Quantum Decoherence in Disordered Mesoscopic Systems
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We point out that the low temperature saturation of the electron phase decoherence time in a
disordered conductor can be explained within the existing theory of weak localization provided the
effect of quantum (high frequency) fluctuations is taken into account. Making use of the fluctuation-

dissipation theorem we evaluate the quantum decoherence time, the crossover temperature below
which thermal effects become unimportant, and the weak localization correction do at T = 0. For
1d systems the latter is found to be do /o oc 1/+/N, where N is the number of conducting channels.

Quantum interference between electrons has a strong
impact on electron transport in a disordered metal, lead-
ing to the so-called weak localization correction to the
system conductance [1]. This correction is large provided
the electrons moving in the metal remain coherent. On
the other hand, this phase coherence can persist only for
a finite time and is eventually destroyed due to various
processes, such as electron-electron and electron-phonon
interactions, spin-flip scattering, etc. This characteristic
decoherence time 7, plays a prominent role in the theory
of weak localization [1,2].

In the absence of magnetic impurities and if the tem-
perature of the system is sufficiently low the decoherence
time 7, is determined by electron-electron interactions.
It was demonstrated in Ref. [3] (see also [2,4,5]) that for
this dephasing mechanism the decoherence time increases
with temperature as 7, T72/(d=4) " is the system di-
mension. This theoretical prediction was verified in the
experiments [6,7] over a certain temperature interval.

Does the divergence of 7, in the zero temperature limit
imply that coherence is not destroyed at 7' = 07 Recent
experiments [8] clearly suggest a negative answer, indi-
cating that at very low temperatures the time 7, sat-
urates at a finite level showing no tendency for further
increase with decreasing 7. The authors [8,9] argued
that this saturation is not caused by heating or magnetic
impurities but rather is a fundamental consequence of
zero-point fluctuations of electrons. A saturation of 7,
at low T' was also observed in earlier works (see e.g. [6,7]).

The aim of this paper is to demonstrate that the ob-
served saturation of 7, at lowest temperatures [8] can be
explained within the existing theory of weak localization
[2] if one takes into account quantum fluctuations of the
electric field in a disordered conductor.

We essentially follow the analysis elaborated by
Chakravarty and Schmid [2] and consider the propaga-
tion of an electron with the kinetic energy ms#?/2 in
a potential of randomly distributed impurities Usp,yp (7).
In addition to that the electron interacts with other
electrons and experiences two additional forces: (i) the

damping force F' due to electron-electron collisions and
(ii) the stochastic force due to the fluctuating elec-
tric field E(r,t) = —VV(r,t) produced by other elec-
trons. These two forces are related to each other by the
fluctuation-dissipation theorem (FDT) [10]. The force
F(r(t)) acting on the electron with the coordinate ()
is given by the equation

F(r(t)) = tanh (%)ev%('r‘,tﬂr:rm, (1)

where £ = m#2/2 — p, p is the chemical potential, and
the self-induced potential Vj(r,t) obeys the equation

V(€VV0 (', 'r")) = 4mwed(r — r(1)). (2)

Here € is the dielectric susceptibility operator. One can
show [11] that the factor tanh(£/2T) in the eq. (1) ap-
pears due to the Pauli principle.

Let us express the propagating electron amplitude in
terms of the Feynman path integral. Within the quasi-
classical approximation (sufficient as long as the elastic
mean free path [ exceeds the Fermi wavelength prl > 1)
the path integral can be replaced by the sum over the
classical trajectories obeying the equation of motion

~VUimp (1) + F(r(t)) — eVV(r,t) (3)

mr =

for each realization of random potentials Uiy (r) and
V(r,t). Averaging over disordered configurations of im-
purities [2] yields the effective picture of electron diffusion
at the scales bigger than [.

Let us estimate the phase difference between a classi-
cal electron path #(t') and a time reversed path =(t — )
induced by the two last terms in the eq. (3). Considering
the effect of the force F' we find

dpF = —etanh %/dt’[%(’r‘(t/)) —Vo(r(t=1")]. (4)

Since the kernel of the operator € is symmetric with re-
spect to its spacial arguments, one can easily observe that
dep is identically zero provided Vj obeys the eq. (2).



The phase difference due to the stochastic potential
V(r,t) is, on the contrary, nonzero. It is defined as

t

—e/dt’[V(r(t’),t’) V(@ -1t),)]. (5
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Averaging with respect to fluctuations of V| for not very
small ¢ one gets [2]

((Fp(r,1))*)/2 =1/7,(T), (6)

where
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a is the film thickness for d = 2 and a?
cross section for d = 1.

The correlation function for voltages in (7) can be de-
termined with the aid of FDT [10]. Let us first consider
a quasi-1d conductor. In this case one finds
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Here o = 2¢? Ny Ds is the classical Drude conductance, D
is the diffusion coefficient, and C' is the capacitance of a
linear conductor per unit length. In (8) we neglected re-
tardation and skin effects which may become important
only at very high frequencies. Substituting (8) into (7)
and integrating over ¢ and ¢ we find
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The low frequency cutoff in the integral (9) is chosen in
a standard manner [1-3], at high frequencies the inte-
gral is cut at 1/7. = vp/l because at even higher w a
diffusion approximation is inapplicable and eq. (8) be-
comes incorrect. In eq. (9) we made use of the condition
C' <« o/D which is usually well satisfied (perhaps ex-
cept for extremely thin wires) indicating the smallness of
capacitive effects in our system. Eq. (9) yields

=P prymm ). (10)
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The first term in the square brackets comes from the low
frequency modes w < T' whereas the second term is due
to high frequency (w > T') fluctuations of the electric field
in a disordered conductor. At sufficiently high tempera-
ture the first term dominates and the usual expression [3]
7, ~ (0/e?DY2T)?/3 is recovered. As T is lowered the
number of the low frequency modes decreases and even-
tually vanishes in the limit 7' — 0. At TS Ty ~ 1/ /To7e

the expression (10) is dominated by the second term and
T, saturates at the value

T N mo/etup. (11)
The estimate for the crossover temperature 7; reads

Ty ~ evp Vol (12)

Making use of eq. (11) it is also easy to find the weak
localization correction do to the Drude conductance in
the limit 7= 0. For T < T, we obtain

_ 13
o o prst/? (13)
ie. do & —o/V/N, where N ~ p%s is the effective num-
ber of conducting channels in a 1d mesoscopic system.

For 2d and 3d systems the same analysis yields
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where ¢ = 2¢2NyDa® ¢ is the conductance of a d-
dimensional system. The result (14) demonstrates that
for 2d and 3d systems saturation of 7, is expected already
at relavitely high temperatures: the crossover tempera-
ture 75 is of the order of the inverse elastic time in the
3d case and T, ~ vp/lIn(p%al)? for a 2d system. The
latter value agrees well with the experimental results [6].

Our analysis clearly demonstrates that — in accordance
with previous considerations [3,12] — the decoherence
time 7, is entirely different from the inelastic mean free
time 73, which is known to become infinite at zero temper-
ature for almost all processes, including electron-electron
interaction. In order to find ; it is sufficient to proceed
within the standard quasiclassical approach and to solve
the kinetic equation for the electron distribution func-
tion. The collision integral in this equation contains the
product of the occupation numbers for different energy
levels ng (1 — ng), which vanishes at T — 0 due to the
Pauli principle. Hence, 7; becomes infinite at 7' = 0.

In terms of the path integral analysis this procedure
amounts to expanding the electron effective action on the
Keldysh contour in the parameter #_ (¢') = v1 (') —v2(t')
assuming this parameter to be small (r1(2)(t') is the elec-
tron coordinate on the forward (backward) part of the
Keldysh contour). The quasiclassical equation (3) for
the ”center of mass” v (¢') = (r1(t') + r2(t'))/2 fol-
lows from this procedure. Both forces F' and —eVV are
important for such classical paths, and the combination
coth(w/2T) + tanh((¢ —w)/2T) (from egs. (1) and (8))
enters the expression for the inelastic time 7; (see e.g.
[5]). For a detailed calculation of the inelastic scattering
time in various limits we refer the reader to Ref. [12].



The above quasiclassical procedure is formally very dif-
ferent from one used to calculate the weak localization
correction to conductivity. In the latter case the time
reversed paths r1 (') and r2(f — ') are assumed to be
close to each other [2] whereas »_(t') can be arbitrarily
large. This formal difference is just an illustration of the
well know fact, that weak localization is an essentially
quantum phenomenon. In this case the contribution of
the force F, containing tanh(£/2T), is zero as it was dis-
cussed above. Therefore, the quasiclassical kinetic anal-
ysis of 7; in terms of the collision integral is principally
insuffient for calculation of the decoherence time 7.

We would like to emphasize that our results are ob-
tained within the standard theoretical treatment of weak
localization effects [2] combined with FDT. One can
elaborate a more general real time analysis based on
the Keldysh technique [11]. Starting from the micro-
scopic Hamiltonian for electrons in a disordered metal
with Coulomb interaction one can introduce two quan-
tum fields V3 and Vs respectively on the forward and
the backward parts of the Keldysh contour by means of
a standard Hubbard-Stratonovich transformation. The
initial problem is then mapped onto that of a single elec-
tron propagating in a random potential of impurities in
a metal and interacting with an effective fluctuating ma-
trix external field Vj;(r,t) = Vi(r,t)di; (4,7 = 1, 2) which
is in turn produced by fluctuating electrons. One can
show [11] that the effective density matrix of this elec-
tron py (¢, 71, r2) obeys the exact equation of motion

.0 eV~
Z%Z[Ho—evJ’,Pv]—(l—PV) 5PV
eV ™

where Hg 1s the exact Hamiltonian for an electron in a
metal in the presence of impurities but in the absence
of the electron-electron interaction, Vt* = (Vi + V2)/2
and V~ = V; — V5. The single electron density matrix
p 1in the presence of interactions is derived by averaging
over the above stochastic fields p = (py )y + v-, and the
correlators for these fields are determined by the influ-
ence functional obtained by integrating out all electron
degrees of freedom [11]. Within this approach one arrives
at the same results [11] as those obtained here.

Eq. (15) allows for a simple understanding of the role
of the Pauli principle in our problem. One can show
[11] that fluctuations of the field V'~ are responsible for
collision-induced damping described by the force F in
eq. (3). The field V™ is obviously sensitive to the Pauli
principle, and the factor tanh(£/27") appears in eq. (1).

In contrast to V', fluctuations of the field VT, which
just coincides with the quasiclassical potential V' in eq.
(3), are not sensitive to the Pauli principle. Tt is obvious
from eq. (15) that VT (¢,#) is equivalent to an external
potential. All electrons “feel” the same fluctuating field
V*, and the Pauli principle plays no role in this process.

This effect causes quantum decoherence which persists
down to T'= 0.

The existence of a nonzero electron dephasing rate at
T = 0 has a transparent physical interpretation. Let us
represent the fluctuating field V' as a collection of oscil-
lators with different frequencies, all being in the ground
state at T = 0. The interference contribution to the
return probability for an electron interacting with one
oscillator with a frequency w oscillates in time and is
smaller than one for all time moments except { = 2wn/w
when the system returns to its initial state. In the case of
nfinitely many oscillators with a continuous distribution
of frequencies the electron will never return exactly to
its initial state. At T = 0 the interference contribution
will be always suppressed by a factor exp(—nr?), where
7 depends on the interaction strength and the spectrum
of oscillators and r(¢) is the size of the return path. For
an electron in a diffusive metal () grows with time as
r ~ +/ Dt, and the interference contribution to the return
probability will decay as o exp(—nDt). This is the effect
of quantum dephasing at 7" = 0.

Note that this effect is qualitatively different from that
discussed in Ref. [13] where it was argued that zero-point
motion of impurities may cause dephasing at T = 0.
Later it was pointed out in Ref. [14] — and we fully agree
with this statement [14] — that purely elastic scattering
considered in Ref. [13] cannot cause quantum decoher-
ence. In contrast, in our case the energy exchange be-
tween the electron and the field oscillators is possible even
at T = 0: in the presence of interaction none of them is
in its “noninteracting” eigenstate, the ground state levels
get broadened, and the energy can be exchanged without
excitation of the field oscillators.

The saturation of the dephasing rate at low 7" was re-
cently discussed by the authors [9] who started from the
framework similar to that of Refs. [2,4] and the present
paper. However, in contrast to our analysis, the calcula-
tion [9] involves integration over 2d (not 1d) wave vector
and a phenomenologically chosen high frequency cutoff.
As a result the authors [9] arrived at the estimate for the
decoherence length L, ~ N.j,/pr which does not contain
the elastic mean free path [. This result is not correct.
Also the role of the Pauli principle in the effect of quan-
tum dephasing was not clarified in Ref. [9].

Let us emphasize that the saturation of r, at low T’
might not necessarily indicate the failure of the Fermi
liquid hypotheses for disordered metals at 7'S 1/7, (al-
though it does not support this hypothesis either). Tt is
because 7, is the dephasing time for real electrons and not
for Landau quasiparticles. In a disordered metal inter-
acting electrons are “bad” particles: their wave functions
dephase even at T' = 0. The possibility to construct “bet-
ter” quasiparticles is questionable in this case, but any-
way they are not needed within our analysis which allows
to directly calculate the physically measurable quantities
in terms of interacting electrons.
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FIG. 1. The temperature dependent decoherence rate (10) (solid curves) plotted together with the experimental data for

two 1d gold wires (Au-2 and Au-6) [8] (squares).

The results of our analysis agree well with the experi-
mental findings [8]. The corresponding comparison of our
eq. (10) with the experimental data for two gold wires
(Au-2 and Au-6) [8] at low T is presented in Fig. 1. This
agreement was achieved with no fitting parameters and
is even better than one could expect within the accuracy
of the cutoff procedure used in eq. (9). The value of the
decoherence length L, = /D7, measured for the sam-
ples Au-3 and Au-4 (Au-1 and Au-5) [8] is 1.5+ 2 times
(respectively ~ 3 times) bigger than one obtained from
(10), i.e. the agreement is reasonable also for the remain-
ing four samples [8]. Our results both for the magnitude
and the temperature dependence of 7, also agree well
with earlier experimental data [7,6]. Furthermore, in 1d
wires the scaling L, = /D71, x /o was observed in [7].
Similarly in [6] the linear dependence of 1/7, on the sheet
resistance of 2d films was found. These observations are
also consistent with our eqs. (11,14).

Finally, we would like to point out that the low tem-
perature saturation of 7, should cause dramatic conse-
quences for the existing picture of strong localization in
low dimensional metals [15,16]. Our results demonstrate
that for typical metals the effective decoherence length
L, is always smaller than the localization length Lj,..
E.g. in 1d we have L, ~ I\/Nep < Lige ~ [N for
Nep > 1. This implies that localization should remain
“weak” at all T, and the 1d and 2d metals (at least for
prl > 1) do not become insulators even at T = 0 because
of the effect of electron-electron interaction.

In conclusion, we point out that the low temperature
saturation of the electron decoherence time found in re-
cent experiments with mesoscopic conductors can be ex-
plained within the existing theory of weak localization
provided the effect of intrinsic quantum fluctuations of
the electric field is properly accounted for. Our results
agree well with the experimental data.
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