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We study the transport properties of a quasi-two-dimensional di�usive normal metal �lm attached

to a superconductor. We demonstrate that the properties of such �lms can essentially di�er from
those of quasi-one-dimensional systems: in the presence of the proximity induced superconductivity

in a su�ciently wide �lm its conductance may not only increase but also decrease with temperature.

We develop a quantitative theory and discuss the physical nature of this e�ect. Our theory provides a
natural explanation for recent experimental �ndings referred to as the \anomalous proximity e�ect".

A normal metal attached to a superconductor also
acquires superconducting properties [1]: at su�ciently
low temperatures \superconducting" electrons penetrat-
ing into a normal metal (N) remain coherent even far
from a superconductor (S). This proximity e�ect can
strongly in
uence transport properties of the system and
becomes particularly pronounced in the case of transpar-
ent inter-metallic interfaces.
Recent theoretical and experimental studies of di�u-

sive mesoscopic NS proximity structures [2{8] (see also
Refs. therein) revealed various interesting features of
long-range coherent states in such systems. One of such
features is a non-monotonic dependence of the system
conductance on temperature [3,4,9,10]: as the tempera-
ture T decreases below the transition temperature TC its
linear conductance G increases above the normal state
value GN , reaches its maximum at T of the order of the
Thouless energy Ed of the normal metal and then de-
creases down to G = GN at T = 0. This non-monotonic
behavior has been detected in recent experiments [7].
The high temperature behavior of G(T ) can be eas-

ily understood: as the temperature is lowered supercon-
ductivity expands in the normal metal and its conduc-
tance increases. The decrease of G with temperature at
T <
� Ed is due to the presence of a proximity induced

(pseudo)gap in the density of states of the N-metal at
energies E <

� Ed [4]. It is also important to emphasize
that at any 0 < T < TC the conductance G was found to
be larger than GN [3,4].
Surprisingly, in several experiments with proximity NS

structures [5,6,8] a decrease of the conductance below its
normal state value already at the onset of superconduc-
tivity was observed. In some cases [5] a negative correc-
tion to G was as large as 30 % ofGN . Even more puzzling
was the sample dependence of this result: in [6] a decrease
of G(T ) with temperature was reported if Sb was chosen
as a normal conductor, whereas if Sb was substituted by
Ag the conductance increased with decreasing T .
It appears that the explanation of the above e�ects

based on the assumption of low transparent NS bound-
aries should be ruled out: in [5,6] the current does not


ow directly through NS interfaces and, on top of that,
the NS boundaries in these experiments were believed to
be highly transparent. One can also recall that in the
presence of proximity induced correlations the electric
�eld penetrating into the normal metal can \overshoot"
its normal state value [4]. This e�ect, although in princi-
ple could be interpreted as a suppression of the local con-
ductivity inside a part of the N-metal, can hardly explain
the results [5,6]: at su�ciently high T the \overshooting"
e�ect is weak [4] and is unlikely to be detected in the ex-
perimental setup [5,6]. Thus it was not completely clear
whether the above observations are consistent with the
existing theory of the proximity e�ect.
In this Letter we will develop a theory of coher-

ent charge transport in two-dimensional (2D) proximity
metallic �lms. We will demonstrate that kinetic proper-
ties of such systems can substantially di�er from those
of quasi-1D proximity structures [3,4] due to nonuniform
distribution of the current in the �lm. We will show that
this e�ect might cause a substantial decrease of the sys-
tem conductance in four-point measurements [5,6] where
the width of the samples was of the same order as their
length. We will provide a transparent physical interpreta-
tion of the e�ect within a standard picture of the proxim-
ity e�ect for quasi-1D normal conductors combined with
the Kirchho�'s laws. We will also discuss possible new
experiments with proximity metallic �lms.
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FIG. 1. A quasi-2D proximity �lm. The contacts A and B
are used as voltage and C and D as current probes. An alter-

native setup: A and C are voltage probes, while the current


ows through B and D.
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The model and the formalism. Consider a planar dif-
fusive NS-system with four probes directly attached to
the normal metal (Fig. 1). In what follows we will as-
sume that the NS interface as well as contacts between
probes and the N-metal are perfectly transparent. We
will also assume that the contact area between the probes
and the N-metal is small and neglect the in
uence of the
probes on the proximity e�ect. Below we will mainly con-
sider the following experimental arrangement: the volt-
age V is applied to the probes A and B, and the current
I 
owing in the probes C and D is measured. A system-
atic description of proximity-induced coherent phenom-
ena in mesoscopic di�usive NS metallic structures was
obtained in [2{4] within the quasiclassical Green func-
tions formalismof nonequilibrium superconductivity the-
ory (see e.g. [11]). The proximity e�ect can be described
in a standard way by means of the Usadel equation [12].
In the absence of inelastic scattering and interaction in
the N-metal it reads D@2x�E = �2iE sinh�E(x), where
GR
E = cosh�E(x) and FR

E = sinh�E(x) are the retarded
normal and anomalous Green functions and D is the dif-
fusion coe�cient for the N-metal. In the geometry of
Fig. 1 these functions depend only on one coordinate x
normal to the NS interface. For E � EL = D=L2

� �
and assuming that no current is 
owing across the metal
interface at x = L one readily �nds

�E(x) =
E

EL

x

L

�
2�

x

L

�
� i�=2: (1)

For E � EL superconducting correlations decay expo-
nentially in the normal metal and we have [2,4]

tanh(�E=4) = tanh(�s=4) exp(�
p
�2iE=Dx); (2)

�s =
1

2
tanh
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��E

����� i
�

2
�(� �E) (3)

In the absence of a supercurrent in the system the total
current can be de�ned as

j =

Z
dE ME(r)rft(r); (4)

where ft is the transverse component of the distribution
function describing deviation from equilibrium. It satis-
�es the di�usion-type kinetic equation

r(ME(r)rft) = IE(�(r � rC)� �(r � rD)); (5)

where IE is the spectral component of the current I at
the energy E. The voltage probes A and B are assumed
to be in thermal equilibrium. Then we get [2]: ftA = 0
and

ftB =

�
tanh

�
E + V

2T

�
� tanh

�
E � V

2T

��
: (6)

A \no current 
ow" condition at the N-metal edges yields

@nft = 0: (7)

The problem (5) is analogous to that of �nding the po-
tential distribution in a classical inhomogenous conduc-
tor with a local (spectral) conductivityME (r). Here this
quantity is fully determined by the proximity e�ect

ME = �N cosh2(Re�E(x)): (8)

where �N is the normal-state conductivity. It is im-
portant to emphasize that although the physical picture
of the proximity e�ect in our system is e�ectively one-
dimensional (and thus ME depends only on x), the ki-
netic problem (5) is essentially two-dimensional. This is
the main di�erence of our model as compared to that
studied in [2{4]. We will demonstrate that this feature is
crucially important leading to new physical e�ects.
Conductance. A formal solution of Eq. (5) reads

ft(E; r) = IE(GE(r; rC)� GE(r; rD)); (9)

where GE = (rME(r)r+ME(r)r2)�1 is the Green func-
tion of the operator (5). Making use of (6, 7) and (9),
and integrating IE over energies we obtain the total cur-
rent I and arrive at the expression for the di�erential
four-point-conductance G = dI=dV :

G(V; T ) =

Z
1

0

g(E)

2T cosh2((E � V )=2T )
dE; (10)

where

g(E) = GN

G
BC
0
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0
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0

G
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(11)

is the spectral conductance. We introduced the notation
G
ij = G(ri; rj) and G0 is the Green's function of (5) in the

normal state (ME (r) = �N ). The spectral conductance
(11) was calculated numerically from eqs. (5), (7) and
(8). The results are presented in Fig. 2.
For narrow �lms the well known results of quasi-1D

calculations [3,4] are qualitatively reproduced: the lin-
ear conductance G(T ) exceeds GN at all T showing a
non-monotonic feature at T <

� Ed (for simplicity we put
L = d here and below). The only quantitative di�er-
ence with [3,4] occurs at low energies due to di�erent
boundary conditions at x = d: here no contact with
a big normal reservoir is assumed and the maximum
conductance Gmax � 1:12GN is reached at T � Ed=4,
i.e. at roughly by a factor 20 lower temperature than
Gmax � 1:09GN . In [3,4], the proximity induced super-
conductivity was slightly weaker due to the contact with
a normal reservoir at x = d.
For broader �lms G(T ) decreases below the normal

state value at high temperatures and reaches the min-
imum at T � 10Ed. At lower T the conductance grows
with decreasing T , becomes larger than GN and then de-
creases again down to G(T = 0) = GN similarly to the
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1D case (see the left inset in Fig. 2). The behavior of
g(E) � G(E; T = 0) as a function of energy (voltage) is
qualitatively identical to that of G(T ), the negative peak
at E � 10Ed turns out to be even somewhat deeper.
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FIG. 2. The linear conductance G(T ) for �lms of di�er-

ent widths w=d = 0:05; 0:5; 1:0 calculated for d = L and
TC = 5:7 105Ed. Left inset: The same curve at w = 0:5d.

The T -axis is zoomed to demonstrate the presence of a usual

1D-type non-monotonic behavior at T � Ed. Right inset:
G(T ) for a wide �lm and TC = 50Ed. The amplitude of the

negative conductance peak is increased due to the e�ect of a

superconducting gap �(T ).

Thus we conclude that although at T <
�

Ed the be-
havior of 2D samples essentially resembles that of a 1D
system, at higher temperatures an additional structure
with the negative conductance peak is present in the 2D
case. For su�ciently wide �lms the amplitude of this
peak can exceed that of the positive peak at lower T .
This e�ect becomes even more pronounced if Ed is not
too small as compared to TC and the peak of the den-
sity of states around the superconducting gap should be
taken into account. For typical parameters (see e.g. the
right inset in Fig. 2) the minimum conductance can be
by more than 35% smaller than GN .

The network model and current 
ow. In order to pro-
vide a transparent physical interpretation of the above ef-
fect let us consider a simpli�ed model of our system: the
network of quasi-1D di�usive normal wires is attached
to a superconductor as well as to current and voltage
probes, see Fig. 3. Similar equivalent cirquit model was
previously used for qualitative description of inhomoge-
nous superconducting �lms [13].
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FIG. 3. An equivalent circuit with the probe con�guration
as in Fig. 1.

Exploiting the analogy between fT and the electrical
potential in a conventional circuit, Kirchho�'s laws for
the spectral conductances can be derived [4,14]. For the
present circuit, we �nd (c.f. [13])

gNet = g3g4

4X
i=1

g�1i (12)

where the gi are the spectral conductances [2,4] of the
wires 1{4

gi =

�Z
wire i

ds

M (s)

�
�1

: (13)

At T � Ed only the wire 1 directly attached to a super-
conductor acquires superconducting properties, whereas
the proximity e�ect in the wires 2, 3 and 4 is suppressed.
Thus only g1 increases, and g2;3;4 remain una�ected. Ac-
cording to eq. (12) gNet decreases below GN . At T <

� Ed

the proximity induced superconducting correlation pen-
etrates into all four wires, g2;3;4 increase leading to the
increase of gNet above GN .
These simple arguments also suggest that the distri-

bution of the current in our 2D proximity system should
depend on T : more current will 
ow through \more con-
ducting" parts of the N-metal. And indeed our numerical
analysis clearly demonstrates this redistribution e�ect in
2D proximity �lms (see Fig. 4).
At low energies (where ME ' �N ) the current lines are

symmetric because the e�ective (spectral) conductivity
ME ' �N is the same everywhere in the system. At
higher energies E > Ed more current is 
owing near the
superconductor, where ME is larger due to the proximity
e�ect. This distorsion of the current lines is clearly seen
in Fig. 4. At very high energies ME is increased only in
a very narrow region near the superconductor, and most
current lines become symmetric again. This illustrates
the importance of the geometry in the measuring process.
Let us �nally point out that with the aid of the above

network model and the results [2,4] one can estimate the
energy Ecr, at which the crossover between the quasi-1D
(g > GN ) and the quasi-2D (g < GN ) regimes occurs.
We �nd that Ecr � D=w

2 for narrow and Ecr � D=d
2
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for wide �lms. This estimate is in a good agreement with
our numerical results for 2D �lms.
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FIG. 4. Spectral current lines in a 2D proximity �lm for

various energies.

Discussion. Our analysis clearly demonstrates that
both the temperature dependence of G and the ampli-
tude of the e�ect [5,6] can be explained within the stan-
dard quasiclassical theory of superconductivity applied
to 2D proximity metallic �lms. This is consistent with
the fact, that in other experiments, where contacts were
placed in line [7], no resistance increase below TC was
observed. Furthermore, it also allows to understand the
sample dependence of the conductance of NS structures
observed in [6].
Indeed, for the parameters of this experiment one has

Ecr � 10Ed � 40�V and V ' RNI � 7�V and 100
�V respectively for Ag and Sb samples. Thus for the
Ag sample V < Ecr, the e�ective 1D picture applies and
the conductance increases due to the proximity e�ect.
On the contrary, for the Sb sample V > Ecr and the
conductance decreases due to 2D e�ects. This is exactly
what has been found in [6]. We believe that at very
low voltages and temperatures it should be possible to
observe the excess conductance e�ect also for Sb samples.
Finally let us brie
y discuss another possible four-point

conductance measurement with di�erent arrangement of
voltage (A and C) and current (B and D) probes (Fig.
1). In this case the spectral properties, i.e. the spread
of correlations into the normal metal, which determine
ME(r), remain the same, however the kinetics changes.
Again applying the Kirchho� analysis we now �nd

gNet = g1g2

4X
i=1

g�1i (14)

If the voltage and current probes are close to each other,
the local conductivity is recovered. 2D e�ects are weak in
this case since g1 � g2 at all energies and g3;4 � g1;2 for
w � d. If, however, the current and voltage probes are

su�ciently far from each other one recovers two positive

conductance peaks: one at low T <
�

Ed and the second
at higher T . The position of this second positive conduc-
tance peak roughly coincides with that of the negative

peak (T � 10Ed) in Fig. 2 for a di�erent contact ar-
rangement. The physical reason for this second peak can
be again understood within the network model analysis
(14): at high enough energies only g1 is increased by the
proximity e�ect. These predictions agree with the results
of our 2D numerical analysis.
In conclusion, we studied kinetic properties of a 2D

di�usive normal metal �lm attached to a superconduc-
tor and demonstrated that the proximity e�ect can lead
to both increase and decrease of the �lm conductance
depending on the type of measurement and the energies
involved. Our results are fully consistent with experimen-
tal �ndings [5,6,8]. We also propose new experiments for
further study of the phenomena discussed here.
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