INSTITUT FUR WIRTSCHAFTSTHEORIE
UND OPERATIONS RESEARCH

UNIVERSITAT KARLSRUHE

Job Shop Scheduling
with

Stochastic Job Precedence Constraints

Welf GG. Schneider

Report WIOR-448
February 1995

Copyright © 2/95 by Welf G. Schneider

TECHNICAL REPORT
University of Karlsruhe

Kaiserstrafle 12, D-76128 Karlsruhe, Germany

Abstract

Within the last years, big progress has been made in cracking job shop schedul-
ing problems. However, those models have all been deterministic with respect to
job’s precedence constraints.

In this paper we reveal a job shop model with stochastic job precedence con-
straints given by GERT networks. This model appears to be highly interesting for
mixed model production scheduling, where product types are customer ordered
- and therefore to be produced - with a certain probability. We also show the
way to heuristically solve it through a disjunctive graph concept applying shifting
bottleneck procedures developed by Adams, Balas, and Zawack (1988) [1]. Our
objective hereby is to minimize the expected makespan. Finally, extensions and
generalizations are discussed.

Keywords

stochastic job shop scheduling, shifting bottleneck procedure, mixed model pro-
duction scheduling, GERT networks, heuristics

Contents

1 Classical Deterministic Job Shop Scheduling

1.1 The static job shop model
1.2 («a|B|y)-notation for scheduling problems
1.3 Schedules.
1.4 The job shop’s disjunctive graph representation
1.5 Ways to solve the job shop problem exactly
1.6 Complexity reflections
1.7 Ways to solve the job shop problem heuristically
1.7.1 Gifler-Thompson’s heuristic
1.7.2 The shifting bottleneck procedure (SBP) of Adams, Balas,

and Zawack Lo oL

1.7.3 Other heuristics oL

1.8 Regular precedence constraints

2 The Job Shop Model with Stochastic Job Precedence Constraints

- (JIGERT, D ~ deg|)

2.1 The concept of GERT networks
2.1.1 Node types in GERT networks
2.1.2 Stochastics in GERT networks and regularity assumptions
2.1.3 Acyclic EOR networks and node activation probabilities

2.2 Job precedence constraints given by GERT networks . . .

2.3 Jobdurations

2.4 An example in mixed model production

2.5 Remarks to the model

3 A Way to Solve (J|acyclEFOR, D ~ deg|EC 4z)
3.1 Extracting a stochastic disjunctive graph out of the stochas-
tic job precedence constraints
3.2 Applying shifting bottleneck procedure
3.3 Interpreting the solution

i

S OO U= W N — =

-

4 Applications of the Model and Discussion 26

4.1 Generalization and forthcoming problems 26
4.1.1 ... concerning the objective L. 26
4.1.2 ... to f=acycdlGERT,D ~deg 27
4.1.3 ... to S =acyclFOR,D ~ general 27
414 ... to f=GERT,D ~ deg or general 27

4.2 Other attempts to crack the new model 27

4.3 Applications to mixed model production 27

i1

Chapter 1

Classical Deterministic Job Shop
Scheduling

This chapter is meant to briefly sketch a rough overview upon classical de-
terministic job shop scheduling. Since notations in scheduling theory are not
normed yet, it shall either get us acquainted to the notation we want to stick to
throughout this booklet. If you are not at all familiar with (job shop-) scheduling
problems, you might want to check with Blazewicz et al. (1994) [6], Dempster et
al. (1982) [10], or Domschke et al. (1993) [12] first.

1.1 The static job shop model

We summarize in short what makes a static job shop scheduling model.
We are given

e n.mée IN;nm > 2,
e y=1,....njobs J;
e ¢ =1,...,m machines M; or processors, respectively,

e job J; consists of m operations {o0;; }/2,, that are to be processed in a deter-
ministically given order of priority through all of the machines
t=1,...,m, ie., for any job J; a machine sequence is given,

e d;;: processing time of o;;, d;; > 0,

and we obey the following capacity restrictions:

1

e On any machine at most one job can be processed at the same time.

e Any job can be processed on at most one machine at the same time.
Furthermore, we come upon that,

e no preemption is allowed when processing o;; V2,7, and

o J; is completed :& all o;;, 5 fixed, are done.

1.2 (a|8|v)-notation for scheduling problems

More and more often, a triple-notation is used to characterize scheduling
problems. In this (a|#|y)-notation, « stands for the machine environment, 3 for
the job characteristics, and ~ abbreviates the objective which is to be minimized.
A detailed list of many different possible problem features can be found in Dom-

schke et al. (1993) [12] or in Dempster et al. (1982) [10].

For the purposes of this report, the following explanations should be suffcient:

o a = .J: We are given a job shop model as described above in section 1.1.

o 3 = prec: We are given job precedence constraints, normally by an ordinary
directed graph where nodes are jobs. In the case of stochastic scheduling,
we want to signal stochastic job precedence constraints, as modeled in chap-
ter 2, by the symbols GERT or acyclFOR, standing for stochastic networks.
Specialities on that are outlined in chapter 2. In addition to constraints, we
also flag information about stochastic job durations in the g-field. In gen-
eral, processing times of job operations are allowed to have any distribution
we can imagine. In this case, # shows D ~ general. But this could get
that much complicated for scheduling theory we can’t imagine any more.
We therefore start off with constant durations, i.e., job and operation dura-
tions are supposed to be degenerated, meaning, not random. In this case,
we signal D ~ deg.

o v: We only want to consider regular criteria. Regular criteria are non-
decreasing functions of the job’s completion times C;, j = 1,...,n. We
mainly will consider the objective "expected project makespan”, i.e.,
E(Chaz). We also derive results for F(Lpa:), the expected maximal late-
ness, and F(7T,,q.), the expected maximal tardiness of jobs. For considering
lateness and tardiness, we need to be given job due dates and, optionally,
job release dates.

Clearly, it is the ”+” that makes our model to a problem, since generally,
we are able to admissibly schedule the operations in various ways. But
normally, schedules differ in the objective and we are interested in finding
schedules that minimize ~.

1.3 Schedules

Our interest in this section will be a classification of schedules which is used
to limit the set of possibly optimal solutions. Basically, these considerations have
been overtaken from Schwindt (1994) [22].

A feasible or admissible schedule is an assignment of operations to start times
which respects the machine sequence conditions for each job, whose job sequences
on the machines are finite (i.e. acyclic), and for which the operations of a job do
not overlap in time. The set of all feasible schedules is infinite.

Generally, we will not be interested in the set of all optimal schedules. An
obvious approach will be to only consider sequences where no operation can be
set to start earlier without permutation of a job sequence on a machine or viola-
tion of any machine sequence condition. Each schedule can be transformed into
such an equivalent semi-active plan by left-shifting the bars of the corresponding
Gantt chart as far as possible (local left-shift). In an active schedule, it is not
possible to bring forward the start of any operation without delaying the start
of another operation, even by switching the job sequence (global left-shift). It
can be shown both that, a semi-active schedule cannot be better with respect
to any regular criterion than the corresponding active schedule and that, the set
of all active schedules always contains at least one optimal schedule. In a non-
delay schedule, operations are dispatched as soon as a machine becomes available
for processing the next job. The set of all non-delay schedules forms a subset
of the set of all active schedules. However, non-delay schedules do not domi-
nate active schedules in the same manner as active plans dominate semi-actives.
The set of non-delay schedules does not necessarily contain an optimal schedule.

Figure 1.1 summarizes the relationship between the different classes of schedules.

4)

— optimal semi-active schedules

non-delay schedules

active schedules

semi-active schedules

feasible schedules

set of all schedules
\ J

Figure 1.1: Venn diagram for the classification of schedules in the case of regular
criteria

1.4 The job shop’s disjunctive graph represen-
tation

Followingly, we will illustrate the disjunctive graph concept. For profound
definitions, compare Domschke et al. (1993) [12] or Schwindt (1993) [23].

The job shop scheduling problem (J||Cy.z) can be represented through a
disjunctive graph, which is a specific directed graph. In this formulation, we define
for any operation o;; a node o;; ! and, for any pair of consecutive operations an arc
between the corresponding nodes. Those arcs are called conjunctive arcs. Hence,
conjunctive arcs represent the job’s operation sequence regulations. Between any
pair of operations that are to be proceeded through the same machine, we are to
have a pair of opposing arcs. Those arcs represent machine competition between
operations. l.e., the operations might want to be processed on the same machine
at the same time, which we know is forbidden due to our statically given machine
capacitating restriction. We call those arcs disjunctive ares. Clearly then, all
operations o;;, ¢ fixed, form a clique for all machines: =1,...,n. In addition, we
introduce an artificial source ¢ with artificial arcs to any job’s starting operation.
Analogously, we shall have an artificial sink s with arcs leading from any job’s
terminal operation into it.

Now, the admissible sequencing in our job shop problem is equivalent to the
following:

For any pair of opposing disjunctive arcs, we need to select exactly one (and
neglect the other one) such that the resulting directed graph is acyclic *. We
call the set of selected disjunctive arcs leading to an acyclic directed graph a
selection. With a selection we clarify the messy operation’s machine competition
situation by giving that operation precedence to another one where the selected
disjunctive arc emanates from. Corresponding to an acyclic directed graph, there
is an admissible, by local left-shift semi-active schedule obeying all precedence
constraints - the order of priority between the job’s operations through the con-
structed conjunctive arcs as well as machine capacity restrictions through the
acyclic selection of disjunctive arcs.

If we weight every arc in the disjunctive graph by the processing time d;; of
operation o;; being positively incident to the arc, and give the artificial source
g the processing time 0, then, for a chosen selection, the length of a longest
path from ¢ to s is exactly equal to the makespan (', of a corresponding semi-
active schedule. This schedule is retrieved by the following: the starting time of

Since normally it will be clear whether we mean operation o;; or the corresponding node,
we allow ourselves not to distinguish in notation.
?The name ” disjunctive arc” comes from this ”binary” selection of opposing arcs.

operation o;; is exactly equal to the length of a longest path from ¢ to node o;;.

Minimizing C,,,., we need to find a selection that minimizes the length of a
longest path from ¢ to s.

With this equivalence, we are able to exactly solve (J||Cyqz). Unfortunately,
there generally are very many possible selections so that we tend to apply good
heuristics in order to get a near-optimal solution in a reasonable amount of time.
A 7quite good” method exploiting equivalence to the disjunctive graph represen-
tation is that of Adams, Balas, and Zawack (1988) [1]. We will take advantage
of it in our stochastic job shop problem later.

1.5 Ways to solve the job shop problem exactly

There is a representation of the job shop problem, origined by Manne in 1960,
which is a mixed binary linear programming formulation. Variables are the real-
valued starting times of operations and the occuring waiting times for operations,
as well as binary variables regulating precedence constraints of operations due to
pre-given job’s operation sequences and machine capacity restrictions. For an

exact model description we refer to Manne (1960) [15].
In the model of Manne, there occur 2-n-m + =Y variables, where n(n_zl)m

are binary. The number of restrictions is n(m — 1) + n(n —)m +2-n - m.

There have been developed improved integer formulations of the static job
shop problem, too. A survey of those can be found in Seelbach (1975) [24].
Depending on the number of jobs, the number of machines, or on a considered
time horizon, different models show advantages with respect to the number of
binary variables.

However, even for moderate job and machine dimensions n or m, respectively,
we have very many variables and, it gets quite difficult to solve practical prob-
lems therewith. Mixed integer formulations of job shop problems rather have
explanatory purpose than practical applicability.

The branch-and-bound approach of Seelbach (1975) [24] is an effective way to
solve the job shop problem exactly. It uses facility-based and job-based bounds.
Powerful branch-and-bound procedures have been developed by Carlier & Pinson
(1989) [9], Applegate & Cook (1991) [3], and Brucker et al. (1994) [7].

Recently, branch-and-cut techniques have been developed to solve the job
shop problem, too. But those techniques couldn’t show souvereign computing
time advantages over branch-and-bound techniques yet. It is not trivial to de-
scribe a job shop polyhedron.

1.6 Complexity reflections

As a consequence of the above mentioned we get that, cracking job shop prob-
lems through exact mixed binary formulations via branch-and-bound or branch-
and-cut techniques can cause exponentially increasing computing time in the
number of jobs, or in the number of machines either. In addition, even for decent-
sized problems with, e.g., 10 jobs and 5 machines we need plenty of time. For not
much bigger problems we quickly get to the limits of our patience. Therefore, we
tend to apply "good” heuristics to near-optimally solve the job shop problem for
practically relevant problem sizes in an acceptable amount of time. ”Good” shall
mean: not too far optimum-off.

1.7 Ways to solve the job shop problem heuris-
tically

There are many ways to solve the job shop problem by heuristics. We first
mention the Giffler-Thompson approach. Next, we look at the shifting bottleneck
procedure of Adams, Balas, and Zawack (1988) [1] which, we will apply to our
stochastic job shop model. Finally, we don’t forget to mention other heuristic
types developed to solve job shop problems.

1.7.1 GifHer-Thompson’s heuristic

A well-known approach for the job shop problem with regular objective func-
tions is the algorithm of Giffler and Thompson. For details, check Giffler &
Thompson (1960) [13], Neumann & Morlock (1993) [20], Schwindt (1994) [22],
or Schwindt (1993) [23]. If we are only interested in the generation of a single
schedule, we will employ priority rules in order to resolve dispatching conflicts.
This technique allows appropriate adaptation of the basic heuristic to a specific
regular objective function.

1.7.2 The shifting bottleneck procedure (SBP) of Adams,
Balas, and Zawack

During the last years, several heuristics have been proposed for the job shop
problem (J||Cinaz), which are based on the concept of disjunctive graphs. Com-
pare section 1.4. Especially, the shifting bottleneck procedure of Adams, Balas,
and Zawack (1988) [1] has found its way into job shop literature (cf. Blazewicz

et al. (1994) [6], Dauzere & Lasserre (1994) [11], Domschke et al. (1993) [12],
and Morton & Pentico (1993) [16]).

In the following, we briefly sketch the basic idea of the shifting bottleneck
algorithm. As we know, the set of vertices of a disjunctive graph contains the op-
erations of the corresponding job shop problem, an artificial source, as well as an
artificial sink. The given machine sequences of the jobs are mapped by conjunc-
tive arcs whereas disjunctive arcs represent the job sequences on the machines,
which are to be determined. In the course of the algorithm, the disjunctive graph
is transformed by fixing or rejecting disjunctive arcs in an acyclic conjunctive di-
rected graph. The equivalent semi-active schedule can then be generated from the
latter directed graph. The procedure identifies that machine as bottleneck among
the facilities not yet scheduled for which the algorithm of Carlier (1982) [8] yields
the largest makespan. Carlier’s algorithm is a very efficient branch-and-bound
method for minimizing makespan for the following single machine constitution:
Operations, which in this case are complete jobs, are to be sequenced, where
heads and tails are given for each job or operation, respectively. Heads can be
interpretated as pre-running times, tails as after-running times. Every time a
new machine has been scheduled, the sequences previously determined are re-
optimized. Besides this straight forward procedure (SBP), Adams, Balas and
Zawack have implemented a version which applies the procedure on the nodes
of a partial search tree (SBP2). For a more detailed presentation of the disjunc-
tive graph modeling technique and the shifting bottleneck procedure we refer to

Dauzere & Lasserre (1994) [11] or Domschke et al. (1993) [12].

1.7.3 Other heuristics

There have many other heuristics been developed for considering job shop
scheduling problems. Those heuristics are of various origins such as

e simulated annealing or
e tabu search.

We don’t want to stress on them since our way to solve the job shop problem
with stochastic job precedence constraints is based on the SBP of Adams, Balas,
and Zawack. For further research ideas we refer to the discussion in chapter 4.

1.8 Regular precedence constraints

It a job ¢ necessarily, e.g. for technological reasons, has to be performed before
a job j, we are given a precedence constraint "¢ before j7. Within the context of
job shop scheduling this means that, all processings of any operation of job ¢ need

to be finished before starting the first operation of job j. In particular, there is
no machine competition at any time between operations of job ¢ and operations
of job j.

Those precedence constraints normally are given by an appropriate directed
graph, e.g., like shown in figure 1.2 for the precedence constraint 7z before j”.

Figure 1.2: Regular precedence constraint

In the disjunctive graph representation of the job shop problem it is very
easy to represent those precedence constraints 7z before j77. We just have to
insert conjunctive arcs from the last operation of job 7 to the first operation of
job j. Since there never is machine competition between jobs that have to be
performed sequentially, we omit the corresponding disjunctive arcs and thereby
avoid "killer”- cycles in the conjunctive graph for SBP. We're lucky on that!

Chapter 2

The Job Shop Model with

Stochastic Job Precedence
Constraints - (J|GERT,D ~ deg|)

Within chapter 2, we are guided into the theory of GERT networks first.
Next, we are shown why this concept of stochastic networks is good for modeling
stochastic precedence constraints. Finally here, we motivate the sense of stochas-
tic job precedence constraints by considering mixed model production.

2.1 The concept of GERT networks

Modeling stochastic precedence constraints we want to stick to the concept of
GERT ! networks. GERT networks are activity-on-arcs project networks where
stochastic elements can be described. Stochastics is meant with respect to project
evolution as well as activity durations. The concept of GERT networks in general
is quite powerful since aspects as feedback can either be taken into account.
Feedback is expressed by cycle structures. For a detailed description of GERT
networks and treatment of structural problems we refer to Neumann (1990) [18]
and Neumann & Steinhardt (1979) [21].

For our purposes we do not need all the skills of GERT theory but only some
extracts. In the following subsections we take a glance at the essentials.

Anyway, we keep in mind that with the forthcoming restriction to acyclic
networks only containing special node types there is space for further extensions
of our stochastic job shop model. At this stage, we are happy to have the corre-
sponding discussion far ahead in chapter 4.

!GERT stands for Graphical Evaluation and Review Technique.

2.1.1 Node types in GERT networks

We distinguish six different types of nodes, each composed by an entrance
side and an exit side:

Entrance sides:

(1) AND-entrance ("and entrance”): Every activity leading into this node is
to be terminated, then the node will be activated 2. The symbol for the AND-

entrance is shown in figure 2.1.

Figure 2.1: GERT node entrance type AND

(2) IOR-entrance (inclusive-or entrance”): This node is activated at that
time, when the first incoming activity is terminated. The node thereafter will
never be activated again. We symbolize IOR-entrances as shown in figure 2.2.

<

Figure 2.2: GERT node entrance type IOR

(3) EOR-entrance ("exclusive-or entrance”): This node will be activated
whenever an incoming activity is terminated. The symbol for the EOR-entrance

<

Figure 2.3: GERT node entrance type EOR

is mirrored in figure 2.3.

?We say a node is activated, if and only if a project execution realizes the state corresponding
to that node.

10

FExit sides:

(1) DET-exit ("deterministic exit”): If this node is activated, all outgoing
activities will be started. The symbol for the DET-exit is given in figure 2.4.

)

Figure 2.4: GERT node exit type DET

(2) ST-exit ("stochastic exit”): If this node is activated, exactly one of the
outgoing activities will be started. The choice is by random. We hereby stick to
the ST-exit symbol sketched in figure 2.5.

b

Figure 2.5: GERT node exit type ST

Conventions

o If there is at most one incoming activity, we let the entrance side be EOR.

o If there is at most one outgoing activity, we let the exit side be ST.

2.1.2 Stochastics in GERT networks and regularity as-
sumptions

Whenever a project execution activates a node 2 with ST-exit, we are to
choose exactly one outgoing activity. Thus, for any successor node j of node ¢
the probability, that activity < ¢,7 > is chosen, given that node 2 is activated,
is defined by p;;. Of course, we require 3 ;cs;) pij = 1 for any ST-node 7, where
S(7) denotes the set of all successors of ¢.

For the random duration of activity < 2,5 >, we need to be given a distribu-
tion function of the activity duration D;; of activity < ¢,7 >, given that node 2
is activated. It shall be denoted by Fj;.

11

Remarks

o We will assume the activity duration D;; to have the same distribution re-
gardless how often < ¢, 5 > has already been activated. Especially, analysis
of cycle structures is hereby made easier.

e Analogously, we define F}; for DET-nodes. We are further not disturbed to
speak of p;; = 1 Vj € S(7), if node ¢ is a DET-node.

e Only positive durations are allowed.
e Expectation of any duration is supposed to be finite.

o We only want to consider projects having exactly one source. Generally,
several sources are allowed and a project execution may start in a selection
of sources. But in this case, we would have to cope with annoying structural
problems. Treatment of this can be found in Neumann (1990) [18].

Definition
A GERT network is a network unifying the above properties.
Some further regularity assumptions

(A1) Markov property: The development of a project realization only depends
on the current project state and not on former project behaviour. Especially,

e p;; and F}; do not depend on the number of previous activations of activity
< 1,J > conditioned on the event, that node ¢ is activated.

o Lor all activities < 2,5 >, the D;;’s are independent.

(A2) Every node within a cycle structure is to be STEOR.

(A3) Every node not in a cycle structure having at least two possibly active pre-
decessors is either to be AND or IOR.

(A4) In any project realization, a cycle structure is at most activated through
one arc leading into it.

Properties (A1) to (A4) are nice to have and offer a good basis to work with.
Therefore, we define the following.

Definition

A GERT network fulfilling (A1) to (A4) is called admissible.

12

Remarks

e Being sloppy, we always mean admissible GERT networks when speaking

of GERT networks.

e For simplicity, we concentrate our reflections on GERT networks only hav-
ing EOR typed nodes first. Those networks are called acyclic FOR net-
works. We abbreviate by "acyclEOR”.

2.1.3 Acyclic EOR networks and node activation prob-
abilities

For acyclic EOR networks, there is a very convenient way to calculate the
probability, that a certain node will, in finite time, be activated in a project ex-
ecution. We need those node activation probabilities, denoted by ¢;, to state the
execution probabilities of the following activities or, as we will see, jobs, respec-
tively. In acyclic EOR networks namely, coincidence to appropriately overlapping
Markov renewal processes has been found. Exploiting results from renewal the-
ory, we can easily calculate the ¢;’s by the following linear system of equations,
where, w.l.o.g, the node set shall be V = {1,...,n} and ¢ = 1 is sentenced to be

the only source:

=D P (= 2,...,n),q1 =1 (2.1)
k=1

If you are more interested in renewal theory in general, you may check references
Grimmet & Stirzaker (1982) [14], Barlow & Proschan (1975) [5], or, for experts,
Alsmeyer (1991) [2].

Treatises of coincidence of acyclic EOR networks and Markov renewal processes

can be found in Neumann (1986) [19] and Neumann & Steinhardt (1979) [21].

2.2 Job precedence constraints given by GERT
networks

We model stochastic job precedence constraints by GERT networks, where
any job with all its operations corresponds to uniquely one activity and hence to
exactly one arc of the GERT network. A node partially reflects a project state.
Activation probabilities ¢; of node ¢ indicate the likelihood that a following job
will be executed.

We flag "GERT” in the g-field of scheduling theory’s triple notation. See
chapter 1.

Whenever we want to take advantage of the fine properties of acyclic EOR
networks, where especially the ¢;’s are easily obtained, we signal "acyclEOR” in

13

our (-field.

2.3 Job durations

Job- and operation durations in our model are supposed to be constant. l.e.,
they are not random variables.

In short: D;; ~ deg(d;;) for some constants d;; > 0.

More short: D ~ deg.

Being honest, we show this in our g-field, too.
Remark

Letting D;; ~ general would cause heavy trouble in solving the scheduling prob-
lem. The reflections we undergo in chapter 3 are not straight forwardly adaptable.

2.4 An example in mixed model production

We will now consider an example that shall illustrate the concept of GERT
networks as well as the before defined concept of stochastic precedence con-
straints. Furthermore, it shall make us conscious that all our models are useful
in mixed model production and operations management.

For basic theory upon production and operations management, we point out
Askin & Standridge (1993) [4] as well as Neumann (1992) [17].
For simplicity and for later use, our example is of 73 = acycl FOR, D ~ deg”-

type.

Here it is:

We consider fictitious automotive propulsion manufacturing for a certain kind
of Swabian quality car, where the customer is assumed to have the choice to
individually order his personal pattern of propulsion and, the car thereafter is to
be produced.

The customer shall be allowed to choose one of the following engines into
his car: 4-cyl. engine, 6-cyl. engine, turbo-charged 6-cyl. engine, or turbo-
charged+intercooled 6-cyl. engine. Independent from the selected engine, he is
to choose either manual 5-speed transmission or automatic 4-speed transmission.
Finally, he is allowed to wish an automatic lock differential instead of a regular
one, independent from engine- and transmission preferences.

14

For those order wishes, we are given corresponding order probabilities, e.g.,
we know that 60 % of the customers want to have the economic 4-cyl. engine.

Now, due to technological production laws we assume that, transmission,
engine, and shafts with differential and rear axle can be build in independently °.
Other technological production restrictions can be read out of the GERT network
given in figure 2.6.

Having another look at figure 2.6, we also see the sense of DET-nodes in the
network, meaning, that all outgoing branches of jobs can be performed indepen-
dently and, probably, at the same time. A ST-node indicates that, only one
outgoing job has to be made. E.g., we only want to build in one 4-cyl. engine.
The corresponding order probability is our given 0,6. Beware that, the order
probability of a 6-cyl.-turbo engine is 0,4 - 0,8. Since, in our example, a turbo
charger is mounted at a regular 6-cyl. engine, the probability that a turbo charger
has to be mounted conditioned on the event, that a 6-cyl. engine already has
been built in, is 0,8. This is the number we assign to the corresponding activity
in the EOR network. But, the overall likelihood to execute Jy is 0,4 - 0, 8.

2.5 Remarks to the model

e The order of priority within the operations o;;, j fixed, is supposed to be
deterministic. This ordering being stochastic either, the situation would
get messy. Why so?

— First, this would contradict the general model of job shop manufac-
turing, where a job’s operation sequence is reasoned by technological
circumstances and those are not stochastic. E.g., if a forest ranger
wants to sell a tree-log, he first has to cut a tree and thereafter saw
off its branches. There is no simple and normal way around that.

— Secondly, o;;-precedence relations given by GERT networks do cause
trouble since, in this case, it is not for sure, if a job is being completed
or not. A partly completed job just makes no sense in manufacturing.

e [D,;; are not random, therefore D ~ deg. D;; being real random variables
would not directly work in the followingly suggested solution procedure.

3For car fetishists we again stress, that this is all fictitious. The author is aware of the
naked fact, that real propulsion manufacturing looks different. The example was constructed
to illustrate the above mentioned.

15

J4 * fitin manual

5-speed trans'mission/ C

o—"

Jg « fit in automatic

4-speed transmission K>
0,3
Jq ¢ prepare -
transmission built-in Jqq ¢ install K>
intercooler —
=
,8

0
Jio* mount/K><
turbo charger dummy
K><8 0,2 \K>
Jg + buildin_~7
6
J, * prepare
2" prep 6-cyl. engine dummy\
\———engine installation

0,2
: 0,4

J7 * build in
4-cyl. engine\K>
0,6
Jg3 * build in
cardan shaft

Jg * attach automatic lock
; KON
differential dummy

=" O >0

/ J * mount rear axle
. 12
Jg ¢ attach regular\ _dummy
differential
0,9

Legend: K> Jj +job #j K>

conditioned probability for JJ- s
if different from 1

Figure 2.6: Our example for mixed model automotive propulsion

16

Chapter 3

A Way to Solve
(J|acyclEOR, D ~ deg|EC’ma,x)

This chapter shows us first how to get a proper disjunctive graph represen-
tation for our new stochastic job shop model. Secondly, we will see that the
shifting bottleneck procedure of Adams, Balas, and Zawack decently works on
the newly developed disjunctive graph and that, it gives us a semi-active schedule
for all existing job operations. Finally, we learn how the obtained solution is to
be understood.

3.1 Extracting a stochastic disjunctive graph
out of the stochastic job precedence con-
straints

In this section we explain how we can get a disjunctive graph where given
stochastic job precedence constraints can be modeled into. We again stress that
we restrict ourselves to 8 = acyclFOR, D ~ deg first. Generalizations to this
will be discussed in chapter 4.

Let us be given an acyclic EOR network representing stochastic job precedence
constraints as explained in chapter 2. We first read regular precedence constraints
out of it. Therefore, we just ignore the individual node types for a while, and
insert regular job’s precedence constraints into the disjunctive job shop graph by
inserting an arc from the final operation of any job to any start operation of its
successor jobs. We remark that, due to the longest path concept, it is sufficient
to insert only one arc to the immediate successor. Whenever we have regular job
precedence constraints, we neglect the corresponding disjunctive arcs between
the jobs since we know that those consecutive jobs never compete for the same

17

machine at any time. This is like we had in chapter 1 and does not surprise us
so far.

Let’s think of stochastics. We first will get a feeling for it by examining an
example sequence. Thereafter, we formulate general regulations for extracting
disjunctive graphs.

We open the example sequence by

Example 1.

Suppose, we are given n = m = 2 and precedence constraints as shown in
figure 3.1. Those precedence constraints are deterministic. They mean that, job 1
and job 2 can be processed independently at the same time. This is like static
job shop scheduling. The corresponding disjunctive graph is given in figure 3.2,
where we can also read out the job’s operation sequences for our problem.

Figure 3.1: Stochastic job precedence constraints to example 1

Example 2:

Suppose, we are given a real stochastic situation with n = m = 2 as shown
in figure 3.3. Example 2 is meant to illustrate stochastic components in our
disjunctive graph. As a scheduling problem alone it is stupid, of course, since
there is nothing to schedule.

We first recognize that either job 1 or job 2 is to be processed onto the ma-
chines. Job 1 is to be performed with probability r; and, the execution probability
for job 2is 1 — ry. As a consequence we notice that, there will never be machine
competition between job 1 and job 2. Thus, there is no disjunction in the cor-
responding disjunctive graph, meaning, we don’t insert disjunctive arcs between
jobs 1 and 2. Next, we are concerned of taking expected processing times into
our graph concept such that we get close to the objective F(C),q,) as a longest

18

Disjunctive

Job j P(Jj) Disjunctive Graph without disjunctive arcs
arcs between...

Figure 3.2: Disjunctive graph to example 1

O

path from ¢ to s. Therefore, we weight the processing time d;; of operation o;;
with its execution probability, which is exactly the probability, that we have to
perform job j, which we will denote by P(.J;). Remember from chapter 2, that in
the case of acycl FOR networks it is easy to get the node activation probabilities.
For taking expected durations in a longest path from ¢ to s, we apply a trick
to consider simulated processing of both jobs, since both can influence E(Cqz):
We start off performing job 1 onto the machines taking the expected operation
durations and thereafter make the process switch over to job 2 by an artificial
(conjunctive) stochastic are, going from the last operation of job 1 to the first
operation of job 2. Of course, operation times of job 2 are weighted with its exe-
cution probabilities either, here, 1 — r;. Respecting our start and end conditions
with an arrow from ¢ to the first operation of job 1 and from the last operation
of job 2 to s, respectively, we get the disjunctive graph as shown in figure 3.4
with the therein given job’s operation sequences.

By symmetry of the precedence constraint it is possible, of course, to let the
project start off with job 2, turn into job 1 and finish off with job 1. In this
case however, we need to switch the stochastic conjunctive arc from the final
operation of job 2 to the start operation of job 1. Clearly, we have to adapt the
starting arc from ¢ to job 2 and the terminating arc from the last operation of
job 1 into s. From the mathematical point of taking expectation through the
artificial stochastic arc, this makes no difference at all, and therefore, we tend to
deal stochastic components in a lexicographical order.

In this example it is evident that the longest way in the new disjunctive graph is
exactly the same than E(C\,.;). This is true for exclusively stochastic precedence
constraints where we have no disjunctive arcs.

19

&

Jl'l’l

Legend:

:: Jj'P(Jj) R

Figure 3.3: Stochastic job precedence constraints to example 2

J2 ° l-l’l

Disjunctive

Job j « P(J; Disjuncti h with isjuncti
j () isjunctive Graph without disjunctive arcs arcs between. .

‘ rgdog rgdyg
.]1 . |’1 ‘_‘
L‘—>‘A d22
(l rl)dlz

Figure 3.4: Disjunctive graph to example 2

none

Jo ¢ (1-r7)

Example 3:

This example is meant to show combination of deterministic and stochastic
components.

We take a look at figure 3.5, where we are shown four jobs and their precedence
relations. Job 1 and job 2 can be processed independently and therefore probably
at the same time. Having done job 1, we either need to do job 3 (with probability
r1) or job 4 (with probability 1 —ry).

20

We construct a disjunctive graph as follows: Since the project can start off
with either job 1 or job 2, we set starting arcs from ¢ to the start operations of
jobs 1 and 2. The project can either end with finishing job 2 or with job 3 or 4,
respectively. We draw finishing arcs from end operations of the jobs 2, 3, and 4
to the sink s. Since job 1 is regular predecessor of jobs 3 and 4, we take care of
that by regular precedence arcs from job 1 to jobs 3 and 4. Job 3 and 4 being
in stochastic order, we insert an artificial stochastic arc from the final operation
of job 3 to the start operation of job 4. We also have to weight the operation
processing times of jobs 3 and 4 with the corresponding execution probabilities
r1 and 1 — rq, respectively. There clearly is machine competition between jobs 1
and 2. But also, job 3 and 2 could be done at the same time, namely, when
job 1 is already finished and we are further supposed to perform job 3 and still
need to do job 2, at least in parts. Analogous situation is true for job 4 and 2.
We therefore need to express this through corresponding disjunctive arcs. These
have been the essentials for constructing the disjunctive graph to example 3.
We further remark that, a longest path from ¢ to s will never run through the
final operation of job 3, since, there are longer components leading through the
stochastic arcs into job 4 and then heading out to s. Analogy is true for the
regular precedence arc from job 1 to job 4. We can neglect those redundant arcs.
Assuming to have two machines available for production, we are now able to fully
understand figure 3.6 with the therein given job’s operation sequences. However,
we mention that, for a given selection a longest path from ¢ to s does not always
give F(Cnq,) anymore. At least, it is an approximation to it.

In the above example sequence, we got to know the basic ideas to establish a
stochastic disjunctive graph out of given stochastic job precedence constraints.
Generally, we need to take care a bit more. For instance, when having more than
two emanating jobs out of a stochastic node in the given network, we have to
sequence the stochastic arcs throughout all jobs. Or, when having consecutive
components to stochastic network components, we need to build our stochastic
graph iteratively for any stochastic sub-component, starting from the most in-
terlocked one. Moreover, we have to multiply any operation processing time by
the operation’s execution probability, i.e., 7" := d;; - P(.J;), where P(J;) is the
execution probability of job j. This is even true in deterministic components.
In the worst, we multiply by 1. Taking care of real machine competition, we
need to get disjunctive arcs into our graph. For acyclic EOR networks, we see
that there is machine competition from any job of any branch emanating from
any DET node to any job of another branch of the same node. This can happen
interlockedly, too. Moreover, we can have m machines and surely need to insert
the corresponding disjunctive arcs for all of the m machines.

We now will show a disjunctive graph to our automotive mixed model produc-
tion example of chapter 2 as a more complex example. We will assume production
to take place on two machines. We don’t stress on job’s operation sequences and

21

O

33 ° rl
J
1 J4 . 1-I’1
J) Legend:

}Q 3+ PQ;), if #1

Figure 3.5: Stochastic job precedence constraints to example 3

leave the corresponding labeling in our stochastic disjunctive graph open. The
stochastic disjunctive graph is given in figure 3.7.

3.2 Applying shifting bottleneck procedure

The above made transformation from our stochastic job shop problem is one
into a regular disjunctive graph. Therefore, all methods based on a disjunctive
graph representation are directly applicable. The objective turns from ., into
an estimate for E(C,,.) for the original problem. Of course, it still needs to be
justified that our stochastic disjunctive graph generally does not bias E(Cuez)
too much. Simulation and exact evaluation for appropriate problems is up to
show this. We are anyway of good hope, since durations are deterministic and
stochastic arcs together with weighted durations take care of approximate dis-
crete expectation calculus. SBP being extremely good for €, ,,-minimization, we
think of approximately solving our problem therewith.

3.3 Interpreting the solution

Finding a good schedule for the stochastic job shop problem through our
disjunctive graph approach, we get an order of priority of all involved operations.
However, in one realization of our stochastic project, not all jobs generally need

22

Disjunctive

Job j P(Jj) Disjunctive Graph without disjunctive arcs
arcs between...
d
0 : : 21
Jp o1
dig
0 I\ 912 dz2
\PR (°12) 022 O
) O,
ridag rydiz
J3 *rq 023 013
b+ (o) (o2——>(o10) O
(1-rq) dog (1-r1) dyq

Figure 3.6: Disjunctive graph to example 3

23

Job j + P(3j)

Disjunctive Graph without

disjunctive and stochastic arcs

Stochastic arcs
from... to

Disjunctive
arcs between...

J4 . 0,7
Js+ 0,3
‘JG . 0,4
J7+0,6
Jg ¢ 0,1
Jg+0,9
J1g * 0,4%0,8
J11°0,4*0,8%0,8

le'l

OO

=0

E=0—>0—

each of
J1, 34, 35

each of
J9, 36 I7,
100 911

each of
Jg, Jg,
9, 312

Figure 3.7: Disjunctive graph to automotive propulsion example of chapter 2

24

to be performed. When considering one special project outcome we therefore just
drop the operations we need not to process and get a schedule for our realization.
Thinking of mixed model production, we can quickly read out a schedule for any
product type of our total schedule for all product types (operations, respectively).
Of course, computer simulation has to show, that this schedule still is adequate.
We are of good hope especially in mixed model production since product types
do normally not differ too much in sequencing operations.

25

Chapter 4

Applications of the Model and
Discussion

In this chapter we discuss our model in various facets. We first care about
generalization with respect to the objective. Next, we keep our eyes onto stochas-
tics and show in what kind of trouble we run into when relaxing 7 3 = acyclFOR”
or”f =D ~ deg”. We then discuss what other heuristic attempts could be made
to solve stochastic job shop scheduling. Finally, we are encouraged thinking of
applicability to mixed model production.

4.1 Generalization and forthcoming problems...

4.1.1 ... concerning the objective ...

coe v = E(Lpar)

If we subtract job J;’s weighted due date of the weighted processing time
at job J;’s final operation at the corresponding arc in our stochastic disjunctive
graph for all jobs, the length of a longest path form ¢ to s approximates E(Lyqz).
This is straight forward adaption from deterministic scheduling via disjunctive
graphs.

coe v = E(Thas)
Every schedule minimizing L,,,, minimizes T),,;, too. Analogous is true in

expectations.

... v = other

Other objectives, such as maxE(C), maxzE(L), or maxE(T) can be con-
sidered in disjunctive graphs either. By how far approximation can be made in
expectations we need to test. There is plenty of space for further research.

26

4.1.2 ... to 3= acyclGERT,D ~ deg

Considering acyclic GERT networks, we are able to model job precedence
constraints where AND nodes are involved. This is like deterministic AND logic,
where regular precedence arcs are overtaken into the disjunctive graph. The
problem of an AND node is, that, it is generally not yet possible to get the
corresponding activation probabilities in an easy manner. There have been made
attempts to estimate those probabilities, but the results have been poor so far.
No citation on that work here. The situation even is more hopeless for IOR
nodes. There is no straight forward way to get those conditions modeled into
arcs in the stochastic disjunctive graph. Moreover, the activation probabilities
of IOR nodes even seem to be more difficult to get than those of AND nodes, in
general.

4.1.3 ... to 3 =acyclEOR,D ~ general

Letting D ~ general, we get more problems. Expectation calculus surely gets
more biased by adding expectations of operations through machine disjunction
than in the” D ~ deg”-case. We additionally have to cope with the same problems
occured in PFE RT-project analysis.

4.1.4 ... to 3=GERT,D ~ deg or general

Modeling feedback by allowing circles in job’s precedence constraints is the
total killer of the stochastic- or even deterministic disjunctive graph concept. We
namely get cycles into the disjunctive graph either, and there is no schedule to
be read out of it no matter how selection is made. If we want to consider job
shop scheduling where the same job has to be made several times, we can’t apply
methods based on disjunctive graphs. FEven in deterministic job shop scheduling,
there is no literature on feedback.

4.2 Other attempts to crack the new model

It might be worth to adapt other heuristics. The Giffler-Thompson approach
could be adaptable. We might be able to determine the performable operations
sequentially in time, elegantly planning one operation after another onto a ma-
chine using an appropriate dispatching rule.

4.3 Applications to mixed model production

As we saw in chapters 2 and 3, our new stochastic job shop model is highly
interesting in mixed model production. It is possible to calculate an overall

27

schedule for all product types, and then read out a schedule for any of the product
types. The shifting bottleneck procedure is a very good heuristic for the objective
Cnaz- Even if we trade in long computing times, we need to calculate only once
and get a result for the total variety of products we can manufacture. This is
a clear advantage to deterministic methods which need to clarify the scheduling
order for each product type seperately. Stochastic job shop scheduling makes
perfect sense in mixed model production. Since product types do not differ
too much in sequencing order, we are of good hope that our total mixed model
production schedule gives good results for any product type. Simulation is up to
prove this.

28

Bibliography

[10]

[11]

[12]

[13]

Adams, Balas, Zawack: The Shifting Bottleneck Procedure for Job Shop
Scheduling, Management Science 34, Vol. 3, p. 391-401, 1988

Alsmeyer: Erneuerungstheorie, Teubner Verlag, 1991

Applegate, Cook: A computational Study of the Job Shop Scheduling Prob-
lem, ORSA Journal of Computation 3, No. 2, p. 149-156, 1991

Askin, Standridge: Modeling and Analysis of Manufacturing Systems, John
Wiley & Sons, Inc., 1993

Barlow, Proschan: Statistical Theory of Reliability and Life Testing, Holt,
Rinehart and Winston, INC., 1975

Blazewicz, Ecker, Schmidt, Weglarz: Scheduling in Computer and Manufac-
turing Systems, Springer Verlag, 1994

Brucker, Jurisch, Sievers: A Branch and Bound Algorithm for the Job Shop
Scheduling Problem, Discrete Applied Mathematics 49, p. 107-127, 1994

Carlier: The one-machine Sequencing Problem, Furopean Journal of Oper-
ations Research 11, p. 42-47, 1982

Carlier, Pinson: An Algorithm for Solving the Job Shop Problem, Manage-
ment Science 35, Vol. 2, p. 164-176, 1989

Dempster, Lenstra, Rinnooy Kan: Deterministic and Stochastic Scheduling,

D. Reidel Publishing Company, 1982

Dauzere-Peres, Lasserre: An Integrated Approach in Production Planning

and Scheduling, Springer Verlag, 1994

Domschke, Scholl, Vof3: Produktionsplanung - Ablauforganisatorische As-
pekte, Springer Verlag, 1993

Giffler, Thompson: Algorithms for Solving Production-Scheduling Problems,
Operations Research, Vol. 8, p. 487-503, 1960

29

[24]

Grimmet, Stirzaker: Probability and Random Processes, Oxford University

Press, 1982

Manne: On the Job Shop Scheduling Problem, Operations Research, Vol. 8,
p. 219-233, 1960

Morton, Pentico: Heuristic Scheduling Systems, John Wiley & Sons, Inc.,
1993

Neumann: Production and Operations Management, WIOR-Report 425,
Universitat Karlsruhe, 1992

Neumann: Stochastic Project Networks, Springer Verlag, 1990

Neumann: Stochastic Project Networks: Temporal Analysis, Scheduling, and
Cost Optimization I, WIOR-Report 280, Universitat Karlsruhe, 1986

Neumann, Morlock: Operations Research, Hanser Verlag, 1993
Neumann, Steinhardt: GERT-Networks, Springer Verlag, 1979

Schwindt: Vergleichende Beurteilung mehrerer Varianten der Heuristik von
Lambrecht und Vanderveken zur Losung des integrierten Losgrofien- und
Ablaufplanungsproblems, WIOR-Report 437, Universitat Karlsruhe, 1994

Schwindt: Vergleichende Bewertung mehrerer Varianten der Heuris-
tik wvon Lambrecht und Vanderveken zur sukzessiven Losung des
Losgrofiensequenzproblems, Diplomarbeit, Institut fir WIOR, Universitat
Karlsruhe, 1993 Operations Research, Vol. 8, p. 219-233, 1960

Seelbach: Ablaufplanung, Physica-Verlag, 1975

30

