schnell an seine Grenzen, sobald das von der Quelle ausgesandte Signal seine

Amplitude, seinen Frequenzgehalt oder seine Phasencharakteristik ver¨andert.

Um eine simulierte “zero-offset” Sektion zu erhalten, die schon ein ungef¨ahres Ab-

bild vom tatsächlichen Untergrund darstellt, werden die seismischen Daten gestapelt,

d.h. es wird entlang von Laufzeithyperbeln im “common-midpoint (CMP) gather” auf-

summiert. Die Krümmung dieser Hyperbeln wird von einem Makrogeschwindigkeits-

modell bestimmt, das zum Beispiel aus einer Geschwindigkeitsanalyse gewonnen wurde.

Stimmt dieses Geschwindigkeitsmodell gen¨ugend gut mit der Realit¨at überein, dann wer-

den Primärsignale koh¨arent aufsummiert, sofern die Laufzeitfunktion hyperbolisch sind.

Multiple weisen meist geringere Stapelgeschwindigkeiten auf als Prim¨are, besitzen da-

her stärker gekr¨ummte Laufzeithyperbeln und werden daher in der gestapelten Sektion

unterdrückt (Schneider et al., 1965).

Die zweite Klasse von Multiplenunterdr¨uckungsmethoden basiert auf der Extrapola-

tion des an der Oberfl¨ache gemessenen Wellenfeldes zur¨uck in die Tiefe auf der Grund-

lage der Wellentheorie. Das multiple Wellenfeld wird vorhergesagt und anschließend

vom gesamten Wellenfeld abgezogen. Die Daten werden zum Beispiel einmal durch die

Wasserschicht hinunter und wieder nach oben propagiert. Dies l¨asst aus den Prim¨aren

Multiplen erster Ordnung werden, die dann vom urspr¨unglichen Wellenfeld mit Hilfe

eines adaptiven Subtraktionsverfahrens abgezogen werden k¨onnen. Dies kann zu Fehlern

führen, wenn die Adaption des zu subtrahierenden Signals an das Originalsignal nicht op-

timal funktioniert. Außerdem m¨ussen teilweise Meeresbodentopologie, Oberfl¨achenge-

schwindigkeiten, oder die Quellfunktionf bekannt sein oder es m¨ussen Daten zwischen

den bestehenden Empf¨angern interpoliert werden.

Alle diese Annahmen und Parameter, die oft nur ungenau abgesch¨atzt werden k¨onnen

beeinträchtigen die Anwendungsm¨oglichkeiten dieser Methoden betr¨achtlich und limi-

tieren ihren Einsatz auf Sonderf¨alle, in denen das physikalische Modell eng genug mit

der Realität übereinstimmt. Oft trifft dies aber schon nicht mehr zu, wenn zum Beispiel

die Daten verrauscht sind. Selbst eine Kombination dieser Verfahren w¨urde dieses Prob-

lem nicht lösen. Deshalb wird in dieser Dissertation ein Verfahren vorgestellt, das von
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einem völlig anderen und neuen Ansatz ausgeht: die Unterdr¨uckung von multiplen Re-

flexionen mit Neuronalen Netzen.

Multiplenunterdr ¨uckung mit Neuronalen Netzen

In der Realität sind die physikalischen Gesetze, die das Problem der multiplen Reflex-

ionen bestimmen, nicht in dem Maße bekannt, daß sich robuste und universell einsetz-

bare Algorithmen zu dessen L¨osung entwickeln liessen. Wir brauchen eine Methode,

die zum Teil auf einem physikalischen Modell beruht, aber trotzdem adaptiv ist und die

Möglichkeit gibt, Nebenbedingungen mit einfließen zu lassen. Das Neuronale Netz stellt

ein attraktives Konzept dar, das alle diese Eigenschaften besitzt.

Eine weitere Motivation besteht darin, daß es im Gegensatz zu den herk¨ommlichen

Verfahren zur Multiplenunterdr¨uckung erstmals m¨oglich wird, Kriterien zur Unterschei-

dung von Prim¨arsignalen und Multiplen aus mehreren verschiedenen Parameterbereichen

zu kombinieren. Jede der oben beschriebenen Methoden arbeitet in nur einem Parame-

terbereich: im Raum-Zeit-Bereich (x� t), im Frequenz-Wellenzahl-Bereich (f � k), im

Zeit-Slowness-Bereich (� � p) oder im Geschwindigkeits-Zeit-Bereich (v � t). Dadurch

werden auch nur Diskriminierungseigenschaften dieses einen Raumes benutzt, wie zum

Beispiel Periodizit¨at oder unterschiedliche Laufzeitdifferenzen an den Empf¨angern.

Idealerweise macht man sich aber alle diese Eigenschaften, die Multiple von Prim¨aren

trennen k¨onnen, gleichzeitig zu Nutze. Der Formalismus der Neuronalen Netze ist speziell

dafür ausgelegt, aus m¨oglichst vielen dieser physikalischen Attribute die gew¨unschte In-

formation zu extrahieren.

Der Backpropagation-Algorithmus ist in der Lage, die physikalischen Eigenschaften

des zugrundeliegenden Modells zu erlernen, indem es aus den Daten selber die Regeln

und physikalischen Gesetze extrahiert. Am Anfang steht nur eine ungenaue (“fuzzy”)

Menge von Beispielpaaren, die Eingaben f¨ur das Problem und bekannte spezielle L¨osungen

für diese Eingaben beinhalten.

Die selbst-organisierende Karte (self-organizing map, SOM) analysiert die physikal-

ischen Eigenschaften des Problems und versucht selber Regeln aufzustellen, mit denen

das Problem charakterisiert werden kann. Als Eingabe braucht sie nur die Messwerte
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selber, oder Attribute, die daraus berechnet wurden, und findet dann Zusammenh¨ange,

Ähnlichkeiten und Gegens¨atze in den Daten. Das SOM bietet eine elegante Methode zur

Klassifizierung und Clusterung von Messdaten.

Im Rahmen dieser Dissertation wurden vier verschiedene Verfahren zur Multiplenun-

terdrückung entwickelt, getestet und analysiert. Diese werden im Folgenden kurz be-

schrieben (siehe auch Abb. 1.3 in Kapitel 1).

Verfahren 1: Voraussage und Unterdrückung von Multiplen mit

Backpropagation-Netzen (Kapitel 4)

Das Ziel dieses Verfahrens ist es, aus vorhandenen Bohrlochdaten, wie Geschwindig-

keits- und Dichtelogs, die in einzelnen Bohrl¨ochern gemessen wurden, auf die Struktur

des Untergrundes zwischen den Bohrl¨ochern zu schliessen. Dies wird nicht getan, indem

einfach zwischen den Bohrl¨ochern interpoliert wird. Die gew¨unschte Information wird

aus seismischen Daten extrahiert, die ¨uber das ganze relevante Gebiet hinweg gemessen

wurden. Dabei beschr¨anke ich mich auf das Erstellen eines multiplenfreien Pre-stack

Datensatzes, der dann mit der entsprechenden Technik gestackt (gestapelt) und migriert

werden kann.

Kernstück dieser Methode ist ein Backpropagation Neuronales Netz, das so trainiert

wird, daß es lernt, ein gemessenes seismisches Wellenfeld in das Prim¨arfeld und das Mul-

tiplenfeld aufzuspalten. Der Multiplenanteil wird unterdr¨uckt während der Prim¨aranteil

ausgegeben wird. Das Backpropagation Netz braucht dazu Beispiele, aus denen es die

physikalischen Gesetze lernen kann, die dann in den Netzkoeffizienten (den Gewichten)

gespeichert werden. Diese Beispiele werden durch Modellierung von synthetischen seis-

mischen Daten auf der Basis der Bohrlochdaten generiert. Mittels des Reflectivity-Ver-

fahrens (Fuchs and M¨uller, 1971), das auf der elastischen Wellengleichung in 1-dimensio-

nalen Medien beruht, werden Seismogramme modelliert, wobei die M¨oglichkeit besteht,

die Rückstreuung an bestimmten Diskontinuit¨aten aus- bzw. einzuschalten. Dies wird

durch Nullsetzen der entsprechenden Reflexionskoeffizienten in der Propagatormatrix er-

reicht (siehe Abschnitt 4.2). Damit lassen sich Seismogramme erstellen, die jede m¨ogliche

Kombination aus Prim¨arsignalen, Multiplen der freien Oberfl¨ache und internen Multiplen

enthalten. Auf diese Weise wurden zwei synthetische Datens¨atze generiert: ein Datensatz,
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der das volle Wellenfeld beinhaltet, und einer, der nur aus dem Prim¨arfeld besteht. In das

Neuronale Netz werden nun spurweise die Daten mit dem vollen Wellenfeld (Prim¨are und

Multiple) eingegeben. Gleichzeitig pr¨asentiert man dem Netz die jeweilige gew¨unschte

Ausgabe: die zugeh¨orige Spur aus dem Prim¨arfeldseismogramm. So lernt das Neuronale

Netz aus einer Anzahl von Beispielen, die gew¨unschten Prim¨arreflexionen aus den Daten

herauszupr¨aparieren und die unerw¨unschten Multiplen zu unterdr¨ucken.

Das erste Anwendungsbeispiel zeigt einen Vergleich der Unterdr¨uckung von Mul-

tiplen mit dem Neuronalen Netz und der Methode der “predictive deconvolution” mit-

tels Wiener-Filtern (Robinson and Treitel, 1980) anhand von Zero-Offset-Daten. In der

zweiten, realistischeren Anwendung, wird ein Ensemble von Neuronalen Netzwerken

verwendet, bei dem jedes Netz f¨ur einen Offset im Common-Midpoint-(CMP)-Gather

zuständig ist. Im Vergleich zum Wiener-Filter, der auf sehr strengen Annahmen beruht,

zeigt das Neuronale Netz, besonders in Anwesenheit von Rauschen, sehr robuste und gute

Ergebnisse.

Verfahren 2: Voraussage und Unterdrückung von Multiplen mit

Backpropagation-Netzen auf der Basis von Attributen

(Kapitel 5)

Im Gegensatz zu Verfahren 1, das nur im Raum-Zeit-Bereich arbeitet, kommt in diesem

Verfahren der oben erw¨ahnte Ansatz der Verwendung von Attributen aus mehreren ver-

schiedenen Parameterbereichen zum Einsatz. Problemspezifisch werden physikalische

Attribute ausgew¨ahlt und für jedes potentielle Reflexionsereignis (Prim¨are und Multiple)

berechnet. Je nachdem welche gew¨unschte Ausgabe man zum Training des Backpropaga-

tion-Netzes verwendet, hat man die Wahl, ob man Multiplen unterdr¨ucken oder voraus-

sagen will. Die vorausgesagten Multiplen kann man dann mit geeigneten Filtertechniken

vom Originaldatensatz subtrahieren. Zur Multiplenvorhersage ben¨otigt man eine Ab-

schätzung der zu behandelnden Multiplen f¨ur einen bestimmten Teil der Seismogramme.

Diese kann entweder durch Modellierung (1D und 2D) auf der Basis von Bohrlochdaten

gewonnen werden, oder aber durch die Anwendung eines herk¨ommlichen Multiplen-

vorhersageverfahrens (vgl. Abschnitt 1.2). F¨ur die Unterdr¨uckung der Multiplen braucht

man, wie in Verfahren 1, das Prim¨arfeld aus Modellberechnungen an Bohrlochlokationen.
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Anhand von drei verschiedenen synthetischen Datenbeispielen wird sowohl das Ver-

fahren zur Multiplenunterdr¨uckung als auch zur Multiplenvorhersage demonstriert. Die

Methode funktioniert sehr gut f¨ur die Vorhersage von Multiplen der freien Oberfl¨ache und

zur Multiplenunterdr¨uckung. Mit den internen Multiplen hat sie, wie fast alle existieren-

den Verfahren, Probleme, da diese meist sehr schwache Signalamplituden aufweisen und

deshalb sehr stark von Rauschen ¨uberlagert sind. Die hier vorgestellte Methode ist auch

hervorragend f¨ur eine zielorientierte Anwendung geeignet: Man kann sich bestimmte Re-

flexionsereignisse heraussuchen, die aus explorationstechnisch interessanten Tiefen kom-

men, in denen Lagerst¨atten vermutet werden. Es l¨asst sich dann untersuchen, ob es sich

dabei wirklich um ein Prim¨arsignal handelt oder nur um eine Multiple.

Verfahren 3: Identifizierung von Multiplen mit selbst-organisieren-

den Karten auf der Basis von Attributen (Kapitel 6)

Diese Methode ist f¨ur die praktische Anwendung das interessanteste Verfahren zur Tren-

nung von Prim¨arfeld und multiplem Wellenfeld. Im Gegensatz zu den Methoden, die auf

den Backpropagation-Netzwerken beruhen, wird hier keine Absch¨atzung des gew¨unschten

Ergebnisses an bestimmten Punkten ben¨otigt. Mit Hilfe der selbst-organisierenden Karte

können allein aus dem aufgezeichneten Wellenfeld, bzw. aus den daraus berechneten

physikalischen Attributen, die einzelnen Signale getrennt und klassifiziert werden. Dazu

werden in einem seismischen Datensatz unter Zuhilfenahme der Geschwindigkeitsana-

lyse (siehe Abschnitt 3.3) alle Reflexionsereignisse (Prim¨are und Multiple) automatisch

gepickt. Entlang den hyperbolischen Laufzeitkurven dieser Ereignisse werden im CMP-

Gather eine Anzahl von Attributen berechnet (siehe Kapitel 3). Mittels einer Korrelations-

analyse wird entschieden, welche der Attribute aussagekr¨aftig genug sind und welche

redundante Information beinhalten und deswegen weggelassen werden k¨onnen. Nach-

dem die so gewonnenen Daten normalisiert worden sind, wird eine selbst-organisierende

Karte (Abschnitt 2.2) damit trainiert. Diese f¨uhrt eine Clusterung der Eingabedaten, also

der Reflexionsereignisse, durch. Auf einer zwei- oder dreidimensionalen Karte werden

die Daten so abgebildet, daß Abh¨angigkeiten innerhalb der Daten sichtbar werden. Aus

der Auswertung dieser Topologie-erhaltenden Abbildung gewinnt man dann schließlich

eine farbcodierte Zero-Offset Sektion, in der die einzelnen Teilfelder des Wellenfeldes

unterschiedliche Farben aufweisen. Auf diese Weise ist sowohl eine qualitative als auch



XI

eine quantitative Trennung von Prim¨aren und Multiplen m¨oglich.

Verfahren 4: Unterdr ückung von Multiplen mit einem Schicht-

für-Schicht-Verfahren (Kapitel 7)

Diese Methode stellt eine sehr praktische Anwendung eines ¨uberwachten Lernverfahrens

dar, bei dem dieselben Eingabedaten wie in Verfahren 3 verwendet werden, diese aber

nicht mit einer selbst-organisierenden Karte, sondern mit einem Backpropagation-Netz

prozessiert werden. Der Datensatz besteht also aus einer Reihe von Attributen, die aus

einem gemessenen Seismogramm berechnet wurden und aus wenigen Signaleins¨atzen,

die von einem erfahrenen Interpreten identifiziert wurden. Dabei reicht es aus, Reflexions-

ereignisse aus geringen Tiefen zu verwenden, da diese meistens sehr verl¨asslich zu be-

stimmen sind. Diese sollten jedoch sowohl Prim¨ar- als auch Mehrfachreflexionen beinhal-

ten. Der Algorithmus arbeitet sich dann Schicht f¨ur Schicht von oben nach unten durch.

Dazu wird ein Neuronales Netz mit den ausgew¨ahlten Ereignissen trainiert und dann

mit allen Reflexionsereignissen getestet. Alle Eins¨atze, die innerhalb eines bestimmten

Vertrauensintervalls entweder als Prim¨are oder als Multiple identifiziert wurden, werden

zusätzlich für den nächsten Trainingslauf verwendet. Dabei kann der Benutzer jederzeit

eingreifen, wenn er meint, daß ein Signal falsch klassifiziert worden ist. Die Prozedur

wird solange wiederholt, bis alle Reflexionsereignisse identifiziert worden sind.

Alle vier Verfahren demonstrieren die Anwendbarkeit von Neuronalen Netzen, sowohl

überwachter als auch un¨uberwachter Lernalgorithmen, f¨ur die Identifizierung und Un-

terdrückung von multiplen Reflexionen. Je nach Vorhandensein von Zusatzinformatio-

nen aus Bohrlochdaten ist das eine oder das andere Verfahren vorzuziehen. K¨onnen aus

mehreren Geschwindigkeits- und Dichtelogs zuverl¨assige Modellierungen durchgef¨uhrt

werden, so liefern die ¨uberwachten Verfahren (Verfahren 1 & 2: Voraussage und Un-

terdrückung von Multiplen mit Backpropagation-Netzen) sehr zuverl¨assige Absch¨atzung-

en des prim¨aren beziehungsweise des multiplen Wellenfeldes. Sind keine Bohrlochdaten

vorhanden, bietet das un¨uberwachte Verfahren (Verfahren 3: Identifizierung von Multi-

plen mit selbst-organisierenden Karten auf der Basis von Attributen) eine sehr effiziente

Methode, Reflexionsereignisse zu klassifizieren und die Wellenfelder zu trennen. Dies
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geschieht nur unter Verwendung der gemessenen seismischen Daten und einiger weniger

interpretierter Ereignisse zur Ettikettierung der Klassen. Auch das vierte Verfahren (Ver-

fahren 4: Unterdr¨uckung von Multiplen mit einem Schicht-f¨ur-Schicht-Verfahren) ver-

folgt diese Philosophie, jedoch unter Verwendung einer modifizierten, ¨uberwachten Lern-

methode.



Chapter 1

Introduction: Primaries and Multiples

1.1 The Problem of Multiple Reflections

In seismic exploration the problem of multiple reflections contaminating seismograms

and thus disguising important information about subsurface reflectors is well-known but

not yet solved satisfactorily. Today, the majority of all oil and gas resources are discovered

offshore in continental shelf areas in shallow water, although the trend is moving into

deeper water. Before oil-producing wells can be drilled, geophysicists have to provide

an image of the physical properties in the subsurface that shows where reservoirs can be

expected. In a marine exploration setting we encounter the problem that the water layer

often behaves as a wave trap (Backus, 1959), where seismic waves are multiply reflected

between sea surface and sea bottom. Waves that are transmitted through the sea bottom

can also reverberate between deeper reflectors. The energy of these interbed multiples

and water layer reverberations can become so strong that the primary reflection arrivals

of deeper target reflectors become completely invisible. As a result, marine seismograms

often show a ringy character with strong multiples superposed on most of the primary

arrivals from deeper reflectors.

For correctly locating a target reflector that might indicate an oil reservoir, these in-

terfering multiple reflections have to be eliminated, or since this is only rarely possi-

ble, they have to be at least attenuated. Figure 1.1 shows a typical marine data ac-

quisition method. Travel paths of primary reflections (solid lines) and several multi-

ple reflections (dashed lines) illustrate the problem of interference of these two types
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primary
arrivals

primary &
multiple
arrivals

sea bottom

reflector

reflector

Figure 1.1: Marine data acquisition:
travel paths of the primary reflections
(solid lines) and several multiple reflec-
tions (dashed lines). For isotropic media,
the travel paths are trajectories perpendic-
ular to the corresponding wavefronts.

of arrivals. Especially when primary and

multiple reflections arrive at the same zero-

offset travel time and show little move-out

difference, it is very hard to separate the two

signals or even to tell if the event is a primary

or a multiple.

An important distinction has to be made,

however. We do not want to eliminateall

types of multiples. There arebadmultiples,

but alsogood multiples. The bad ones are

the long-period multiples depicted in Figure

1.1, which are reverberating between material

discontinuities that are separated from each

other by more than a wavelength. The good

multiples are the ones, without which there

would be no primary signal arriving at the

surface. This type of multiple is extremely short-period and reverberates in the fine-

layered structures which make up the subsurface (Shapiro and Hubral, 1999; O’Doherty

and Anstey, 1971). The upward reflections of many of these small-scale reverberations

sum up coherently, and thus enough of the wave energy is reflected back upward again to

be recorded at the surface. The difference between good and bad multiples is shown in

Figure 1.2.

The travel paths drawn in Figures 1.1 and 1.2 are those trajectories that are perpendic-

ular to the corresponding wavefront of the propagating wave. This implies the treatment

of the problem of separating primary and multiple reflections by means of techniques

based on geometrical optics. However, in a general sense, without assuming a special

geometry of scatterers forming reflectors, a formulation of the problem in terms of wave

theory is possible as well.

The propagation of waves in elastic, inhomogeneous, anisotropic media follows the

elastodynamic wave equation

(cijkl uk;l);j +fi = %�ui; i = 1; 2; 3 ; (1.1)

whereuk are the components of the displacement vector,();j the spatial derivative in
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Figure 1.2: Left: short period peg-leg multiples. The multiples reverberating between
layer boundaries have a long period compared to the wavelength of the seismic wave.
These are the multiples we consider as unwanted noise, whereas the “reflection gener-
ating” small-scale reverberations naturally should not be suppressed. Right: different
types of multiples: 1) free-surface related multiples such as water reverberations, peg-leg
multiples, and 2) internal multiples. A first-order multiple is a multiple that is reflected
downward only once, whereas a second-order multiple is scattered back downward twice
from any one of the discontinuities, etc.

j-direction,uk;l the spatial derivative of componentk in the l-direction (using the sum-

mation convention), and�ui is the second time derivative of theith component of the

vectoru. cijkl are the components of the elasticity tensor,f the source function and%

the density (Aki and Richards, 1980). If the source termf is an impulsive function in

space and time, then the solution is a special result called the Green’s functionG. For

problems with constant coefficients, homogeneous, isotropic and unbounded media, the

Green’s function can be found analytically and the problem is solved. In general, this is

not the case and it has to be approximated, e.g. using ray theory.

A wave propagating through an arbitrary inhomogeneous medium will be scattered at

inhomogeneities (scatterers) thus producing a scattered wavefield. If the wavefield is only

scattered once between source and receiver (or, as shown in Figure 1.2, left, multiply on

a small scale), this is the primary part of the wavefield. As soon as it is scattered from a

second scatterer, which is at a distance larger than a wavelength, it becomes part of the

multiple wavefield.

The problem of separating the primary wavefield from the multiple wavefield amounts

to separating the Green’s function that solves equation 1.1 for an impulsive source into

the Green’s function for the primary wavefield, the Green’s function for the multiple
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wavefield, and a Green’s function for that part of the wavefield that doesn’t belong to

either primary or multiple energy:

G = GP +GM +GR; (1.2)

whereGP is the part for the primary,GM the part for the multiple wavefield, andGR

the part for the remaining wavefield that cannot be associated with one of the two (i.e.

noise or effects not described by the model). The Green’s function term for the multiple

wavefieldGM can be split further into Green’s functions for the partial wavefields of e.g.

free-surface related multiples and internal multiples:

GM = GF +GI ; (1.3)

whereGF is the part for the free-surface multiples, andGI for the internal multiples. The

different types of multiples together with their naming convention are shown in Figure

1.2, right. This separation of Green’s functions is only possible in an analytical way for

certain simple geometries, of course.

In the next section I shall introduce a number of existing techniques to solve the prob-

lem of separating out particular multiple scattering contributions. They all share one

common feature: they only work in special cases. The basis for each method is a physical

model that holds for only a limited number of real-life cases (depending on subsurface

geometry, acquisition parameters, elastic parameters), and is often too rough and too sim-

plified. Assuming the physical model to be known implies knowledge about the governing

parameters, which might or might not be available.

1.2 Multiple Attenuation Methods

Methods for multiple attenuation either try to exploit a physical property or feature that

differentiates primaries from multiples by the use of filtering algorithms, or they aim to

predict the multiples by using modelling or inversion techniques. Such predicted multi-

ples are later subtracted from the recorded seismic data.

So far there is no multiple attenuation technique that works universally. Common methods

used in the industry today can be divided into seven different major categories:
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1. Methods exploiting periodicity

These methods are based on the periodicity of multiples in contrast to the primary

arrivals. Predictive deconvolution using Wiener filters (Robinson and Treitel, 1980;

Peacock and Treitel, 1969) is one successful approach that designs a filter operator

which predicts the multiples and subtracts them from the seismic trace. However,

at far offsets this method fails, since multiples are no longer periodic. Another

drawback of this method is that it requires assumptions such as that the seismic

trace be stationary and the reflectivity be a random series of spikes. Taner (1980)

showed a way to overcome the non-periodicity problem at far offsets by applying

predictive deconvolution in the radial trace space. Similarly, in the� � p domain

multiples are periodic for all slowness (p) values (Carrion, 1986), but a horizontally

layered medium must be presumed.

2. Stacking methods

The Stacking methods exploit the move-out (travel time) difference between the

primary and the multiple reflection hyperbolae in a CMP gather: In principle, these

methods sum over all possible hyperbolae by scanning through all zero-offset times

and curvatures of all theoretically possible hyperbolae. If the summation coincides

with an actual reflection hyperbola, a high amplitude signal is generated, while

in all other cases the signal will be weaker. Since the curvature of the hyperbola

relates to the velocity of the corresponding arriving wave, this method is called

velocity analysis (Yilmaz, 1987, e.g.). In the velocity spectrum an experienced in-

terpreter can distinguish primaries (generally with higher apparent velocities) from

multiples (generally with lower apparent velocities), and can thus produce a macro-

velocity model. Normal move-out (NMO) correction with the picked primary ve-

locity model (macro model) and subsequent common-midpoint (CMP) stacking al-

ready reduces the amount of multiple energy (Schneider et al., 1965). If the NMO

correction is applied in such a way that primaries are overcorrected and multiples

are undercorrected, the two signals map onto different half-spaces in thef � k

domain (Yilmaz, 1987). However, these correlation methods often fail because ar-

rivals from deeper reflectors or complex geologic structures increasingly deviate

from a simple hyperbolic relationship. Thus primaries often cannot be separated

from multiples in the velocity orf�k spectrum, mainly due to interference effects.
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Moreover, in cases where internal multiples are created at velocity inversions they

show higher apparent velocities than primaries appearing at the same zero-offset

time. This leads to incorrect velocity models and to amplification of such multiples

instead of their attenuation.

3. Prediction Methods based on wavefield parameters

This method is based on the idea that all multiple travel times - for both free-surface

and internal multiples - can be constructed by adding or subtracting primary travel

times to or from each other (Keydar et al., 1998). In order to find the relevant pri-

maries the method compares the emergence angles of the wavefronts arriving at the

surface. If a number of primaries can be combined to build a certain type and order

of multiple, the corresponding events are the searched primaries, and the multiple

can be predicted in a kinematic sense. The essential parameter is the wavefront

emergence angle, which is obtained - along with the radius of curvature of the re-

flected wavefront - with a local moveout correction computed in the common shot

domain. The power of this method is its independence of the macro-model and

the practical aspect to suppress targeted multiples with the interpreter’s input of

relevant primaries, which can at the same time be a drawback. This method also

requires the near-surface velocity, which is no problem in marine settings, but is

often not known well enough for land data.

4. Wavefield extrapolation methods

These methods predict multiples by extrapolation of the wavefield into the sub-

surface and subsequently subtract them from the data (Berryhill and Kim, 1986;

Wiggins, 1988): Here, the wavefield is propagated down and up through the water

layer so that the primaries become first-order multiples which are then subtracted

adaptively from the original data. An estimate of the water-bottom topography

and reflectivity is needed, and only water-bottom multiples can be removed. This

method relies on an adaptive subtraction algorithm, which can produce an incorrect

signal if it is not working perfectly.

5. Methods based on autoconvolution

These methods predict free-surface related multiples by iterative autoconvolution

in time and space (Berkhout and Verschuur, 1997; Verschuur and Berkhout, 1997).
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They assume knowledge about the source signature and about the existence of zero-

and near-offset data, which are almost impossible to record in the field. Extrapo-

lation to zero-offset and interpolation between the recorded traces can create large

errors that can severely degrade this method in practice.

6. Methods based on coherency

These methods are based on computing coherency measures (using Singular Value

Decomposition) after an NMO correction that flattens multiple reflections (Kneib

and Bardan, 1997). The eigenimages with the highest eigenvalues (pertaining to

the multiples) are removed, leaving the primary information in the ideal case, but

not always in reality, since the largest eigenvalues may also contain multiple energy

due to incorrect NMO correction.

7. Inverse scattering methods

Inverse scattering methods express the total wavefield as the sum of the wavefield

from a smooth known background plus the wavefield generated by scatterers (We-

glein et al., 1992). Multiples are represented by higher order terms in a non-linear

inverse scattering series and can thus be removed. However, here both source sig-

nature and a background model have to be known. Similar to the autoconvolution

method, this technique also requires near-offset traces. So far there do not exist

near-trace extrapolation methods for shallow water, so in that case the method is

likely to fail.

Approaches exist where multiples are not treated as noise that has to be eliminated but

regarded as signal that has travelled through a certain part of the subsurface many times

more than a primary und thus can also give us information about the geology (Helbig and

Brouwer, 1993).

An unconventional but potentially promising approach to suppress multiples is based on

the use of artificial neural networks (Calder`on-Macias et al., 1997). In this dissertation I

introduce four novel methods, all based on such neural networks.
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1.3 Multiple Attenuation with Neural Networks

All the conventional techniques for multiple attenuation mentioned in the previous section

fundamentally depend on a physical model that is usually not known exactly and whose

governing parameters can often only be estimated imprecisely. In those cases where the

simple model is sufficiently close to the reality and/or the greater part of the underlying

assumptions is fulfilled these methods produce good results. However, already in the

presence of noise, very few physical models still hold, and the applicability decreases

dramatically. Even a combination of these methods would not overcome this problem

inherent in this kind of approach.

In reality the physical laws governing the problem of multiple reflections are not

known to an extent allowing the development of robust and universally applicable al-

gorithms. What we need is a method that is partly model-based, but still adaptive and

includes the possibility of posing constraints. The neural network technique is an ap-

pealing approach that encompasses all of that. Thebackpropagationneural network (see

section 2.1) is able to mimick the physics of the underlying model; it tries to extract the

rules and physical laws governing the problem. At the outset there is a fuzzy set of exam-

ples, consisting of inputs to the problem and known solutions for these particular inputs.

A self-organizing map(SOM) algorithm (see section 2.2) analyzes the problem and tries

to establish rules for the characterization of the problem. It makes use of the measure-

ments as such or attributes computed from them and finds interrelations and connections

between the data.

Within the scope of this dissertation four different multiple attenuation and identifi-

cation algorithms based on backpropagation neural networks and self-organizing maps

have been developed, tested and analyzed. Figure 1.3 shows diagrammatically the four

different methods employed.

The first method (see chapter 4) is a trace-by-trace multiple attenuation scheme using

supervised backpropagation neural networks. On the basis of well-log data, networks are

trained to act as a non-linear filter attenuating free-surface as well as internal multiples

present in a full elastic wavefield recorded in the space-time domain.

The other three methods employ seismic attributes (described in chapter 3) from vari-

ous other data domains using backpropagation neural networks and self-organizing maps.
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Figure 1.3:Overview of the methods investigated in this dissertation: It is possible to per-
form multiple prediction, classification and attenuation. By using attributes from different
domains, and different neural networks we can perform one or more of these tasks.

Recognizing that information about the multiple content of the data is present in var-

ious data domains and attributes (e.g. instantaneous attributes, wavelet attributes, wave-

front parameters, velocity spectrum) computed in these domains, I train the networks

with combinations of such inputs. Since these input domains constitute a rather large

parameter space, the information is compressed by using sparse attributes and segments

of these input domains. The idea of using physically meaningful attributes is to combine

the different discriminatory powers in the various domains to exploit the redundancy of

information inherent in the seismic data. Every conventional technique only relies on a

single discrimination criterion provided by one parameter space (e.g. f-k filtering), and

neglects the possibilities offered by other domains. The performance of all methods is

demonstrated on a number of synthetic data sets.

In the attribute-based multiple prediction and attenuation technique using backpropa-

gation I assemble a supervised learning algorithm which produces estimates of the desired

wavefields (chapter 5). Depending on the desired output provided for the neural network,

there exists the possibility of either attenuating or predicting free-surface and internal

multiples. Basis for multiple attenuation is a modeled primary section obtained from

well-log information at certain locations in the exploration area. For the prediction of

the multiples an estimate of the desired multiples has to be provided using conventional
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multiple prediction methods for a few seismic sections. The neural network then extracts

either the primaries or the predicted multiples directly from the attributes computed from

the seismograms for the remaining major part of the data set.

The self-organizing maps represent an unsupervised learning method that analyzes the

seismic data and tends to extract information with the help of a sophisticated clustering

technique. In chapter 6, a new technique is introduced, that uses only the seismic data or

attributes derived from the seismograms, and does not require any a priori estimate of the

primary or multiple wavefield. Using an automatic picking algorithm, all relevant events,

primaries and multiples, are picked in a seismic data set. Then a number of carefully

selected attributes is computed for each event. The self-organizing map arranges the data

in an ordered manner, and forms clusters that not only allow to separate primaries from

multiples, but also to distinguish between different types of multiples.

A practical method for multiple attenuation using supervised backpropagation neural

networks is shown in chapter 7. The input data consist, as for the SOM in chapter 6, of

attributes computed for a set of reflection events. The desired output is provided by an

interpreter in the form of a few picked and classified events. The neural net is then trained

with this information in a layer-stripping manner. It works its way top down through the

data set by learning from the given information, classifying new events, taking them for

training as soon as they have been classified with a certain confidence, learning again,

and so on, until all events have been processed. This method also allows user interference

between the individual training runs, e.g. when an event can be definitely labelled as a

primary or multiple on the basis of the events already classified by the algorithm.



Chapter 2

Neural Networks

Among the numerous types of neural networks now in use, I apply two to the multiple

problem: backpropagation neural networks and self-organizing maps. The former tech-

nique is the most robust of the feed-forward supervised learning algorithms. In fact it is

nothing more and nothing less than a non-linear adaptive filter, and provides the possibil-

ity of comparison with linear filtering methods, such as the Wiener filter. On the other

hand, the self-organizing maps (or Kohonen feature maps) represent one of the more so-

phisticated unsupervised learning techniques used for cluster analysis.

2.1 Backpropagation Neural Networks

2.1.1 Neural Networks as Non-Linear Filters: Theory

Typically, in classical inverse theory (Tarantola, 1987) it is assumed that we possess rel-

atively accurate knowledge of the physical model underlying a certain problem. This

knowledge is expressed explicitly as an operatorA, and can be written in matrix form.

If this operator is applied to a model vector~x, it roughly reproduces the data vector~d

consisting of measured data:

A ~x � ~d (2.1)

In a classical inverse problem we know the measured data~d and we also know precisely
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the operatorA, which could be, for example, a normal move-out (NMO) - operator

(Calderòn-Macias, 1997, shows a neural net approach to NMO correction), or a filter

to predict and subtract multiples. We want a good model for the data~d: the model param-

eters~x. Equation 2.1 can be inverted in a formal manner for~x,

~x � A�1~d: (2.2)

This is usually an approximation, since there is always noise present in seismic data. By

minimizing an error measurekA~x� ~dkp (p = 1; 2; 3; :::) we can find the best approxima-

tion of a model fitting the measured data.

To illustrate this principle, we take a look at the NMO correction (Claerbout et al., 1997),

expressed in matrix form (hereA =NMO) :

~d = NMO ~x =

2
666666666666666666664

: : 1 : : : : : : :

: : 1 : : : : : : :

: : 1 : : : : : : :

: : : 1 : : : : : :

: : : 1 : : : : : :

: : : : 1 : : : : :

: : : : 1 : : : : :

: : : : : 1 : : : :

: : : : : 1 : : : :

: : : : : : 1 : : :

3
777777777777777777775

2
666666666666666666664

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

3
777777777777777777775

: (2.3)

The 1’s in the NMO-operator are arranged along the hyperbolat2 = t20 + x20=v
2 and the

dots stand for zeros. The vector~x represents one trace in a CMP gather, which gives after

application of the NMO-operator the NMO-corrected trace~d.
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Inverting equation 2.3 for~x gives~~x:

~~x = NMO�1~d =

2
666666666666666666664

: : : : : : : : : :

: : : : : : : : : :
1
3

1
3

1
3

: : : : : : :

: : : 1
3

1
3

: : : : :

: : : : : 1
3

1
3

: : :

: : : : : : : 1
3

1
3

:

: : : : : : : : : 1

: : : : : : : : : :

: : : : : : : : : :

: : : : : : : : : :

3
777777777777777777775

2
666666666666666666664

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

3
777777777777777777775

; (2.4)

whereNMO�1 is the pseudo-inverse ofNMO.

The mapping rule from the model space to the data space is known and can be ex-

pressed as a matrix operatorA. However, in many cases this relationship isnotknown or

only known empirically, thus it cannot be expressed explicitly in mathematical form. In

such a situation classical inverse theory as described above fails, and the neural networks

can be used advantageously.

The action of a neural network can be described by the same equation as classic in-

verse theory (eq. 2.1). However, we do not know the operatorA, but have a set of exam-

ples available in the form of data from an input spacex and corresponding data from an

output spaced. These examples should be an exhaustive representation of the mapping

from input to output space. The task of the neural network is then to find this relationship

(the operatorA) by learning from training examples.~x is one of many input data vectors

of the training set, and~d is the corresponding desired output vector. The operatorA repre-

sents here the weight matrix of the neural network, which has to be optimized in order to

guarantee not only correct mapping of the training data, but also generalization to data not

included during training. This is accomplished by a learning rule often based on gradient

descent algorithms which compute the gradient and descend in the negative direction of

the largest gradient in order to find the minimum. One of the numerous advantages of

the neural net approach is that it is not restricted to the L2-norm (p=2), so that the error

measure can be adapted to the specific problem.
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Figure 2.1:The three-layer backpropagation neural network with the input vector~x, the
output vector~o, the weight matrixA associated with the connections from the input layer
to the hidden layer, the weight matrixB from the hidden to the output layer, and a non-
linear functionf .

Normally a neural network consists of three or four layers - an input layer, one or

two hidden layers (called hidden, since they don’t have a direct connection to the outside

world), and an output layer - as shown in Figure 2.1. The layers are fully connected by

weights. Therefore, the weight matrix is more complex in this situation than in eq. 2.1.

The network can be expressed as

~B [ ~A ~x ] = ~o (2.5)

or f [ B f [ A ~x ]] = ~o; (2.6)

whereA is the weight matrix associated with the connections from the input layer to the

hidden layer,B is the weight matrix associated with the connections from the hidden to

the output layer,~x is the input,~o the output of the network, andf is a non-linear function

(shown in Figure 2.1). The matrices~A and ~B are related to the original matricesA andB

via the non-linearityf . An example from geophysical data processing reveals the analog

formulation:

MIG [ ST ACK [ DMO [ NMO ~x ] ] ] = ~o: (2.7)

It represents the successive application of NMO, DMO, Stacking and Migration opera-

tors to the data~x. The non-linearityf could be included in the form of trace amplitude

manipulations , such as automatic gain control (AGC) at certain steps.
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2.1.2 The Multi-layer Perceptron

In 1911 Ram´on y Cajál came up with the idea of the neuron as the basic component of

the brain. Today we know that a human brain contains some 100 billion (1011) neurons

with about 1,000 to 10,000 connections each (resulting in a total of1014 - 1015 intercon-

nections). Although one neuron is about106 times slower than a transistor of a computer

(neuron:10�3sec, transistor:10�9sec) the massively parallel processing capability of the

brain gives it a much higher efficiency.

Simulating neurons on the computer began with the pioneering paper of McCulloch

and Pitts (1943) who described the formal theory of neural networks. Then, in 1958,

Rosenblatt invented the perceptron (see Figure 2.2), an artificial neuron, whose inputsxi

are multiplied by weightswji. These weights are the only variables and determine the

contribution of the individual inputs. TheseN weighted inputs are simply summed inside

the neuron, and�j is a suitable threshold. The “activation”aj of the neuronj is then given

by

aj =

NX
i=1

wjixi + �j: (2.8)

Usually, the threshold or bias�j is realized as an additional inputx0, which is set to1 and

multiplied by an additional weightwj0:

aj =

NX
i=0

wjixi (2.9)

This sum of weighted inputs is then passed through a non-linearityf . The result is the

output of neuron j:

oj = f(aj) (2.10)

This non-linearity allows the neural net to adapt itself to a variety of data that can show

extremely non-linear behavior.

In the case of backpropagation this non-linear function has to be continuously differen-

tiable, since the first derivativef 0 appears in the learning rule and also because we want

a continuous output (Cichocki and Unbehauen, 1993). A popular choice for the non-

linearity is the sigmoid function, also known as the Fermi-function in physics, which is

linear around zero and asymptotically reaches 1 or 0, respectively for arguments going to

�1 (cp. Figure 2.1).
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Figure 2.2:The Perceptron: forward propagation of the inputxi. x0 is the threshold,wji

are the weights,aj is the activation function, f is the non-linear transfer-function andoj
represents the output of neuron j. Backpropagation: The difference between the desired
outputdj and the actual outputoj is multiplied by the first derivative of the non-linearity
f 0(aj) = oj(1:0 � oj). This is the local error�j that is “backpropagated” (cp. equations
2.11 and 2.12) from layerl to layerl � 1 (here shown for output layer to hidden layer).

The individual artificial neurons can be interconnected in many different ways lead-

ing to a variety of neural networks with different architectures, learning rules and abil-

ities. The most important ones are: Feedforward networks, Adaptive Resonance The-

ory networks (ART), Hopfield nets, Kohonen’s self-organizing feature maps, Radial Ba-

sis Functions (RBF), Boltzmann-machines, and Cascade-correlation networks (Haykin,

1994; Zell, 1994).

A simple way to organize the neurons in several layers is shown in Figure 2.1. This ar-

chitecture is called a feed-forward network, since neurons of one layer are only connected

with neurons of the succeeding layer, without any recurrent connections. Normally, these

nets consist of one input layer, one or two hidden layers and one output layer. With such

a net, input data are mapped from the n-dimensional input space to an m-dimensional

output space. This network now has to learn to produce a certain desired output for each

input pattern presented at the input layer.
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The detailed training procedure is as follows:

1. Split the data set into a training set and a test set. Normally, the training set is larger

than the test set. Often the desired outputs have to be normalized to the range[0 : 1]

since the sigmoid function only returns values in this range1. The input patterns do

not have to be normalized.

2. Initialize all weights, including all biases, to small random values (usually in the

range of[�1 : +1]). This determines the starting point on the error surface for the

gradient descent method, whose position can be essential for the convergence of the

network.

3. Forward propagation of the first input pattern of the training set from the input layer

via the hidden layer(s) to the output layer, where each neuron sums the weighted

inputs, passes them through the non-linearity and passes this weighted sum to the

neurons in the next layer.

4. Calculation of the difference between the actual output of each output neuron and its

corresponding desired output. This is the error associated with each output neuron.

5. Backpropagating this error through each connection by using the backpropagation

learning rule (described below) and thus determining the amount each weight has

to be changed in order to decrease the error at the output layer.

6. Correcting each weight by its individual weight update.

7. Presenting and forward propagating the next input pattern ...

Repeat steps 3-7 until a certain stopping criterion is reached, for example that the error

falls below a predefined value.

The one-time presentation of the entire set of training patterns to the net constitutes a

training epoch.

1Normalization from range [min:max] to range [MIN :MAX] can be accomplished by:
y = MAX�MIN

max�min
(x �min) +MIN , where min � x � max and MIN � y �MAX
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After terminating the training phase the trained net is tested with new, unseen patterns

from the test data set. The patterns are forwardpropagated, using the weights now avail-

able from training, and the error at the output layer is determined (no weight-update is

performed!). If performance is sufficiently good, the net is ready-for-use. If not, it has

to be retrained with the same patterns and parameters or something has to be changed

(e.g. number of hidden neurons, additional input patterns, different kinds of information

contained in the input patterns, ...).

The Backpropagation Learning Rule

For every neuron the weighted input is summed, passed through the non-linearityf , yield-

ing the actual output which is subtracted from the desired output. This error is backprop-

agated from the output layer to the hidden layer and from the hidden layer to the input

layer by correcting each weight after thenth epoch

wji(n + 1) = wji(n) + �wji(n) (2.11)

by the weight update

�wji(n) = � �j xi : (2.12)

Herexi is the input to neuronj and�j is the local error, whose form depends on

whether neuronj is an output or a hidden neuron:

1. The neuron j is an output neuron:

�j is the product off 0(aj) and the error(dj � oj)

For the case of sigmoidal non-linearities:�j = (dj � oj) oj (1:0� oj)

2. The neuron j is a hidden neuron:

�j is the product off 0(aj) and the weighted sum of the�’s of the neurons in the next

layer (in the backwarddirection). This next layer hask neurons.

For the case of sigmoidal non-linearities:�j = [oj (1:0� oj)] [
P

k �kwkj]
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The Rprop learning rule

Instead of using the standard backpropagation learning algorithm I employed the Rprop

(resilient propagation) algorithm (Riedmiller and Braun, 1993) which shows considerably

faster convergence. In contrast to other gradient-descent algorithms, Rprop does not use

the magnitude of the gradient, but only its sign. It begins with an initial small update

value, and then increases this value by a factor greater than 1 (typical value: 1.2), if

the current gradient has the same direction (sign) as the previous gradient, but decreases

this value by a factor smaller than 1 (typical value: 0.5), if the gradient has the opposite

direction (sign).

This update then is added to the weight, if the gradient is negative (progression in the

positive direction towards the minimum), and subtracted from the weight, if the gradient

is positive (progression in the negative direction towards the minimum). The principle is

shown in Figure 2.3.

∂E
∂w

E

w
w(n-1)(n+1) w
°°

0

(n-1)

∂E
∂w

(n+1)
< 0

> 0

∂E
∂w

(n) > 0

w(n)
°

w (n+1) w(n)= -1.2 ∆w* (n)

°

(n+2) w

(n+2)  w = w (n+1) + 0.5 *∆w(n+1)

(n+1) w

1

1

2

2

= wmin

Figure 2.3:Principle of the Rprop-algorithm:
1 The gradients of the stepsn � 1 andn
are both positive, so the last update�w(n) is increased by the factor 1.2 and subtracted
(because the current gradient is positive) from the current weightw(n). 
2 The gradients
of the stepsn andn+1 have different signs, so the last update�w(n+1) is decreased by
the factor 0.5 and added (because the current gradient is negative) to the current weight
w(n+ 1). E is the total error.
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2.1.3 Practical Aspects of Backpropagation

Parallel Computing

We often find the statement in the literature about Neural Networks: “neural networks are

ideally suited for parallel computing applications”. That is true, since every computing

node can perform the task of one single neuron of the network and there are already hard-

ware implementations of parallel neural networks, e.g. for speech recognition, automatic

car steering, etc.

The practical use of backpropagation neural networks can be separated into the following

steps:

Network Design

When experimenting with neural networks, the design of the network is often interactive

and it is mostly the skill of the user that determines the speed of this development process.

The user has to decide on the type of input and output and the type of networks to be used.

This decision process is more or less user and problem driven.

Generation and Preprocessing of Training Data

The next step is to generate sufficient training and test data in order to achieve good neural

network performance, which generally means that it can generalize from the learned train-

ing data to unseen test data. The training data have to be representative of the physical

problem we want to solve. For example, if the multiple suppression problem is essentially

caused by a 1D subsurface structure depending onvp(z), vs(z) and%(z), we need to model

as well as possible the full wavefields and the primary wavefields in a 1D elastic earth.

If the subsurface exhibits 2D or 3D velocity and density variationsvp(x; y; z), vs(x; y; z)

and%(x; y; z), then the 1D modeling algorithms will not be sufficient any longer and other

modeling algorithms which are adequate for 2D and 3D structures have to be used. Train-

ing the network with 1D examples, whereas the real problem is 2D or 3D, will result in a

failure of the neural network to cope with the problem. We can then expect unsatisfactory

results when applied to the real data. An important point is that the training data must be

chosen in such a way that they span the whole experiment space, which is a function of

the elastic parameters, acquisition parameters, wavetypes, etc.
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Training the Network

Once the neural network has been designed and the training data set has been generated,

the network can be trained. We perform the training process generally non-interactively

in batch-mode. The training is stopped when the error at the output layer does not change

significantly anymore, or - and this is very important - when the error of the validation

data set starts to increase again after going through a minimum. This is the point where

overtraining of the network starts to occur.

Testing the Trained Network

After the neural network has been trained, we apply it to some synthetically created test

cases. Here we can quantify directly how the network has performed, because we know

input, output and desired output. Thus we have a direct error measure (least squares error).

A very extensive but thorough method to estimate the performance of the network and to

obtain confidence bounds is the k-fold cross validation technique (Aminzadeh, 1997). In

a seismic example this would require for example computing large numbers of synthetic

seismograms by perturbing reservoir properties and feeding the corresponding attributes

to the network.

Applying obtained Networks to Real Data

After successful performance on the synthetic test data, the trained network is ready to

process real data.
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2.2 Self-Organizing Maps (SOM)

Self-organizing maps are a class of artificial neural networks bearing a much closer re-

lation to the actual biological brain than do the backpropagation networks, which are

merely biologically inspired non-linear filters. An important class of techniques simulat-

ing memory is the associative memory, which will be discussed first, before the theory

and practice of the self-organizing maps as such is presented.

Associative Memory

The concept of associative memory is very old. Already the Greek philosophers (e.g.

Aristotle, 384 - 322 B.C.) formulated the principle:

Events that tend to coincide in time are connected by the human brain.

If you hold a finger into a flame, this will “immediately” lead to pain and to the withdrawal

of the finger. Associative learning essentially is the building of connections between an

external stimulus and the reaction to it (Thompson, 1993). In order to memorize these

connections, some neural alterations (changes of synaptic connections) have to take place

inside the brain. When a certain stimulus/reaction pair is learned, it is stored in a particular

region in the brain, from where it can be recalled later when required.

Even when a stimulus or pattern presented to this memory is noisy or imperfect, the

associative memory is able to correctly recall the stored pattern that is associated with this

stimulus. This feature makes simulations of associative memories prime candidates for

pattern recognition applications. If we assume the memory operator to be linear, we can

express it as
~b = M~a; (2.13)

with the input stimulus~a, the response~b, and the memory matrixM . In the non-linear

case we have
~b = f(M;~a)~a; (2.14)

wheref is a non-linear function ofM and~a.

The linear case is depicted in Figure 2.4 where every neuron acts as a linear combiner,

similar to a perceptron with linear transfer functionf (cp. section 2.1.2). If we want

to store a whole set of pattern vectors~a1;~a2; : : : ;~ak; with the corresponding memorized
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Figure 2.4:Model of an associative memory in the form of a neural network.

patterns~b1;~b2; : : : ;~bk, we can store a certain numberq of these patterns, which is always

smaller than the dimensionalityd of the network.

The memory matrixM is the sum of all the individual weight matricesWk that associate

~ak with~bk:

~bk = Wk~ak (2.15)

M =

qX
k=1

Wk (2.16)

This means that the memory matrixM contains a little piece from every learned stimu-

lus/reaction pair.

We can now construct an estimate of the memory matrixMest:

Mest =

qX
k=1

bka
T
k (2.17)

The memory matrix is based on the outer product of the input and output patterns, and

thus also called thecorrelation matrix memory(Haykin, 1994). Actually, correlation in

general is the basis for learning, recalling memory and pattern recognition.

Another important aspect of associative memory is that it is distributed. That means

different external stimuli are mapped onto different parts of the memory. Research of the

past years has shown that the human cerebral cortex is organized in different areas where

certain brain actions take place. There are special brain areas that perform specialized

tasks, for example, the processing of sensory signals (visual, sensory, somatosensory,

auditory, ...), speech, motor functions, thinking, long term and short term memory (see

Figure 2.5).

It is thought that this topographical ordering of the brain is a very important fea-

ture and thus plays also an essential role in the simulation of intelligent systems. The
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Figure 2.5:The human brain with its receptory fields(from Kohonen, 1998).

“self-organizing map”, developed mainly by Teuvo Kohonen, is such an artificial neural

network whose topographical organization of its neurons is its essential aspect.

2.2.1 Principles of Self-Organizing Maps: Theory

The self-organizing map (SOM) belongs to the class of unsupervised learning techniques

of artificial neural networks, since there is no desired output given during learning. The

network ”organizes itself”, as the name already implies.

A self-organizing map usually consists of a 2-dimensional grid (feature map) of neu-

rons. Sometimes problem dependent 1-dimensional feature maps are used, however, maps

in higher dimensions can be implemented as well. A self-organizing map can be used to

perform a dimensionality reduction, allowing us to project high-dimensional data onto a

2-dimensional map, which is easy to display. Each of these feature map neurons is con-

nected to each input neuron (i.e. there are as many input neurons as one input vector has

components), as is indicated in Figure 2.6.

Clustering

The goal of training a self-organizing map is to separate the input data into several dis-

tinct clusters, which can be - in the 2D case - visualized on the 2-dimensional map. That

means a multi-dimensional input space is mapped onto a 2-D output space. As an ex-

ample, Figure 2.6 displays the clustering of input vectors containing primary wavefield

information into one area of the map (left), and those input vectors containing multiple



2.2 Self-Organizing Maps (SOM) 25

Figure 2.6:A self-organizing map (Kohonen network) with a 2-dim. feature map and a 5-
component input layer. Every input neuron is connected with every neuron of the feature
map.

wavefield information into another area (right).

In general, the clustering aspect is more important than the desire to visualize it. If we

use a 2-dimensional map while the dimension of the data being higher, it can be difficult

to obtain optimal clustering: e.g. data points lying very close together in a higher- dimen-

sional space might be located far from each other on a 2-dimensonal map that is folded

into that space. Figure 2.7 a) shows the principle. The dimension we are dealing with

here is not of the dimension of the input vectors, but the fractal information dimension

(Peitgens et al., 1992), which is defining the information content in the data.

This clustering is carried out by computing differences (or similarities, respectively)

between all input vectors and each of the set of weights connecting the input layer with a

feature map neuron. A commonly used criterion is the Euclidean distance

d =

sX
j

[xj � wj]2; (2.18)

wherej denotes thejth vector component. Ifd is zero, the input~xi and the weight~wi are

identical. Alternatively, the vector product of~xi and ~wi can be used. If it is zero, the two

vectors are orthogonal.
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Figure 2.7:a) A data set with a fractal dimension of 3, trying to cluster on a 2-D map.
The two points that are close together in 3-D are far apart on the 2-D map. b) Weight
update: the weight~wi(n) is moved into the direction of the input vector~xi(n) producing
~wi(n + 1) which in turn is updated during the next iteration: c) The next input vector
~xi(n+ 1) leads to an update of the weight into its direction (n is the iteration index).

The weights are initialized randomly and should - in the end - form a topologically

ordered clustering of the input vectors.

An important remark: the location of the neurons on the map and the weight vectors

are two different things that should not be confused. Every neuron has its fixed location

on the grid and is associated with a weight vector having as many components as the input

vector.

Training

For training the neural network, we present all the input vectors, one at a time, to the net.

Each input vector is compared to every weight vector associated with every neuron, i.e.

the Euclidean distance is computed. The one feature map neuron having the weight vector

with the smallest difference (or highest similarity, respectively) to the current input vector

is the winning neuron. This is the “winner takes all” concept of neural computation. The

weight of this winning neuron is now updated in the direction of the input vector. That

means, if this input vector is presented to the net a second time, this neuron is very likely

to be the winner again, and thus represent the class (or cluster) for this particular input

vector. Clearly, similar input vectors will be associated with winning neurons that are

close together on the map.



2.2 Self-Organizing Maps (SOM) 27

The weight update is performed, using the difference of the current input vector~xi

and the current weight~wi(n), wheren is the iteration number:

~wk
i (n+ 1) = ~wk

i (n) + �(n)[~xi � ~wk
i (n)]: (2.19)

The indexk denotes the winning neuron, and�(n) is the learning rate, which should

decrease with increasing number of iterations.

An important point, related to the topology-ordering feature of the SOM, is that the

neurons are also connected to their neighboring neurons. In other words, during a weight

update not only is the weight vector of the winning neuron updated, but also the weight

vectors of the neighboring neurons are updated in accordance with a “neighborhood func-

tion”. This neighborhood function often is chosen to be Gauss-shaped, so that the weight-

update becomes smaller with increasing distance from the winning neuron.

This results in a special kind of vector quantization such that the weight vectors be-

come ordered in a way that they represent the input vectors on an “elastic” grid. If there

are changes at one location on the grid, this change affects the neighborhood of this neu-

ron. However, the further away it is located the less influence this change has.

In this way, a map evolves, where every region represents a class of input vectors, or,

in other words, we try to represent a data set (the input vectors) by a number of weights,

each of which (or several of them) represents the mean of a certain class or cluster of

input vectors. By training we try to establish a configuration where each weight lies in

the middle of a cluster of input vectors. If we present during training an input vector,

one weight vector will be closest to this input vector, this is the weight pertaining to the

winning neuron. Thus, in order to get this weight vector into the middle of its class, we

must move it into the direction of this input vector. If it is the winning neuron again, when

presenting another input vector, we will move it into the direction of this input vector (i.e.

maybe a little away from the first input vector, but hopefully into the middle of the two),

and so on.

In the beginning of the training not only the weight of the winning neuron is moved

but also the weights of the neighboring neurons within a certain radius. This strategy

improves the convergence behaviour (Haykin, 1994). This radius is decreased during

learning. Thus in the beginning there is a lot of movement and the weight vectors can

be ordered roughly to their final locations. In the end only the single weight vectors are
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moved (fine tuning).

The training procedure is given as follows:

1. Normalize the input data so that all values of each single component of all input

vectors have an RMS value equal to one.

2. Initialize connection weights

a) randomly or b) using a subset of input vectors.

3. Compute the similarity between the first input vector and all connection weights by

using either

(a) the Euclidian distanced =
p

(x1 � w1)2 + (x2 �w2)2 + : : :+ (xN � wN )2.

If d = 0 then the input vector is equal to the weight vector.

If d 6= 0 then the input vector points into another direction as the weight

vector.

(b) or the vector product~x � ~w.

If ~x � ~w = 0 then the two vectors are orthogonal.

If ~x � ~w = 1 then the two vectors are parallel.

4. The neuron having the connection weights with the highest similarity to the input

vector is the winning neuron (“winner takes all”).

5. Move the winning neuron in the direction of the input vector and also the neighbor-

ing neurons according to a neighborhood function with a certain radius.

6. Decrease the radius of the neighborhood function (i.e. the radius of the neurons that

are updated along with the winning neurons).

7. Feed the neural net with the next input vector and go back to step 3.

Repeat this procedure until convergence, e.g. until the error between the input data

and the corresponding neuron representing their class falls below a certain threshold.
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Using the trained SOM

Once the SOM is trained, it can be used to cluster the training data or other data. For the

backpropagation network it does not make much sense to test the net with the training

data, since we know the result already, and we want the network to generalize to new

data, making predictions using physical laws extracted from the training data.

The SOM behaves differently: we do not have a desired output, since it is an unsuper-

vised learning technique. However, we have to extract the information on how the data

have been clustered from the SOM. This is done as follows (see also Figure 2.9):

The neurons of the SOM feature map are colored according to the clusters that have

emerged from training. A means of visualizing these clusters is the unified-distance-

matrix (U-matrix)Uij. It contains the mutual distancesdij between the weights of all

neighboring neurons fori 6= j:

Uij =

2
66666664

d11 d12 d13 : : : d1j

d21 d22 d23 : : : d2j

d31 d32 d33 : : : d3j
...

...
...

...
...

di1 di2 di3 : : : dij

3
77777775
; (2.20)

for a feature map withi � j neurons. The values ofUij for i = j are the normalized

standard deviations of all weights connected to this neuron. Figure 2.8 shows an example

of a U-matrix, where the locations of the neurons are marked with little white squares. A

cluster is defined by an area on the U-matrix where the distances of the weights connected

to neighboring neurons is less than a specified threshold value. As soon as the distance

exceeds this threshold, a new cluster begins. Every cluster is then given a different color

from the available color table.

Each of these colored neurons is associated with a weight vector~w, whose compo-

nents are displayed as little spheres of various sizes in Figure 2.9. If we present an input

vector~x, which has the same number of components as~w, to the SOM, it is compared

to all the weight vectors. The neuron with the most similar weight is the winning neuron

and the input vector~x is tagged with the color of this neuron. In this way all the input

vectors get an individual color code, based on where on the map they are classified to.

However, to perform a decisive clustering analysis, some of the input vectors have to

be labelled. In the case of differentiating primary events from multiple events, we have
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Figure 2.8:Example of an U-matrix or unified distance matrix, which contains the dis-
tances between neighboring neurons. It is used to visualize the cluster structure of the
map.

Figure 2.9:Applying the trained SOM: the neurons of the feature map are colored accord-
ing to the clusters defined by the U-matrix, and each of them is associated with a weight
vector, here with 4 components corresponding to a 4-component input vector. The input
vector gets the color of that neuron whose weight is most similar to this input vector.
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to know that some events in the data are definitely primaries and others multiples. This

gives us the possibility to label the various areas on the trained SOM, and classify all the

other events, not knowing before if they are primaries or multiples.

2.2.2 SOM Application Example

This simple example demonstrates the use of the self-organizing map. The eight training

patterns are the coordinates of the vertices of a three-dimensional cube of size 2x2x2

centered at the origin (see Figure 2.10 a), with vertex coordinates from (-1, -1, -1) to

(1, 1, 1). The self-organizing map is a two-dimensional 16x16 grid of neurons. The

determination of the size of the map is somewhat intuitive, but can be constrained by the

expected number of classes. If it is too small, classes could overlap, whereas for large

networks training time will increase quite fast. The three-dimensional input vectors are

mapped to different positions on the two-dimensional map. Since this method belongs to

the class of unsupervised learning, the training patterns consist only of input data and no

desired output data.

The network orders the input vectors conserving the relationship to each neighbor

class. If the corresponding contours are plotted (Figure 2.10 c), d) and e) ) we can see that

the vertices of the cube are ordered in a way that different sides of the cube are separated

(upper side - lower side, right side - left side, front side - back side).

What we see in these Figures are the component maps. These component maps show

the magnitude of the connection weights between only one component of the input vector

and all feature map neurons. So, in this example, the first component map (Figure 2.10

c)) shows the weight amplitudes for the z-coordinate of the input patterns (the vertices of

the cube). The second component map (Figure 2.10 d)) shows the weight amplitudes for

the y-coordinate, and the third (Figure 2.10 e)) for the x-coordinate.

Another illustrative example, using the MATLAB Toolbox for Self-Organizing Maps

written by the SOM working group of the Helsinki University of Technology (Kohonen,

1997b), is shown in Figure 2.11. The 3-dimensional input data we want to cluster on a

2-dimensional feature map are the x-, y-, and z-coordinates of random data points, which

are roughly located in three cubic volumes in 3-D space (see Figure 2.11 a)). Is the SOM

able to separate the three different clusters on a map with one dimension less than we

have in the data? The answer to this question is very interesting, because it tells us if
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the dimension of the information in the data really is 3, or if it actually only is 2. Figure

2.11 b) gives the answer: On the upper left panel we display the U-matrix or unified

distance matrix, which contains the distances between neighboring units. It is used to

see the cluster structure of the map. It contains information from all components. As we

can see the upper part of the U-Matrix forms a cluster separated from the two clusters in

the lower part. So the SOM was able to separate the data into three clusters (separated

by light blue areas) on the 2-D map. The other three panels show the component maps,

already explained above. Also here we can see three distinct regions on every component

map.
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Figure 2.10:a) The coordinates of the eight vertices of this cube form the input for the
network. b) The trained network shows the result for vertex no.2 as input. The numbers
represent the winning neurons for the corresponding input patterns. c) d) and e) show
component maps: c) 1,2,3,5 form the upper side and 4,6,7,8 the lower side of the cube,
i.e. here the z-component is shown. d) 1,2,4,6 form the right side and 3,5,7,8 the left side
of the cube, i.e. here the y-component is shown. e) 1,3,4,7 form the front side and 2,5,6,8
the back side of the cube, i.e. here the x-component is shown.

Figure 2.11:a) Input data for the SOM: three clusters of random points within cubes
of fixed size. b) Top left: U-Matrix, showing the SOM feature map with the colors
representing the relative distance of the corresponding neuron to the neighboring neurons.
Top right: component map for the x-coordinate. Bottom left: component map for the y-
coordinate. Bottom right: component map for the z-coordinate. (Remark: in this example
a hexagonal grid instead of a rectangular one was used.)
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Chapter 3

Seismic Attributes

Since Taner, Koehler & Sheriff in 1979 introduced complex seismic trace analysis in

Geophysics, the development of seismic attributes has found a multitude of applications,

especially for reservoir characterization. A recent publication (Chen and Sidney, 1997)

listed over a hundred different attributes. In general, all quantities that we can compute

from seismic measurements - 2-D or 3-D, prestack or poststack, time-migrated or unmi-

grated - are seismic attributes. Many of them have a physical meaning, and only those will

be considered in this work. They vary from the instantaneous amplitude of the seismic

trace to such computationally complex parameters as for example the radius of curvature

of a normal-incidence wavefront.

Physical attributes are computed from seismic traces. The theoretical model of this

seismic trace consists of a reflectivity series that is the impulse response of an elastic or

acoustic model of the subsurface with the corresponding elastodynamic (equation 1.1) or

acoustic wave equation underlying it. This reflectivity series convolved with the source

wavelet is defined to be the seismic trace. Each seismic trace is a recording of information

from the subsurface. Physical attributes constitute a means of extracting this information

without applying complicated inversion procedures. Important properties such as energy

transport, phase changes, frequency content, amplitude attenuation, wavefront charac-

teristics, and others, provide us with the necessary information to distinguish between

individual parts of the seismic wavefield.

An important class of attributes is based on the complex seismic trace, and will be

described next. Another set of attributes, the wavefront attributes, are treated in a later
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section (3.3). The complex seismic trace, or analytic signal (Taner et al., 1979) is defined

as

F (t) = r(t) + ig(t); (3.1)

where the real partr(t) is the recorded seismic signal and the imaginary partg(t) is

the Hilbert-transform ofr(t) (also called the quadrature trace). The Hilbert-transform

(Bracewell, 1965) can be realized by an allpass filter with a90�- phase shift in the time

domain, for example.

Attributes computed from the complex seismic trace can be subdivided into instantaneous

(referring to an instant of time) and wavelet attributes (referring to a time window).

3.1 Instantaneous Attributes

Instantaneous attributes are computed directly from the seismic trace. The ones used in

this dissertation are:

1. Envelope

E(t) =
p
r2(t) + g2(t) (3.2)

represents the total instantaneous energy and describes the energy flux in the sub-

surface. It is independent of the phase of the signal.

2. First derivative of the envelope
dE(t)

dt
(3.3)

represents the rate of change of the envelope, and tends to show the onset of wavelets

in a seismic trace.

3. Second derivative of the envelope

d2E(t)

dt2
(3.4)

tends to show all peaks of the envelope, thus emphasizing all reflections in the

seismogram.

4. Instantaneous phase

p(t) = arctan(
g(t)

r(t)
) (3.5)
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Using the quantities above the analytic signal can be also expressed as

F (t) = E(t)e ip(t) (3.6)

leading to the alternative formulation

p(t) = = [logF (t)]; (3.7)

where= denotes the imaginary part andlog is the principal value of the complex

logarithm. The instantaneous phase is a measure of continuity of the propagating

wave in the medium. At every discontinuity the wave suffers a phase change.

5. Instantaneous frequency

f(t) =
dp(t)

dt
(3.8)

represents the temporal rate of change of the instantaneous phase. For practical

applications the difference formula is preferable:

dp(t)

dt
= =

�
1

F (t)

dF (t)

dt

�

�
2

�t
=

�
F (t)� F (t��t)

F (t) + F (t��t)

�
(3.9)

=
4

�t

r(t��t)g(t)� r(t)g(t��t)

(r(t) + r(t��t))2 + (g(t) + g(t��t))2
;

with �t the sample rate. The instantaneous frequency often shows large fluctua-

tions, especially in areas with low signal-to-noise ratio, but indicates every change

in the phase behavior. Therefore, it is used as an indicator for the bedding thickness

of the layers.

6. Envelope weighted instantaneous frequencyP
T [E(t)f(t)]P

T E(t)
(3.10)

whereT is the window length, depending on the desired degree of smoothing.

This is a smoothed version of the rather rapidly varying instantaneous frequency

attribute.
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7. Acceleration of phase
df(t)

dt
=

d2p(t)

dt2
(3.11)

shows jumps in the instantaneous frequency, which indicates events arriving close

after another. Thus, this attribute is often used as a thin-bed indicator.

8. Dominant frequency

f̂ =

Z
1

f=0

fP (f)df=

Z
1

f=0

P (f)df; (3.12)

whereP (f) is the power spectrum of the signal and where we assume thatP (f) is

uni-modal, or

f̂ =
1

T̂
; (3.13)

with T̂ denoting the dominant period measured between two successive peaks or

troughs.

9. Bandwidth

bw(t) =

Z
1

f=0

(f � f̂)2P (f)df=

Z
1

f=0

P (f)df (3.14)

bw(t) =
dE(t)

dt
=(2�E(t)) (3.15)

For a propagating wave, the earth acts as a low-pass filter. Reflections coming

from deep reflectors are lacking the high frequencies, whereas the bandwidth for

shallow reflections is considerably broader. Therefore, also multiples should show

a tendency to larger bandwidth, compared to primaries appearing at the same zero-

offset time.

10. Instantaneous Q-factor

Q(t) =
�f(t)

�v
(3.16)

with the absorption coefficient� and the velocityv. The attenuation of the ampli-

tude of seismic waves in elastic media is frequency-dependent. Thus, we can expect

a different Q-factor for primaries and multiples, since they often have different fre-

quency content (or bandwidth).
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11. Apparent polarity

Defined as the relation of a peak or trough of a seismic reflection to the sign of the

reflection coefficient, i.e. a peak would indicate a positive reflection coefficient and

vice versa. (Sheriff, 1991).

3.2 Wavelet Attributes

The seismic trace is a superposition of a number ofwavelets. Their temporal length can

be defined as the time from one minimum of the envelope of the seismic trace to the

next. We compute only one attribute value per wavelet. Wavelet attributes are thus the

instantaneous attributes picked at the envelope peaks.

The formulas for the wavelet attributes I use are the analogs of the instantaneous

attributes listed in the previous section.

3.3 Wavefront Parameters

Stacking Velocity

In the seismic processing flow there is an important step called velocity analysis. It is used

for creating a macro-velocity model that consists of the stacking velocities for selected

reflection events. Stacking these events with the correct stacking velocity (which is related

to NMO and root-mean-square (RMS)-velocity) in the common-midpoint (CMP) gather

produces a simulated zero-offset (ZO) section. Conventional velocity analysis is based on

the assumption that an event in a CMP gather has an approximately hyperbolic travel-time

curve:

t2(x) = t20 +
x2

v2Stack
; (3.17)

wheret0 is the zero-offset time,x is the offset andvStack the stacking velocity.

Scanning through all relevant velocities fromvmin
Stack to vmax

Stack and performing a co-

herency analysis (e.g., semblance) along the corresponding hyperbolae for each zero-

offset timet0, we get one value forvStack at which the coherency measure is at a maxi-

mum. This is the optimal stacking velocity of this event and represents a very significant

attribute that is used later in this thesis for primary-multiple discrimination.
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In general, primary events have higher stacking velocities than multiples appearing

at similar zero-offset times. However, for internal multiples created at a velocity inver-

sion, the opposite situation occurs. An example of a velocity analysis result, the velocity

spectrum, is shown along with the corresponding CMP gather in Figure 3.1.
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Figure 3.1:Left: CMP gather with primary and multiple events. Right: corresponding
velocity spectrum. Some events are labelled. There are some artefacts due to cutting
effects in the velocity spectrum and some weak events have very low semblance.

Emergence Angle and Radii of Curvature

Using an alternative description of rays in laterally inhomogeneous media, Tygel et. al

(1997) showed that traveltimes of a reflected event can be expressed in terms of the three

wavefront parameters,

1. the emergence angle�0 of the zero-offset ray,

2. the radius of curvature of the normal-incidence-point waveRNIP , and

3. the radius of curvature of the normal waveRN :

t2(xm; h) =

�
t0 + 2

sin�0
v0

(xm � x0)

�2

+ 2t0
cos2�0
v0

�
(xm � x0)2

RN
+

h2

RNIP

�
; (3.18)
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wheret0 is the zero-offset time,v0 the near-surface velocity atx0, xm the midpoint and

h the half-offset coordinate. The NIP-wave and the N-wave are hypothetical waves in-

troduced by Hubral (1983). Figure 3.2 shows a sketch of the important parameters and

waves.
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N waveN wave

NIP wave

Figure 3.2:The wavefront parameters are computed at the zero-offset locationx0. The
emergence angle�0 is measured between the normal ray (going fromx0 to the normal-
incidence point NIP) and the surface-normal.RNIP is the radius of curvature of the wave
generated by a point source at NIP.RN denotes the radius of curvature of a wave generated
by the “explosion” of a reflector element. Here a constant velocityv0 is assumed between
surface and reflector.

Instead of having only one parameter (vStack) in the normal-moveout formula, we

now have three parameters (�0; RNIP andRN ) that provide essential information about

the reflected event and can serve as attributes for the discrimination of primaries and

multiples. However, this implies that we have to perform a three-parameter search over

all gathers and zero-offset times instead of only scanning through one parameter in order

to find the optimal stacking hyperbola. In practice this causes problems due to immense

computation time (e.g. the range of the radii is[�1 : +1]). Müller (1999) solved

this problem by conducting three one-parameter searches instead of one three-parameter

search. First, by searching only in the CMP domain, equation 3.18 reduces to equation

3.3, wherevStack is a combination of the two parameters�0 andRNIP . When the optimal

value of this combined parameter is found, a one parameter search in the ZO domain is

carried out. The restriction of equation 3.18 to the ZO-configuration results in a formula
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for two unknown parameters:�0 andRN . In a first-order approximation in(xm�x0) this

description can be further reduced to depend on the emergence angle�0 only. After having

found the optimal value for�0 we can calculateRNIP from the combined parameter

determined in the first step. In a final step, we use the exact formulation in the ZO domain

which is dependent on�0 andRN , and search forRN to determine this last parameter.

These steps produce first estimates of the three wavefront parameters, which can now

be refined by use of optimization techniques. However, tests have shown that the first

estimates do not deviate much from the optimized values. Since in this thesis these pa-

rameters are used as inputs to neural networks, which generally work better and are more

robust in the presence of weak noise, I decided to use the non-optimized parameter values.



Chapter 4

Multiple Prediction and Attenuation

with Backpropagation Neural Networks

4.1 Trace by Trace Multiple Attenuation

To investigate the behavior of the neural network and - for comparison - the Wiener filter

with the attenuation of multiple reflections in synthetic data, I generated a subsurface

model and computed a number of seismograms. The model is made up of three deep

reflectors. The two-way travel-time (TWT) of the primary reflection of each reflector

is allowed to vary�100 milli-seconds. The reflectors have a variability of 0.2 in the

reflection coefficients. The water surface reflection coefficient is -1. The sea bottom is

at a fixed TWT of 90 ms with the reflection coefficient varying in the range [-0.5 : -0.3].

Table 1 shows the model. The relatively high reflection coefficients were chosen in order

to see clearly how either the neural net or the Wiener filter affects the signal.

TABLE 1. Synthetic model for trace-by-trace multiple attenuation.

reflector TWT [ms] refl. coeff.
water surface 0 -1
water bottom 90 [-0.5 : -0.3]

1. deep reflector 220 - 420 [0.6 : 0.8]
2. deep reflector 550 - 750 [-0.6 : -0.4]
3. deep reflector 760 - 960 [0.7 : 0.9]
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Figure 4.1:Training of the neural net (multi-layer perceptron, MLP): Presentation of the
training set consisting of 100 seismic traces containing free-surface and internal multiple
reflections and different amounts of noise at the input layer and simultaneously providing
the desired output, i.e. the arrival time and reflection strength of the primary reflections.

By propagating a vertically incident plane wave through different reflector configurations

(i.e. depth and reflection coefficient are chosen randomly within their respective ranges),

a set of 200 different seismograms was calculated, convolved with a zero-phase wavelet,

perturbed by various amounts of noise, and finally split into one set of 100 training pat-

terns and another set of 100 test patterns. A pattern is defined here as a single seismic

trace. Figure 4.1 at the bottom shows one example of such a seismic trace, containing

free-surface as well as internal multiples (cp. section 1.1). The signal-to-noise ratio is

S/N = 2.0 in this example.

As depicted in Figure 4.1, the neural net input is the seismic trace containing free-

surface related and internal multiple reflections and noise, and the desired output is the

seismic trace with only the primary reflection events, which are known from the given

synthetic model. According to the problem, the neural network consists of 100 input

neurons, between 10 and 30 hidden neurons, and 100 output neurons. The training time
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varied according to the contamination of the seismograms with noise. For the noise-free

training set about 100 to 200 training epochs were sufficient, whereas for the noisy data

sets (e.g. S/N = 0.6) the network needed up to 1000 such epochs.

The neural net output gives the arrival times as well as the reflection strengths of the

desired primary reflections. However, the amplitude characteristic of the seismic wavelet

is destroyed. Thus, this method is not applicable if in a subsequent processing step true

amplitudes of the seismic trace are required, although the reflection strengths of the indi-

vidual reflectors are reproduced quite reliably.

The set containing the 100 test patterns was not only presented to the trained neural

net but also to a Wiener prediction filter (Robinson and Treitel, 1980), with prediction

distance� = 80 ms, and of length 300 ms. This parameter choice proved to yield the best

results for this data set.

Figure 4.2 shows the result for a given trace for neural net testing on the left, and for

Wiener filtering on the right. The figure shows one example out of 100 test traces with

signal-to-noise ratios ranging from the noise free case (trace 2) to aS=N ratio of 0.6 (trace

5). Trace 1 is the desired output, i.e. the actual reflectivity series for this example.

Figure 4.2: The neural net performance (to the left) and the Wiener filter (predictive
deconvolution) performance (to the right) on deconvolution for synthetic seismograms
with various amounts of noise. Only one example out of 100 is shown for each signal-
to-noise ratio. Trace 1 is the true reflectivity, traces 2 - 5 show the neural net output or
Wiener filter output, respectively.

The performance of the neural net and of the Wiener filter for the whole test set is

pictured in Figure 4.3, which shows the percentage of correctly detected reflectors from
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all 100 test traces. The percentage of correct neural net detections is plotted versus the

percentage of correct Wiener filter detections. The 45-degree line separates the area where

the neural net performance is better (white area) from the area where the Wiener filter

yields higher detection rates (gray area). On the two diagrams, significantly more dots lie

in the white area, demonstrating that the neural net shows an overall better performance.

The left part of Figure 4.3 shows the performance with respect to the different amounts

of noise in the data. It can be seen that with increasing amount of noise, the performance

of both the neural net and the Wiener filter generally becomes worse. However, the noise

factor is not as crucial for reliable event detection as the travel-time of the respective

reflection event. The right part of Figure 4.3 depicts the performance with respect to the

four different reflectors. The water bottom (o), for example, is always detected to 100%

by the neural net, while the Wiener filter only scores 100% for the noise-free case (68%,

51%, and 37 %, respectively for increasing noise).
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Figure 4.3:The neural net performance plotted versus the Wiener filter (predictive de-
convolution) performance in % of correctly detected events. Left: detection percentage
ordered by noise content of the seismic data. Right: detection percentage ordered by
reflector depth. The 45-degree line separates the area where the neural net performance
is better (white area) from the area where the Wiener filter yields higher detection rates
(gray area).

To create the plots of Figure 4.3, each output trace was divided into windows centered

at the true reflection event and only the neurons with the highest output in the correspond-

ing windows were taken into account. The diagram displays how often (in %) the neural

net activated the correct neuron (i.e. within a deviation of�1 time samples from the cor-

rect value). Since the water bottom does not change depth, it is detected with a score of

100% by the neural net. This provides a criterion to assess the proper functioning of the
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algorithm. The Wiener filter, on the other hand, does a better job only for the shallow-

est deep reflector (�). This reflector has a very high reflection coefficient and thus the

reflection event is not distorted much by multiples. The second deep reflector (�) is the

hardest to detect correctly for both the neural net as well as for the Wiener filter because

the signal here directly interferes with a strong multiple. Around 60% of the neural net

picks lie within a range of�1 time samples around the true value, whereas the Wiener

filter performance only lies between 18% and 35%. For the third deep reflector (O) the

neural net shows detection rates that are similar to those for the second deep reflector. The

Wiener filter also performs better than for the second reflector, possibly because there is

not as much interference with multiple energy.

For the noisy data sets the neural net performance, as well as the Wiener filter per-

formance, decreases with increasing noise levels. It has to be noted that the score for the

Wiener filter always has its peak value at a deviation of 50 ms from the correct value (see

the traces in the right panel of Figure 4.2). The reason for this is the difficulty in picking

the onset of a seismic wavelet, which the Wiener filter tries to restore in the filter process.

Therefore I decided to pick the peak value of the wavelet, which is at a constant offset

of 50 ms. The output from predictive deconvolution has to be processed further with a

spiking deconvolution operator in order to achieve even sharper events.

Due to its high reflection coefficient, the first deep reflector is detected quite reliably

by the Wiener filter. However, in the presence of noise it fails almost completely for

reflectors at greater depth, whereas the neural net still shows a clear trend for correct de-

tection. It is hard to give an objective measure of comparison between the results of the

neural net on the one hand and the Wiener filter on the other, because in seismics the suc-

cess of a processing step is often judged by visual inspection. Criteria that involve input

data for success assessment are biased by the underlying assumptions of the algorithm and

thus cannot really provide an independent measure (an example is the residual wavelet).

Thus, if a method reveals subsurface structure or information that was previously hidden

or distorted, it is rated as successful, even if the overall change in the data is very small.

Table 2 shows the correlation coefficients between the desired and actual output for the

neural net and the Wiener filter. The tabulated coefficients represent average values for

the entire test set of 100 traces.
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TABLE 2. Correlation coefficients between the desired and actual output for the neural net and
for the Wiener filter. The tabulated coefficients represent average values for the entire test set of

100 traces.

neural network Wiener filter
no noise 0.67 0.49

S=N = 2:0 0.36 0.35
S=N = 1:0 0.28 0.28
S=N = 0:6 0.27 0.25

This test represents a situation where the Wiener filter should have performed per-

fectly, since all assumptions were satisfied: the multiples were strictly periodic, the re-

flections sparse, and the wavelet was not changing its shape. In the presence of noise

the physical model underlying the Wiener filter theory does not describe the situation

precisely enough.

4.2 Multiple Attenuation with Neural Net Ensembles

In real seismic data processing we not only deal with seismograms from vertically inci-

dent plane waves (as in the previous section). We normally record seismic data in shot

gathers with offsets from 100 m up to a few km. A typical shot gather is shown in Fig-

ure 4.4, right. Now the attenuation of multiple reflections in marine seismic sections is

shown for an entire profile by training an ensemble of neural networks. I demonstrate the

method on a synthetic data set and train different neural nets for different offsets in the

seismograms. This corresponds to performing neural net deconvolution in the common-

offset domain. After deconvolving all common-offset gathers, the data are resorted into

common-midpoint gathers and then stacked.

To test the performance of neural network deconvolution on synthetic data, I created a

subsurface model, consisting of several reflectors. The sea bottom dips from 200 m to

300 m in depth, and the six deeper interfaces have the form shown in Figure 4.6, left. The

total depth of the model is about 4 km. This 2-D model was then assumed to be horizon-

tally stratified locally (within 4-km intervals inx-direction). This was done in order to use
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Figure 4.4:Left: convergence behavior of all 40 neural networks. Right: a typical shot
gather containing free-surface and internal multiples and wave conversions.

the reflectivity method (Fuchs and M¨uller, 1971), which requires a 1-D subsurface geom-

etry with vP (z), vS(z) and%(z) for computing the reflection seismograms. I calculated

a set of 100 reflection seismograms (CMP gathers), containing free-surface multiples, in-

ternal multiples and converted waves, which were then resorted into common-offset (CO)

gathers.

The reflectivity method can switch on or off the various kinds of multiples and/or

conversions. The reflectivity matrixrD=U
i contains the reflection coefficientsri for theith

layer for downward (D) or upward (U) propagation of the wavefield given in the form:

r
D=U
i =

 
rPP;i rPS;i

rSP;i rSS;i

!
; (4.1)

with PP denoting incident and reflected P-wave,PS incident P and reflected S-wave,

SP incident S-wave and reflected P-wave, andSS incident and reflected S-wave.

If we want to switch off internal multiples, we have to set the reflection coefficients

for downward reflection

rDPP ; r
D
SP ; r

D
PS; r

D
SS = 0 for all layersi.

Setting the respective downward reflection coefficients of the free surface to zero, pro-

duces a seismogram without free-surface multiples. This method is therefore a practical

tool for testing neural network multiple attenuation, since it permits to produce input data

(full wavefield) and desired output data (primaries only) with the same algorithm. The

section with the smallest offset containing free-surface and internal multiples and con-

versions is shown in Figure 4.5, left. This is the input for a given neural network. The

stack of all CMP gathers containing only primary reflections, which is the desired result
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for the deconvolution efforts, is shown in Figure 4.6, left. Figure 4.5 (right) shows a stack

of the data after normal move-out (NMO) correction with the known velocity model. If

the section in Figure 4.5, left is compared with this stacked section, we observe that many

multiple reflections have already been attenuated. However, it was assumed that we know

the subsurface velocity model. In the very common case when we do not have a correct

velocity model available, the NMO-stack yields far worse results. If we have some infor-

mation about the subsurface from well-logs in the region, the neural net method produces

better results when we do not know the exact 2-D velocity model for the whole profile.

For suppressing the multiple energy in the data an ensemble of neural networks was

designed to perform deconvolution in the common offset domain. This makes more sense

than processing in the CMP domain, where the neural net would have to average over

all offsets. Since the structure of the information varies greatly from near to far offset,

a neural net would have to adapt to a large pattern space, which leads to poorer results.

This latter way of processing would be analogous to the application of a single prediction

filter to all offsets in the conventional case.

After resampling the data from a 4 ms to a 16 ms time interval, and from a spatial

interval of 25 m to one of 100 m, 40 sections were obtained, each containing 100 traces.

These data were split into a training set containing every 4th trace of each section and a

test set containing the remaining traces. This would correspond to a real world situation

where we have well-log information from boreholes every 4 km, with the aim to interpo-

late the subsurface structure from the seismic data between the boreholes. Although such

well-spacing exists in some oil fields, in general the number of boreholes is very small,

since wells are expensive to drill. My experiments suggest that it is not necessary to have

more than a few boreholes available. A neural network was trained with seismograms

that were computed from artificial variations of real well-log data and achieved good re-

sults. The well-log variations should mimic the geologic situation in the investigation

area, since a reflector that does not appear in the training data is unlikely to be detected.

On the other hand, the neural net is not a mere interpolator between well-log data in

the traditional sense. It learns to extract the physical laws and relationships leading to

subsurface information from seismic data, and additionally makes use of the available

geologic data from borehole measurements (sonic and density logs).

For the different offsets in the CMP gathers different neural networks were trained
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Figure 4.5:Left: input for the neural network (CO gather of the nearest offset, containing
the full wavefield). Right: NMO-stack of the input data using the known velocity model.

Figure 4.6:Left: stack of the CMP gathers containing primaries only (desired output).
Right: after neural network deconvolution (stack of the deconvolved CMP gathers).

- one for each offset. The Rprop algorithm (Riedmiller and Braun, 1993, chapter 2)

proved to be most efficient for this task. I tested different network configurations, of

which a three-layer network with one hidden layer converged to the lowest minimum and

produced the best results. The stack of the neural net output is shown in Figure 4.6, right.

4.3 Conclusions

Several deep primary reflections were detected, and multiple energy was attenuated sig-

nificantly. The convergence behavior of all networks for the different offsets is shown in

Figure 4.4, left: The training error is plotted versus the number of iterations and the offset

(in the CMP gathers). Convergence normally was reached after already 100 iterations, but

for offsets around 1 km the error remained at a higher level. For this offset many reflec-

tion hyperbolae intersect, so that the information provided to the neural net is ambiguous

(compare with the shot gather in Figure 4.4, right).
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This example demonstrates that the neural network can detect primary reflection events

in data highly contaminated by multiple energy. Even the shape of completely hid-

den deep reflectors was revealed, given some information from well-logs. This specific

method cannot work without any subsurface information from sonic or density logs. The

borehole data represent constraints for the inversion of the seismic data, while the seismic

data is used to infer the structure in the time section between the wells.



Chapter 5

Attribute based Multiple Prediction and

Attenuation with Backpropagation

5.1 The Method

An alternative approach to the method of trace-by-trace multiple attenuation described

in the previous chapter is the attribute based multiple prediction and attenuation method,

developed within the scope of this thesis. All traditional multiple attenuation techniques

based on filtering have one thing in common: they remain in one parameter domain and

depend on the assumption that the transformation of the data into this domain separates

primary from multiple reflections (e.g.f � k filtering). The idea of the method described

in this chapter is to combine the different discriminatory powers in the various domains

and use meaningful attributes from each data space. If a multiple cannot be separated

from a primary in the velocity spectrum, this might be possible in the f-k domain or vice-

versa. Feeding the neural net with selected attributes from as many different domains

as possible leaves the decision with the neural net to determine which combination of

attributes corresponds to a primary or to a multiple.

This approach has the beauty that, depending on the choice of the desired output, we

can do multiple prediction or alternatively multiple attenuation. Figure 5.1 depicts the

principle. The input is always a number of carefully selected attributes computed from

the full wavefield seismograms. If we have an estimate of free-surface and/or internal

multiples available, e.g. from other multiple prediction methods, these are used as the
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Multiple Attenuation

Figure 5.1:Multiple identification and attenuation with backpropagation neural networks:

desired output and the algorithm predicts the desired type of multiple. Modelling on the

other hand can be used to produce sections with primary information. Using these as the

desired output provides the possibility of multiple attenuation.

5.2 Multiple Attenuation in a Simple 1-D Elastic Data Set

For a simple elastic synthetic data set (a representative shot gather is shown in Figure

5.3 on the left hand side), generated with the reflectivity method (Kennett, 1979) which

is based on the elastodynamic wave equation in 1-D media the following instantaneous

attributes (cp. chapter 3) were computed for each time sample:

� the amplitudes of the five near-offset traces in each seismic section,

� the travel-time,

� the envelope of the first trace,

� the maximum value of the velocity spectrum (semblance) for each time sample,

� the peak location in the velocity spectrum for each time sample (i.e. the velocity

corresponding to the highest peak in the spectrum),

� a horizontal window from the velocity spectrum for each time sample,

� the instantaneous phase, and

� the instantaneous frequency.
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This resulted in an input vector with 58 components for each time sample. For this data

set, the instantaneous attributes were used and produced the most consistent results. The

principle of my approach is shown in Figure 5.2. All attributes were normalized in such

a way that each attribute had zero mean and a standard deviation of 1. The velocity

spectrum is computed using semblance as the coherency criterion, which is the ratio of

the output to the input energy of an M-channel signalf within a time gate of length N

(Neidell and Taner, 1971):

S =

PN
j=1f

PM
i=1 fi;j(i)g

2

M
PN

j=1

PM
i=1 f

2
i;j(i)

: (5.1)

Attributes derived from this velocity spectrum are particularly meaningful since the move-

out information is contained there. The different moveout of a primary and a multiple

manifests itself in different stacking velocities and thus in distinct spots in the velocity

spectrum:

Primary: t2(x) = t20 +
x2

v2primary

(5.2)

Multiple: t2(x) = t20 +
x2

v2multiple

(5.3)

All seven reflectors were picked from the synthetic sections containing only the primaries,

and used this information as the desired output for the training. Then I split the whole

data set into a training and a test set, and trained a network with 58 input neurons (for

the 58 attribute values), 8 to 20 hidden neurons and one output neuron. After several

trys with different configurations this network showed best convergence and produced

the best results. The single-node output of the net can be configured to deliver a “one”

for the presence of a primary event and a “zero” for its absence. However, to obtain a

feeling for network classification reliability, I allowed a continuous output instead of the

hard-limited zero or one. The results for one example of a shot gather are shown in Figure

5.3.
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Figure 5.2:Attribute based multiple attenuation. The input consists of a number of at-
tributes from different domains, e.g. here are shown the amplitude of 5 near-offset traces,
the envelope of the first trace, and the velocity spectrum from which different attributes
were computed. The desired output for each event is 1 for a primary and 0 for a multiple.

Full Wave Field NN Output Primaries

Figure 5.3:Results for one typical shot gather using the attribute based multiple attenu-
ation method. The left seismogram shows the raw data with all multiples and converted
waves. On the right seismogram we see the desired output, i.e. the primaries. In the center
the corresponding classification result of the neural net is displayed. It reliably detected
the upper five reflection events and also the lowest one, but failed on the sixth event. The
lowermost spike is a misclassification of a multiple.
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5.3 Multiple Attenuation and Prediction in a 1-D Realis-

tic Elastic Data Set

This section shows the application of the attribute based neural net multiple identification

and attenuation method on an elastic full wave synthetic CMP gather shown in Figure

5.4, left. It was modeled on the basis of well-log data, using the reflectivity method. The

synthetic CMP gather, containing the primary P-waves only (Figure 5.4, right), was used

as the desired output information.

For obtaining attributes for the neural net training, the velocity spectrum was com-

puted, and the location and height of the peaks for each zero-offset time was determined.

In addition, I calculated the envelope of the first trace of the input CMP gather. A window

of length 5 samples from the first trace of the full wave CMP gather (the signal amplitude)

was also used as input for the neural net. The 5-samples window is about the length of a

wavelet in this data set.
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Figure 5.4:Left: full elastic synthetic CMP gather. Input for the neural net are selected
attributes computed from these gathers. Right: primary P-wave arrivals. This is the
desired output for the neural net.

5.3.1 Multiple Attenuation

According to the resulting data set a backpropagation neural network was designed with 8

input neurons for the attributes mentioned above, 4 hidden neurons, and 1 output neuron.
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The output is one time sample of the near offset trace for each input vector. According to

the desired output it is either a time sample of the near-offset trace of the primary CMP

gather for multiple attenuation, or a time sample of the near-offset trace of the CMP gather

containing the esimated multiples. These in turn have been obtained by subtracting the

modelled primary wavefield from the full wavefield. Training for 300 epochs, and using

the training CMP gather as the test data set, resulted in the trace shown in the center of

Figure 5.5. For comparison, the input trace is shown to the right and the desired output

trace to the left of the neural net output. Here, I performed multiple attenuation, since I

used the primary section as the desired output for the training.

Figure 5.5:Multiple attenuation. Left: first trace of the primary section (desired output).
Center: neural net output (the trace with the attenuated multiples ). Right: first trace of
the full wavefield section (input).

5.3.2 Multiple Prediction

In order to test if it is also possible to predict the multiples with the method described

above, I trained the neural network to predict the free-surface multiples instead of the

primary arrivals. I used the first trace of the CMP gather containing only free-surface

multiples as the desired output. The result is shown in Figure 5.6. Nearly all phases

and polarities of the predicted multiples are correctly determined by the neural network.

The attenuation of free-surface multiples on this data set worked very well, the multiple

energy has been reduced considerably and the primaries maintain their signal strength.

Similarly, I tried to predict the internal multiples. Figure 5.7 depicts the result.
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Figure 5.6: Multiple prediction: free-surface multiples. Left: First trace of the CMP
gather containing only free-surface multiples (desired output). Center: neural net output
(predicted free-surface multiples). Right: first trace of the full wavefield section (input).

Figure 5.7:Multiple prediction: internal multiples. Left: first trace of the CMP gather
containing only internal multiples and converted waves (desired output). Center: neural
net output (predicted internal multiples). Right: first trace of the full wavefield section
(input).
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The prediction of multiples for the case of internal multiples failed. This suggests that

the neural net, in common with most other multiple prediction algorithms, has problems

with this type of multiples. However, it must be noted that the net was only trained

with data from a single CMP gather, and that generally a neural net needs much more

training data in order to perform better. On the other hand, the prediction of free-surface

multiples is very satisfactory. The predicted multiples match the desired output at nearly

every sample of the trace. Together with data that were preprocessed by another multiple

prediction algorithm on a selected number of CMP gathers, this would be a fast and cheap

method to predict the free-surface multiples on the remaining (major) part of the data set.

It should be mentioned that this method automatically produces a near-offset section

containing either the primaries and attenuated multiples or the predicted multiples by

using information from the full offset range and various attributes. In the next sections

multiple prediction for 2-D data is shown.

5.4 Multiple Prediction in a Small 2-D Acoustic Data Set

This section demonstrates the application of the neural net multiple prediction method to

a set of 2-D acoustic full wave synthetic CMP gathers, obtained from a finite difference

(FD) modeling scheme. The neural network was trained with a set of synthetic CMP

gathers containing the full wavefield as input. In order to predict the free-surface multi-

ples, a set of synthetic CMP gathers, containing free-surface multiples only (Figure 5.8,

right), was used as the desired output information. These gathers were obtained from FD

modeling with an absorbing boundary at the surface and subsequent subtraction of the

resulting data set from the data containing the full wavefield.

To obtain attributes for the neural net training, the velocity spectrum was computed,

and the location and height of the peaks was determined for each zero-offset time. In

addition I calculated the envelope of the first trace of each input CMP gather, and I used a

window of length 5 samples from the first trace of the full wave CMP gathers as additional

input for the neural net. Then I split the data set into a training set with 10 CMP gathers

and a test set containing the remaining 10 CMP gathers. With this data set a backprop-

agation neural network was designed with 8 input neurons for the attributes, 4 hidden

neurons, and 1 output neuron. Training for 300 epochs resulted in the traces shown in
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Figure 5.8, left, where the general appearance of the multiples is predicted with only rel-

atively few training gathers. For travel-times between 0.5 and 2.5 seconds the amplitudes

of the predicted multiples are in part higher than the desired signal.

Figure 5.8:Left: neural net predicted free-surface multiples of the near-offset trace of the
10 test CMP gathers. Right: free-surface multiples of the near-offset trace of the 10 test
CMP gathers (the desired output).

5.4.1 Target-oriented Multiple Prediction

The attribute based multiple attenuation and prediction method can be applied in a target-

oriented fashion. Figure 5.9 shows the multiple prediction on traces from 10 CMP gathers

for the first 500 ms. The neural network was trained with the traces of 10 CMP gathers

(computed attributes in the first 500 ms) and then tested with 10 traces from different

CMP gathers. The left panel of Figure 5.9 shows the free-surface multiples (desired out-

put), and in the right panel the neural net predicted free-surface multiples are depicted.

The relatively coarse appearance is caused by the extremely coarse sampling of the orig-

inal synthetic data. The equivalent results are shown in Figure 5.10 for the target zone

between 1500 and 3000 ms. The neural network output seems to extrapolate information

horizontally. Multiples with relatively low degree of dip are recognized and predicted

correctly. With the limited information available for the network it is able to extract just

the most dominant features.

The trend of the multiples is predicted very nicely by the neural net, although the

absolute amplitudes partly differ. Due to the few training patterns, the neural net tends

to emphasize strong events and to smear them horizontally. This can be overcome by a

more suitable training data choice.
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Figure 5.9: Left: free-surface multiples (desired output) within the first 500 ms, right:
neural net predicted free-surface multiples.

Figure 5.10:Left: free-surface multiples (desired output) within the target zone, right:
neural net predicted free-surface multiples.

5.5 Multiple Prediction in a Full 2-D Acoustic Data Set

The multiple prediction method was also applied to a full 2-D synthetic data set, con-

sisting of 1300 CMP gathers, that were computed using a finite difference algorithm. I

selected a training set of 100 CMP gathers spread equally over the data set. This is less

than 8 per cent of the full data set. The desired output is the first traces of all CMP gathers

containing only free-surface multiples. They are shown in Figure 5.11. The result is not

a stacked section, since the neural net output consists of one near-offset trace per CMP

location.

The neural net output predicting the full data set, by training with the subset of 100

CMP gathers, is shown in Figure 5.12. Most of the structure across the data set has been

reconstructed very reliably by the neural net, although again dominant horizontal streaks

are visible, which relate to the tendency of the net to smear strong events horizontally.
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However, shallow as well as deep multiples have been predicted, even the structure in

the first strong multiple between CMP no. 800 to 1200 is reconstructed in the neural net

output.

5.6 Conclusions

The attribute based multiple attenuation and prediction method using backpropagation

neural networks is a supervised technique that preprocesses the seismic data by comput-

ing a selected number of attributes from various parameter domains, learns from a small

subset of the data and tries to attenuate or predict multiples on the whole section. De-

pending on the supplied desired output we are either able to perform multiple attenuation

or multiple prediction. In the first case the desired output consists of an estimate of the

desired primary information obtained from modeling on the basis of well-log data. In

the latter case the desired output is an estimate of the kind of multiple we want to pre-

dict. This information can be provided by modeling or by using various existing multiple

prediction techniques.

The attenuation of multiples on the elastic synthetic data gave good results, but the

prediction of internal multiples was a failure. On the other hand, prediction of free-

surface multiples worked very well, and suggests that good results may well be achieved

with other data sets.

The prediction of multiples on the full data set is based on an acoustic model. Here

the free-surface multiples were predicted. The method worked very well along the entire

profile.

An interesting possibility might be to use the output of a self-organizing map (SOM)

as the input for a backpropagation network. This SOM, in turn, would have undergone

unsupervised training with a set of attributes obtained from a seismic data set. This would

use the SOM as a sort of pre-processor similar to the principal-component analysis (PCA)

approach, that reduces the dimensionality of the input data and thus facilitates the task for

the supervised learning scheme.
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Figure 5.11:The first traces of all CMP gathers containing only free-surface multiples
(desired output).

Figure 5.12:The neural net predicted free-surface multiples.



Chapter 6

Attribute based Multiple Identification

with Self-Organizing Maps

In this chapter I introduce a new method that employs an unsupervised learning algorithm

to extract information from the seismic data by means of clustering of primaries and

multiples. I show that this method can be used to separate primary from multiple energy

in a way that is easy to analyse for an interpreter or a processor. There is no prespecified

desired output, but we merely present the network with the total seismic wavefield in

the form of selected characteristic attributes. Labelling the formed clusters with a few

picked primaries and multiples allows the classification of the large remaining portion of

reflection events. In a subsequent step the identified multiples can be removed, e.g. with

a filter in the parabolic� � p domain, or other suitable methods.

6.1 The Method

Event Picking

Starting with a data set in CMP configuration and the corresponding velocity spectra (cp.

section 3.1.), an automatic picking algorithm picks all peaks in the velocity spectra above

a certain threshold. This provides zero-offset traveltimes and stacking velocities of all

prominent events - primary and multiple reflections. Figure 6.1, left, shows all picked

events for the synthetic data set (described in section 6.2) in its zero-offset location. The

deep reflectors are not continuous since the semblance value was too small at certain CMP
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Figure 6.1:Left: all picked events for the whole data set as a zero-offset section (primaries
and multiples). Right: projection of the SOM weights after training had finished.

locations to be picked by the automatic picking algorithm.

Computing Attributes

The picked zero-offset traveltimes and stacking velocities define hyperbolae for each

picked event in the respective CMP gathers. Along these hyperbolae a number of se-

lected attributes (see chapter 3) is computed for a set of offsets in a window around the

hyperbola. Then we take the median of the attribute for each offset. This procedure pro-

vides robust attribute values. The wavefront attributes, emergence angle�0, and the radii

of curvatureRNIP andRN , are computed as described in section 3.3.

Correlation Analysis

In order to determine if some of the attributes contain redundant information, I performed

a correlation analysis, which is formally shown below for a synthetic data set. Comput-

ing the linear correlation coefficient of one attribute for all offsets and events shows the

behavior of the attribute over the offset. Thus, it can be judged if all attribute informa-

tion from near to far offset is needed and which offsets show strong or weak correlations.

Computing the correlation coefficient of all attributes for a specific offset and all events

allows us to determine the contribution of the individual attributes to the information con-

tent of the data set to be used for SOM training. If two attributes are strongly correlated,

we might disregard one of them and thus decrease the size of the data set. This leads to

decreased computation times and avoids over-parameterization of the estimation process.
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Training and Analysis

The next step is the design of the self-organizing map. First the dimension of the map has

to be determined. This could be done by computing the fractal information dimension

(Peitgens et al., 1992) that defines the dimension of the information content of the data.

However, this procedure proved to be computationally too intensive. For most seismic

data sets this dimension is assumed to be between 2 and 3, so that we generally start off

with a two-dimensional map. If the network is not able to cluster the data, we can add

one dimension and train the net again. The number of neurons should not be too small in

order to represent all clusters that are potentially possible. An important parameter is the

initial size of the neighborhood where the neighboring weights are updated along with the

winning neuron’s weight. If it is too small the map will not be ordered globally but splits

up into a mosaic of very small clusters (Kohonen, 1997a). My experience shows that a

good starting value is about half the map size, with a linear decrease of the neighborhood

size with training time. The learning rate is often chosen to be 1 and decreases linearly

with time.

A criterion for stopping the training is given by the visualization of a projection of

the multi-dimensional network weights on a 2-D display. On the right hand side of Fig-

ure 6.1 the SOM weights after training are displayed for the synthetic example. They

show mostly satisfactory unraveling. The optimum would be an approximately grid-like

appearance in the form of the (here) rectangular map.

Another means of analysis is the visualization of the component planes where the

values of all weights connected with one input component are shown. Figure 6.2 a) and

b) shows the two component planes of the attributes “zero-offset time” and “stacking

velocity”. The values of the weights connecting every neuron on the feature map with an

input vector component are depicted. Here, the attributes “zero offset time” and “stacking

velocity” are taken as input vector components.

Figure 6.2 c) depicts a histogram showing the frequency of classified events to each neu-

ron (a large square means many events have been classified to this neuron, small ones

mean only a few). The U-Matrix showing the mutual distances of the weights of the

feature map (cp section 2.2.2) is displayed in d). It serves as the display of the main
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Figure 6.2: Component planes: a) values of the weights connecting every neuron on
the feature map with the input neuron with the attribute “zero offset time”. b) values of
the weights connecting every neuron on the feature map with the input neuron with the
attribute “stacking velocity”. c) histogram displaying the frequency of classifications to
each neuron. d) U-Matrix showing the mutual distances of the weights of the feature map.

individual clusters with “ravines” of large distances (displayed in yellow/red colors) sep-

arating the cluster “hills” (blue color shades). On the basis of the U-matrix the neurons of

the trained feature map are then assigned to different clusters. Every input vector that is

mapped to a neuron belonging to a certain cluster, is tagged with the color of this cluster.

6.2 Application to Synthetic Data

As an application for the method described above, I designed a synthetic subsurface model

that is 10 km wide and 5 km deep. The seven layers each have a constant P- and S-velocity,

as well as a constant density. The grid interval is 10 m. The P-velocity of the model is

shown in Figure 6.3, left.

Using this model, a set of shot gathers was computed via ray tracing. For the ray

tracing algorithm every ray code we want to have in the seismogram later has to be speci-

fied. Apart from the primaries, I chose water multiples up to the 4th order, three types

of peg-leg multiples, and four types of internal multiples. The dominant frequency of the

wavelet was 40 Hz, the sample rate 4 ms, and the total recording time 4 seconds. There

was a shot every 25 m and a receiver spacing of 12.5 m. This resulted in a total of 400

shot gathers, which were resorted into 400 CDP gathers. Finally 281 CDP gathers were

selected that had full coverage from 0 to 3 km offset (60 traces per CDP gather). A typical

CDP gather is shown in Figure 6.3, right. The stacked section, using an automatic CMP

stack that sums along that event that has the highest semblance, is shown in Figure 6.4.
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Figure 6.3:Left: synthetic pressure wave velocity model. Right: CMP gather plus noise
at location 1.5 km.
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Figure 6.4:Automatically stacked section (unmigrated).
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With this technique the multiples are stacked as well as the primaries, and thus can be

clearly recognized.

From the CDP gathers a number of attributes was computed using the attribute software

package of the Seismic Research Corporation (Taner, 1998):

Instantaneous Attributes Wavelet Attributes

real part of complex trace

imaginary part of complex trace

trace envelope trace envelope

time derivative of envelope time derivative of envelope

second derivative of envelope second derivative of envelope

instantaneous phase instantaneous phase

instantaneous frequency instantaneous frequency

envelope weighted inst. frequency envelope weighted inst. frequency

acceleration of phase acceleration of phase

dominant frequency dominant frequency

bandwidth bandwidth

instantaneous Q-factor instantaneous Q-factor

normalized amplitude

envelope amplitude modulated phase

relative acoustic impedance

as well as the threewavefront parameters: emergence angle�0, and the radiiRNIP , and

RN .

Some selected attributes are shown in the following Figure 6.5 for the CDP gather of Fig-

ure 6.3. From these CDP gathers no obvious differences between primaries and multiples

are directly visible to the human eye.

Next, the velocity spectra of all 281 CDP gathers were computed. From these velocity

spectra the algorithm picked automatically all values that were higher than a specified clip

value. Before that I balanced the amplitude of the shallow peaks against the deeper peaks

using AGC (automatic gain control). These picks constitute the two-way traveltime and

the velocity of each event, i.e. the zero-offset time and the curvature of each hyperbolic

event in the CDP gather. This information was used to determine the hyperbolic events
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Figure 6.5:From left to right: second derivative of envelope, instantaneous phase, instan-
taneous frequency and bandwidth

in the computed attribute gathers. All attribute values for all offsets of each event were

written to a data cube, whose x-dimension is the offset, whose y-dimension is the attribute,

and whose z-dimension is the event number. For reasons of data reduction the data were

resampled along the offset axis to every 10th sample.

Using these data I created a pattern file for the input to a self-organizing map. This

pattern file consisted of 7034 events from 281 CDP gathers (on average 25 events per

CDP gather). Each event represents one input vector to the SOM and has the following

components:

zero-offset time

stacking velocity

attribute no. 1 (for every 10th offset)

attribute no. 2 (for every 10th offset)
...

attribute no. N (for every 10th offset)
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6.2.1 Correlation Analysis

Before training the SOM I performed a correlation analysis in order to find out, which

attributes show a mutual correlation and thus might represent redundant information.

The linear correlation coefficientsCij between each combination of two wavelet at-

tributesyi andyj was computed for all N=7034 events and summed over allL offsets:

Cij =
1

L

LX
l=1

1

N

NX
k=1

(yikl � �yil)(yjkl � �yjl) (6.1)

C = Ĉij =
Cijp
CiiCjj

(6.2)

for i; j = 1; :::;M , with �y = 1=N
PN

k=1 yk, and M the number of attributes. The resulting

matrix C containing the normalized correlation coefficientsĈij in a color-coded form is

shown in Figure 6.6. Every matrix element represents the crosscorrelation coefficient of

two respective individual attributes. It shows how well a pair of attributes correlates. On

the diagonal the correlation of an attribute with itself shows a unique linear dependency.

In the off-diagonal elements we can see how attributes correlate. Red values show high

positive correlation, whereas blue values indicate strong negative correlation. An analysis

of the behavior of the attributes with offset, including the computation of scatter plots,

shows that the correlation patterns change dramatically with offset. When all offsets are

considered together, then the far offsets dominate the structure.

If we want to interpret this correlation analysis with respect to the composition of the

pattern file for SOM training, two (mutually exclusive) strategies suggest themselves:

1. We eliminate those attributes that correlate strongly with another attribute.

2. We use all attributes no matter what correlation they may have with other attributes.

Strategy 1 aims at the reduction of the data set, and thus has a better chance to classify

the patterns in a space with reduced dimensionality. Strategy 2 is based on the argument

thateveryattribute contributes some information, however small it might be, and that this

piece of information should be kept in order to ease the classification task for the SOM.

In consideration of the fact that we do not have thousands of attributes, but only between

10 and 20, I favour strategy 2. Here I only show the correlation analysis for the wavelet

attributes; the results for the instantaneous attributes look similar.
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Figure 6.6:Correlation coefficients for all ten wavelet attributes. This matrix is symmetric
and one square signifies the crosscorrelation of two attributes summed over all offsets.

In the correlation coefficient matrix above we can see some strong correlations between

certain attributes:

positive correlation: trace envelope & time derivative of the envelope

trace envelope & instantaneous Q-factor

instantaneous frequency & envelope weighted inst. frequency

instantaneous frequency & dominant frequency

instantaneous frequency & instantaneous Q-factor

envelope weighted inst. frequency & dominant frequency

envelope weighted inst. frequency & bandwidth

envelope weighted inst. frequency & instantaneous Q-factor

dominant frequency & instantaneous Q-factor

negative correlation: trace envelope & second derivative of the envelope

time derivative of the envelope & second derivative of the envelope
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The positive and negative correlations of the envelope and the first and the second

derivative, respectively, were expected and can be easily understood with the help of a

simple example using the sine-function:d sin(x)
dx

= cos(x); d cos(x)
dx

= d2 sin(x)
dx2

= �sin(x),

i.e. the first derivative (cosine-function) has a positive correlation to the original signal,

whereas the second derivative shows a clear negative correlation. The correlations of

the instantaneous frequency with its smoothed versions, the dominant frequency and the

envelope-weighted frequency are obvious. From the definitions of the attributes band-

width, dominant frequency and Q-factor, we can as well expect some correlation, since

they are all a function of frequency.

6.2.2 Results for Instantaneous Attributes

In a first investigation I used a number of instantaneous attributes: the imaginary part of

the complex trace (the real trace with 90 degrees phase shift), the trace envelope, the sec-

ond derivative of the trace envelope, the instantaneous phase, the instantaneous frequency,

bandwidth, and the relative acoustic impedance. For the final labelling of the clusters that

formed on the map, we used a few interpreted events, that are taken preferably from shal-

low depths (i.e. the water bottom) since they are easier to identify.

Figure 6.7 shows the results for the first two CDP gathers. In the left panel of each

figure the picks in the velocity spectrum are shown. Due to the smearing in the velocity

spectrum the automatic picking algorithm occasionally picked several events for the same

ZO-time, but with different velocities. This might explain the problems that later occur

with the SOM results. Since not all of these picks are “real” events, i.e. which follow a

hyperbola in the corresponding CDP gather, these “fake” events do not contain reasonable

values for the attributes and thus might degrade the classification.

In the right panel of each figure the classification result is displayed. Each event

picked in the left panel is classified and associated with a colored line. The results for

these first two CDP gathers are consistent, and do not show random classification of the

events. The classification result for the instantaneous attributes for the entire model is

shown in Figure 6.8 as a zero-offset section.

This result is not overwhelming, since it is hard to see clear classification trends. For

this reason I disregard the class of instantaneous attributes for further classification and

use the wavelet attributes and the wavefront parameters (see section 3.2 and 3.3).
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Figure 6.7:Results for the first two consecutive CDP gathers. Left Panels: picks from
the velocity spectrum. Right Panels: classified events. Different colors mean different
clusters.

Figure 6.8:Zero-offset section of classification using instantaneous attributes. The colors
represent different classes of events. The individual events do not show coherent classi-
fication to a particular class. For this reason the instantaneous attributes are disregarded
from further classification analyses.
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6.2.3 Results for Wavelet Attributes

The result for training a SOM with all ten wavelet attributes plus zero-offset time and

stacking velocity is shown in Figure 6.9. We observe that the SOM classified groups of

primaries along with their corresponding multiples. This is shown by color. For exam-

ple, the first event is the sea bottom dipping from left to right. It is displayed in light

blue, as well as its multiples below it. The second event is the primary from the curved

second interface. It is displayed in yellow, and its multiple (a peg-leg multiple) is also

yellow/orange. The third primary from the third curved interface shows up as red and

dark blue, as do its three multiples below it.

Most events are now consistently displayed in a single color. However, the primary for

the third interface has some blue overlays. This might be due to what I mentioned above,

namely that several events were picked at one zero-offset time because of smearing in the

velocity spectrum.

In conclusion, use of wavelet attributes plus zero-offset time and stacking velocity

does produce clustering of multiples along with their multiple-generating primary. The

assumption that zero-offset time might be a strong and dominant attribute leads to the

idea of rerunning the SOM training without this particular attribute. The result is shown

in Figure 6.10. Now the SOM can in fact distinguish between a given primary and its

corresponding multiples, which is a very desirable classification result if it can be shown

to hold for real data. Thus, the sea bottom is shown in orange and its multiples in yel-

low/light blue. The second primary is yellow, whereas its multiple is light blue. The

third primary is also yellow and its multiples are red. For practical application these two

approaches can be combined: First the SOM is trained including the zero-offset time as

an attribute in order to extract the multiple generating set (primary plus corresponding

multiples). Then the SOM is trained without the zero-offset time attribute, in order to

separate the primary from the multiples within each set.
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Figure 6.9:Zero-offset section of classification using wavelet attributes. The colors rep-
resent different classes of signals.

Figure 6.10:Zero-offset section of classification using wavelet attributes (the same as
in Figure 6.9), but without zero-offset time as an input attribute. The colors represent
different classes of signals.
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6.2.4 Component Plane Analysis for Wavelet Attributes

Component planes display one component of each weight vector after training. Each

neuron of the map is connected with every component of the input vector. The values

associated with each connection, compose the weight vector. Thus, the weight vector has

as many components as the input vector. The display of one component of the weight vec-

tor, i.e. the connection of every neuron with one component of the input vector, provides

the possibility to analyze the clustering behavior according to this component. In the

synthetic example here, the input vector has 65 components: zero-offset time, stacking

velocity, 10 attributes over 6 different offsets, and three wavefront parameters. Accord-

ingly, each weight vector also has 65 components.

We can now investigate, how the algorithm separates the input data with respect to

every individual attribute. Each neuron is labelled with the corresponding type of input

vector: “P” for a primary event, and “M” for a multiple. The red areas are separated from

the blue areas on the component planes by yellow and green “trenches”. The labelling of

the neurons is performed by using the majority-principle: a neuron receives the label of

that type of input vector with the greater hit count.

Figure 6.11 shows three component planes for the three components “envelope near

offset” (left), “envelope mid-offset” (center), and “envelope far offset” (right). The near

offset shows a trend for separating primaries from multiples, whereas the mid and far

offsets separate different areas with multiples from the rest. Similarly, Figure 6.12 dis-

plays three of the six component planes for the attribute “bandwidth”. These plots and

the analysis of the other component planes showing an attribute over offset lead to the

conclusion that there is no redundant information in the different offsets. Different offsets

cluster different types of multiples and/or primaries. This can be used to further analyze

the separation of the multiple wave field into the wavefields of internal and free-surface

multiples.

Figure 6.13 shows three component planes with three different attributes for one single

offset, here the near offset. As can be expected, the coloring of the component plane

for the second derivative of the envelope is inverse to the colors of the envelope and first

derivative of the envelope planes. This is due to the negative correlation of these attributes.
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Figure 6.11:Component planes for the attribute “envelope” for near, mid-, and far offset.
Also displayed are the labels of that class of input vectors that has been mapped to the
corresponding neuron: P signifies that the majority of all events mapped to this neuron is
a primary, M stands for multiple.

Figure 6.12: Component planes for the attribute “bandwidth” for near, mid-, and far
offset.

Figure 6.13:Component planes for the near offset for three attributes: envelope, first and
second derivative of the envelope.
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6.2.5 Results for Wavelet and Wavefront Attributes

In addition to the wavelet attributes (plus ZO-time and stacking velocity) used in the last

section, here the wavefront attributes (section 3.3) are used for multiple identification and

classification. This combination of attributes proved to optimally exploit the differentia-

tion criteria contained in the data, as is shown below.

The separation of primaries and multiples is demonstrated for two different synthetic

2-D data sets: 1) the data set based on the model with the seven layers, already used

above, and 2) a realistic data set based on a model that was designed to match the field

data. The first data set was computed using ray tracing, the second with finite differences.

Whereas for data set no. 1 we know every individual event, since we provided the ray

codes, for data set no. 2 only a number of picked primary events from an interpreted

stacked section was available.

The result of the self-organizing map multiple classification for the first data set is

shown in Figure 6.14. On the left hand side at the top, the U-matrix after training is

displayed. The clusters inferred from the hills and ravines of the U-matrix are shown at

top right. Every cluster is labelled with the corresponding events that have been classified

to that respective area on the map. The entire ZO-section is shown at the bottom. All

events have the same color as the cluster it belongs to. Obviously, the primary events

(water bottom WB, primaries of the second reflector P2, the third, fourth and fifth reflector

P3, P4 and P5) cluster in an area bottom left/left to top right on the map, whereas the

multiples (water bottom multiples WBM1 and WBM2, internal and pegleg multiples M3

and M4) are located at top left and bottom right. Primaries are colored in blue and yellow

colors, the multiples in various shades of red. Except P2, which is heavily corrupted by

water reverberations, all events show a continuous color and the primaries can be clearly

separated from the multiples. The two separate wavefields are shown in Figures 6.15

(the primary events only) and 6.16 (the multiples only). The corresponding traveltime

hyperbolae are displayed in the CMP gather at location 1.5 km in Figure 6.17. This

demonstrates that, assuming hyperbolic traveltime curves, the method allows identifying

primaries and multiples in the pre-stack data set. Using an adequate filtering technique

(e.g. in the parabolic� � p domain), the identified multiples can be filtered out.
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Figure 6.14:First data set: Cluster analysis for using all wavelet and wavefront attributes,
including zero-offset time and stacking velocity. The clusters on the map (top right) have
been determined on the basis of the U-matrix (top left). The events in the ZO-section
below have the same colors as the clusters they have been classified to. Primaries mainly
cluster from bottom/left to top/right on the map, whereas multiple clusters are located at
bottom/right and top/left.
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Figure 6.15:The primary wavefield after separating out the multiple wavefield.

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
[s

]

1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5

Distance [km]

Multiples

Figure 6.16:The multiple wavefield after separating out the primary wavefield.
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Figure 6.17:CMP gather at location 1.5 km with all classified events.

The second data set was processed in the same manner, and the result is displayed

in Figure 6.18. Again, at the top the U-matrix and the resulting clusters show a very

good separation of the two wavefields. Primaries (WB, P1, P2, P3, and P4) cluster at

the bottom and in the center, with the multiple clusters (WBM1, WBM2, M2, M3 and

M4) surrounding them. In the colored ZO section below, the individual events are la-

belled and displayed in the same color as the cluster they have been classified to. The

deeper multiples are all comprised in the class M4, which could, according to the cluster

map, be subdivided and further analysed to investigate the origin of these multiples. The

wavefields have been separated into the primaries only (Figure 6.19) and the multiples

only (Figure 6.21). For comparison, the primaries picked from an interpreted section are

shown in Figure 6.20. Note that this information was not used for the clustering process.

Only one pick from each of the horizons served to label the clusters on the map. Figure

6.23 depicts the automatically stacked section.
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Figure 6.18:Second data set: Cluster analysis for using all wavelet and wavefront at-
tributes, including zero-offset time and stacking velocity. The clusters on the map (top
right) have been determined on the basis of the U-matrix (top left). The events in the ZO-
section below have the same colors as the clusters they have been classified to. Primaries
mainly cluster at the bottom/left and the center of the map (with the exception of P4),
whereas multiple clusters are located at the top, on the right side and at the bottom right
of the map.



6.2 Application to Synthetic Data 85

1.0 2.0 3.0 4.0 5.0

Distance [km]

1.0

2.0

3.0

4.0

5.0

6.0

T
im

e
[s

]

Primaries

Figure 6.19:The primary wavefield after separating out the multiple wavefield.
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Figure 6.20:The primary events picked by an interpreter.
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Figure 6.21:The multiple wavefield after separating out the primary wavefield.

Figure 6.22:Automatically stacked section of the second data set. (Note: only the upper
3.5 seconds are depicted.)
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6.3 Application to Real Data

In order to test the performance of the technique in the real world, the same procedure

as described above was applied to a real data set. The automatically stacked section is

shown in Figure 6.23. For this data set, about 10.000 events have been picked in 200

CMP gathers. All wavelet attributes and wavefront parameters were computed. Then a

self-organizing map of size 10� 12 was trained. The result is shown in Figure 6.24.

The individual events are not as coherent over distance as in the synthetic data set of the

previous section. As a result also the classification of the events by the SOM is not as

coherent. However the water bottom and the primary at 1.45 seconds show up in blue

color, and also the primaries at 2.3 and 2.5 seconds can be recognized as blue bands. The

multiples generally show red color shades. A separation of the primary and the multiple

wavefield can be seen in Figures 6.25 and 6.26, respectively.

Figure 6.23:Automatically stacked section of the real data set. (Note: only the upper 3.5
seconds are depicted.)
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Figure 6.24:Real data set: Cluster analysis for using all wavelet and wavefront attributes,
including zero-offset time and stacking velocity. The clusters on the map (top right) have
been determined on the basis of the U-matrix (top left). The events in the ZO-section
below have the same colors as the clusters they have been classified to. Primaries (“P”)
mainly cluster at the left, the bottom and the right side of the map (mainly in blue colors),
whereas multiple (“M”) clusters are located at the top and in the center (all other color
shades).
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Figure 6.25:The primary wavefield after separating out the multiple wavefield.

Figure 6.26:The multiple wavefield after separating out the primary wavefield.
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6.4 Conclusions

A by-product of investigating the clustering ability of the attribute based self-organizing

map, is that by judging the quality of the class separation we obtain criteria to judge the

significance of a particular attribute to separate primaries from multiples. In other words,

if we train the net by switching on and off certain attributes, we can obtain a measure of

the discriminatory power associated with a particular attribute.

An important point is that, when we have trained the self-organizing map with a cer-

tain data set, and have obtained a feature map after satisfactory convergence, we need

some means of labelling the different clusters on the map.

One possibility is that we color-code the entire map, so that input patterns (attributes

of a sample of a seismic trace) falling into a certain region of the map are associated

with a particular color. Then we plot the corresponding seismic trace sample in this same

color, leading to a seismogram in the colors of the map, with for example blue signifying

primaries and red multiples.

Another, more sophisticated method is to label the map with input data where we

already know to which class they belong, i.e. if a particular event is a primary or a

multiple. This information can be retrieved, for example, from interpreted sections where

the interpreter indicates probable candidates for primaries and/or multiples. Data that are

already preprocessed with a multiple prediction algorithm also can be used to label input

for the SOM feature map.



Chapter 7

A Layer-stripping approach

7.1 The Method

After routine processing of the seismic data, it is often possible for an experienced inter-

preter to identify certain particular events in a stacked zero-offset section. This judgment

is often based on a priori knowledge about the geologic setting in the region. Therefore,

I developed a scheme for identifying primaries and multiples by a supervised technique

using a backpropagation neural net in a layer-stripping manner utilizing this available

information from the interpreter.

A supervised neural net is trained with a few interpreted events - preferably shallow

events, since they are easier to interpret. For example the water bottom always can be

identified reliably as a primary arrival. The input for the neural net is the same data set

as for the SOM classification procedure (chapter 6), i.e. it consists of attributes computed

for a set of reflection events.

The details of the method are described in the following:

1. Identify some prominent primaries and multiples in your data set (this is the inter-

preter’s input), preferably for shallow events, since they are often easier to identify.

2. Train a backpropagation neural network with the attribute vectors computed from

these events as input and the interpreter’s information as the desired output.

3. After convergence of the training, test the trained network with your whole data set,

consisting of interpreted events and unidentified events.
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4. The algorithm now automatically decides on which events are used for the next

training run in addition to the previous training set: these are all events which are

classified close enough to 0 or close enough to 1, where 0 signifies a multiple and

1 a primary (the neural net output ranges between [0 ; 1]). In other words, if the

algorithm classifies an event with a certain confidence (i.e. in the range [0.8 ; 1] or

[0 ; 0.2]) as a primary or a multiple, respectively, we take it into the next training

file. The layer-stripping aspect comes in by the restriction that we only consider

events in a certain time window starting from t=0. This time window is increased

for every new training run.

5. Repeat steps 2 - 4 until all events are processed.

Obviously, there is the danger that the algorithm wrongly classifies an event with high

confidence and consequently takes it as a training pattern for the next training run. This

might lead to further misclassifications. However, there is always the possibility of in-

terference by the user: if a clear misclassification is noticed, he can correct for this in

the training file that is used in the next training run. The training is stopped when the

time window comprises the whole data set and the classification results do not change

any more. Figure 7.1 shows a flowchart of the method.

In Figure 7.2 a simple example is shown with only one CDP gather containing 12

events (4 primaries and 8 multiples). The desired output is depicted with red dots, whereas

the actual output of the neural net is represented by black dots. A “1” stands for a primary

whereas a “0” is a multiple. The gray areas comprise the events of the training set that

was used in that training run. The figure at the top on the left shows the initial situation:

the interpreter provides the first two primaries (event no. 1 and 2) and the first multiple

(event no. 3) for the training set (gray area). The other events are not part of the training

set. The panel at the top on the right shows the result of testing all 12 patterns (gray and

white area) on the net trained with the first 3 patterns (gray area). The algorithm would

incorrectly classify event no. 4 as a multiple and take it for training as such. Here, I

interfered and set this particular desired output to 1, and trained now with the first four

events. The bottom panel on the left shows the result after testing. Now, event no. 5

is misclassified as a primary (but it is a multiple). I interfered again and set the desired
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Figure 7.1: Flowchart of the multiple identification method using layer-stripping with
backpropagation. For the first training run, only the events that have been identified by
the interpreter enter the training file. For all consecutive training runs, those events that
are classified within a certain confidence interval are added to the training file.

output for training to 0 for this event. The result of the third training run is shown at

the bottom on the right. With the first five events used for training the method correctly

classifies most of the other events. Only for event no. 12 the algorithm could not decide

if it is a primary or a multiple. We must consider that we only used 12 events, which is

no actual basis for neural net usage. This method will now be applied to a larger data set.
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Figure 7.2: Top left: Initial data set for training: the first two primaries and the first
multiple are given by the interpreter. (Red is for desired output, black stands for actual
output. The gray areas underlie those events used for training in that training run.) Top
right: After the first training run, using only the first three events and testing with all 12
events. Bottom left: After the second training run, with the third primary as additional
training pattern (given by the interpreter), and testing with all 12 events. Bottom right:
After the third training run, with the same data as before plus the second multiple as
additional training pattern (given by the interpreter), and testing with all 12 events.
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7.2 Synthetic Data Application

The method of separating primary from multiple reflections by using a layer-stripping

algorithm on the basis of a backpropagation neural network is applied to the synthetic

data set described in the previous chapter (chap. 6). The water bottom and parts of the

second primary were considered to be already identified as primaries. The first-order

and a part of the second-order water multiple was also taken as the “interpreter’s input”.

This was the training set for the first training run (see Figure 7.3). After training the

backpropagation network with this data set, it was tested with the entire set of events.

Depending on the classification of this test run, the data were split into primaries (for an

output in the range [0.8:1.0]) and multiples (for an output in the range [0.0:0.2]). The

result is shown in Figure 7.4. Taking the classified data in a time window from 0 seconds

down to 2 seconds (see Figure 7.5), a second training run was started. Figure 7.6 shows

the result of testing the trained network with the entire data set. There are still some

misclassified multiples in the primaries section, but the primaries have a much stronger

appearance and thus the multiples have been attenuated considerably compared to the

input data.
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Figure 7.3:Training set for the first training run. Left: primaries, right: multiples.
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Figure 7.4:Result after the first training run. Left: primaries, right: multiples.
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Figure 7.5:Training set for the second training run. Left: primaries, right: multiples.
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Figure 7.6:Result after the second training run. Left: primaries, right: multiples.
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7.3 Conclusions

This method is easy to apply, and relies on the - generally available - interpreted sections

as the basis for training a neural network to classify the remaining set of unidentified

events. The necessary information is taken from meaningful attributes computed from

a set of picked events (primaries and multiples). The algorithm automatically detects if

an event belongs to the class “primary” or “multiple”. There is no well-log information

needed or any modelling involved. The fact that it is always possible to interfere between

subsequent training runs and to correct for obvious misclassifications, make this technique

a practical tool for the interpretation of seismic data. The user has the chance to learn

together with the neural net - layer by layer - which event is probably a primary and

which can be safely regarded as a multiple.
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Conclusions

The attenuation and prediction of multiple reflections and the recovery of the desired pri-

mary reflections from prestack seismic data has been demonstrated to work successfully

on 1-D and 2-D data sets. The methods developed and described in this dissertation can

handle both free-surface and internal multiple reflections. Each one of the four presented

methods

� multiple prediction and attenuation with backpropagation neural networks,

� attribute based multiple prediction and attenuation with backpropagation,

� attribute based multiple identification with self-organizing maps, and

� the layer-stripping approach using backpropagation

demonstrates the applicability of neural networks for the identification and attenuation of

multiple reflections.

Depending on the availability of additional information from well-log measurements,

one or the other method is preferable. If there is the possibility to perform high-quality

modeling on the basis of sonic and density logs - using the reflectivity method (1D),

finite difference schemes (2D, 3D), or ray tracing algorithms (2D, 3D), the supervised

techniques (using backpropagation, chapters 4 & 5) perform a reliable separation of the

primary and the multiple wavefields. We do not need modeled data for the entire explo-

ration area, but only a few synthetic seismograms at the borehole locations. The neural

net then acts as a non-linear filter that interpolates between these points by extracting

the necessary information from the field data recorded between the boreholes, or a set of

characteristic attributes computed from these data. The modeling of entire profiles in this

thesis was performed for validation purposes. This method works fully automatic without

user interaction.



In cases where no additional subsurface information in the form of well-logs is avail-

able, the unsupervised method (self-organizing map, chapter 6) provides an elegant pos-

sibility to classify reflection events and to separate primary and multiple wavefields. The

input for this algorithm only consists of a number of selected attributes computed from

the seismic data. For labelling the classes, that have been automatically determined by

the algorithm, the method requires a few interpreted events. These can be events from

shallow depths that are easy to identify. Moreover, this provides the possibility of user

interaction with the chance of including a priori knowledge of the geological setting in

the exploration area. The layer-stripping approach (chapter 7) pursues the same philos-

ophy. It shows consistent attenuation of the multiple wavefield and provides a powerful

tool for processing critical data that do not allow the application of fully automatic algo-

rithms. Working its way down layer by layer, the user provides his interpretation to the

half-automatic procedure, that in turn gives back its interpretation and so on.

The idea to combine the discriminatory powers of several parameter domains in the

form of attributes proved to be a success. Due to the vast number of existing attributes a

careful selection of meaningful attributes that are capable to distinguish between primary

and multiple events was necessary. The class of instantaneous attributes only produced

good results in combination with attributes computed from the velocity spectrum. The

wavelet attributes in combination with the wavefront parameters, the zero-offset time and

the stacking velocity demonstrated very consistent results, especially for the unsupervised

multiple identification method using self-organizing maps. They should be used for any

attribute based wavefield separation technique.

My results show that the neural net approach for multiple removal is promising, espe-

cially since it can easily handle non-linear data interrelations. The neural net generalizes

from relatively few input seismograms, and tries to remove multiple energy on the re-

maining major part of the data set on the basis of empirically learned rules. In the case

of zero-offset data as well as for entire seismic sections, the neural net method shows that

it can reveal the desired information even if data are heavily corrupted by noise. The un-

supervised neural net technique only depends on attributes computed from seismic data,

and the supervised technique additionally needs a few modeled seismograms. Thus, it

can be easily extended to the application in 3-D, since both the computation of attributes

and high-quality modeling tools are available for three dimensions.



By using not only seismic data as such, but in addition a number of given attributes, it

is possible to improve the discriminatory power of the neural net and to unveil information

deeply hidden in the obscurity of the raw seismograms.
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