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We point out that the low temperature saturation of the electron phase decoherence time in a
disordered conductor can be explained within the existing theory of weak localization provided the
e�ect of quantum �high frequency� �uctuations is taken into account� Making use of the �uctuation�
dissipation theorem we evaluate the quantum decoherence time� the crossover temperature below
which thermal e�ects become unimportant� and the weak localization correction �� at T 	 
� For
�d systems the latter is found to be ���� � ��

p
N � where N is the number of conducting channels�

Quantum interference between electrons has a strong
impact on electron transport in a disordered metal� lead�
ing to the so�called weak localization correction to the
system conductance ���� This correction is large provided
the electrons moving in the metal remain coherent� On
the other hand� this phase coherence can persist only for
a �nite time and is eventually destroyed due to various
processes� such as electron�electron and electron�phonon
interactions� spin�	ip scattering� etc� This characteristic
decoherence time �� plays a prominent role in the theory
of weak localization ���
��

In the absence of magnetic impurities and if the tem�
perature of the system is su�ciently low the decoherence
time �� is determined by electron�electron interactions�
It was demonstrated in Ref� ��� see also �
������ that for
this dephasing mechanism the decoherence time increases
with temperature as �� � T ���d���� d is the system di�
mension� This theoretical prediction was veri�ed in the
experiments ����� over a certain temperature interval�

Does the divergence of �� in the zero temperature limit
imply that coherence is not destroyed at T � �� Recent
experiments ��� clearly suggest a negative answer� indi�
cating that at very low temperatures the time �� sat�
urates at a �nite level showing no tendency for further
increase with decreasing T � The authors ����� argued
that this saturation is not caused by heating or magnetic
impurities but rather is a fundamental consequence of
zero�point 	uctuations of electrons� A saturation of ��
at low T was also observed in earlier works see e�g� �������

The aim of this paper is to demonstrate that the ob�
served saturation of �� at lowest temperatures ��� can be
explained within the existing theory of weak localization
�
� if one takes into account quantum 	uctuations of the
electric �eld in a disordered conductor�

We essentially follow the analysis elaborated by
Chakravarty and Schmid �
� and consider the propaga�
tion of an electron with the kinetic energy m �r��
 in
a potential of randomly distributed impurities Uimpr��
In addition to that the electron interacts with other
electrons and experiences two additional forces� i� the

damping force F due to electron�electron collisions and
ii� the stochastic force due to the 	uctuating elec�
tric �eld Er� t� � �rV r� t� produced by other elec�
trons� These two forces are related to each other by the
	uctuation�dissipation theorem FDT� ����� The force
F rt�� acting on the electron with the coordinate rt�
is given by the equation

F rt�� � tanh

�
�


T

�
erV�r� t�jr�r�t�� ��

where � � m �r��
 � �� � is the chemical potential� and
the self�induced potential V�r� t� obeys the equation

r���rV�t�� r��
�
� ��e�r � rt��	 
�

Here �� is the dielectric susceptibility operator� One can
show ���� that the factor tanh��
T � in the eq� �� ap�
pears due to the Pauli principle�
Let us express the propagating electron amplitude in

terms of the Feynman path integral� Within the quasi�
classical approximation su�cient as long as the elastic
mean free path l exceeds the Fermi wavelength pF l � ��
the path integral can be replaced by the sum over the
classical trajectories obeying the equation of motion

m�r � �rUimpr� � F rt��� erV r� t� ��

for each realization of random potentials Uimpr� and
V r� t�� Averaging over disordered con�gurations of im�
purities �
� yields the e�ective picture of electron di�usion
at the scales bigger than l�
Let us estimate the phase di�erence between a classi�

cal electron path rt�� and a time reversed path rt� t��
induced by the two last terms in the eq� ��� Considering
the e�ect of the force F we �nd

�
F � �e tanh �


T

tZ
�

dt��V�rt
���� V�rt � t����	 ��

Since the kernel of the operator �� is symmetric with re�
spect to its spacial arguments� one can easily observe that
�
F is identically zero provided V� obeys the eq� 
��

�



The phase di�erence due to the stochastic potential
V r� t� is� on the contrary� nonzero� It is de�ned as

�
r� t� � �e
tZ

�

dt��V rt��� t�� � V rt� t��� t���	 ��

Averaging with respect to 	uctuations of V � for not very
small t one gets �
�

h�
r� t���i�
 � t���T �� ��

where
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a is the �lm thickness for d � 
 and a� � s is the wire
cross section for d � ��

The correlation function for voltages in �� can be de�
termined with the aid of FDT ����� Let us �rst consider
a quasi��d conductor� In this case one �nds

hjVq��j�i
a�

�
� coth
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�q� � �q�� � CD
� ��

	 ��

Here � � 
e�N�Ds is the classical Drude conductance� D
is the di�usion coe�cient� and C is the capacitance of a
linear conductor per unit length� In �� we neglected re�
tardation and skin e�ects which may become important
only at very high frequencies� Substituting �� into ��
and integrating over t and q we �nd
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The low frequency cuto� in the integral �� is chosen in
a standard manner ������ at high frequencies the inte�
gral is cut at ���e � vF �l because at even higher � a
di�usion approximation is inapplicable and eq� �� be�
comes incorrect� In eq� �� we made use of the condition
C � ��D which is usually well satis�ed perhaps ex�
cept for extremely thin wires� indicating the smallness of
capacitive e�ects in our system� Eq� �� yields
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The �rst term in the square brackets comes from the low
frequency modes �  T whereas the second term is due
to high frequency � � T � 	uctuations of the electric �eld
in a disordered conductor� At su�ciently high tempera�
ture the �rst term dominates and the usual expression ���
�� � ��e�D���T ���� is recovered� As T is lowered the
number of the low frequency modes decreases and even�
tually vanishes in the limitT � �� At T � Tq � ��

p
���e

the expression ��� is dominated by the second term and
�� saturates at the value

�� � ���e�vF 	 ���

The estimate for the crossover temperature Tq reads

Tq � evF �
p
�l	 �
�

Making use of eq� ��� it is also easy to �nd the weak
localization correction �� to the Drude conductance in
the limit T � �� For T � Tq we obtain

��

�
� � e�

��

p
D�� � � �

pF s���
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i�e� �� � ���pN � where N � p�F s is the e�ective num�
ber of conducting channels in a �d mesoscopic system�
For 
d and �d systems the same analysis yields
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where � � 
e�N�Da��d is the conductance of a d�
dimensional system� The result ��� demonstrates that
for 
d and �d systems saturation of �� is expected already
at relavitely high temperatures� the crossover tempera�
ture Tq is of the order of the inverse elastic time in the
�d case and Tq � vF �l lnp�F al�

� for a 
d system� The
latter value agrees well with the experimental results ����
Our analysis clearly demonstrates that � in accordance

with previous considerations ����
� � the decoherence
time �� is entirely di�erent from the inelastic mean free
time �i� which is known to become in�nite at zero temper�
ature for almost all processes� including electron�electron
interaction� In order to �nd �i it is su�cient to proceed
within the standard quasiclassical approach and to solve
the kinetic equation for the electron distribution func�
tion� The collision integral in this equation contains the
product of the occupation numbers for di�erent energy
levels nk� � nq�� which vanishes at T � � due to the
Pauli principle� Hence� �i becomes in�nite at T � ��
In terms of the path integral analysis this procedure

amounts to expanding the electron e�ective action on the
Keldysh contour in the parameter r�t

�� � r�t
���r�t��

assuming this parameter to be small r����t
�� is the elec�

tron coordinate on the forward backward� part of the
Keldysh contour�� The quasiclassical equation �� for
the �center of mass� r	t�� � r�t�� � r�t����
 fol�
lows from this procedure� Both forces F and �erV are
important for such classical paths� and the combination
coth��
T � � tanh� � ���
T � from eqs� �� and ���
enters the expression for the inelastic time �i see e�g�
����� For a detailed calculation of the inelastic scattering
time in various limits we refer the reader to Ref� ��
��






The above quasiclassical procedure is formally very dif�
ferent from one used to calculate the weak localization
correction to conductivity� In the latter case the time
reversed paths r�t�� and r�t � t�� are assumed to be
close to each other �
� whereas r�t�� can be arbitrarily
large� This formal di�erence is just an illustration of the
well know fact� that weak localization is an essentially
quantum phenomenon� In this case the contribution of
the force F � containing tanh��
T �� is zero as it was dis�
cussed above� Therefore� the quasiclassical kinetic anal�
ysis of �i in terms of the collision integral is principally
insu�ent for calculation of the decoherence time ���

We would like to emphasize that our results are ob�
tained within the standard theoretical treatment of weak
localization e�ects �
� combined with FDT� One can
elaborate a more general real time analysis based on
the Keldysh technique ����� Starting from the micro�
scopic Hamiltonian for electrons in a disordered metal
with Coulomb interaction one can introduce two quan�
tum �elds V� and V� respectively on the forward and
the backward parts of the Keldysh contour by means of
a standard Hubbard�Stratonovich transformation� The
initial problem is then mapped onto that of a single elec�
tron propagating in a random potential of impurities in
a metal and interacting with an e�ective 	uctuating ma�
trix external �eld Vijr� t� � Vir� t��ij i� j � �� 
� which
is in turn produced by 	uctuating electrons� One can
show ���� that the e�ective density matrix of this elec�
tron �V t� r�� r�� obeys the exact equation of motion

i
��V
�t

� �H� � eV 	� �V �� �� �V �
eV �



�V

��V eV �



�� �V �� ���

where H� is the exact Hamiltonian for an electron in a
metal in the presence of impurities but in the absence
of the electron�electron interaction� V 	 � V� � V���

and V � � V� � V�� The single electron density matrix
� in the presence of interactions is derived by averaging
over the above stochastic �elds � � h�V iV ��V� � and the
correlators for these �elds are determined by the in	u�
ence functional obtained by integrating out all electron
degrees of freedom ����� Within this approach one arrives
at the same results ���� as those obtained here�

Eq� ��� allows for a simple understanding of the role
of the Pauli principle in our problem� One can show
���� that 	uctuations of the �eld V � are responsible for
collision�induced damping described by the force F in
eq� ��� The �eld V � is obviously sensitive to the Pauli
principle� and the factor tanh��
T � appears in eq� ���

In contrast to V �� 	uctuations of the �eld V 	� which
just coincides with the quasiclassical potential V in eq�
��� are not sensitive to the Pauli principle� It is obvious
from eq� ��� that V 	t� r� is equivalent to an external
potential� All electrons  feel� the same 	uctuating �eld
V 	� and the Pauli principle plays no role in this process�

This e�ect causes quantum decoherence which persists
down to T � ��
The existence of a nonzero electron dephasing rate at

T � � has a transparent physical interpretation� Let us
represent the 	uctuating �eld V as a collection of oscil�
lators with di�erent frequencies� all being in the ground
state at T � �� The interference contribution to the
return probability for an electron interacting with one

oscillator with a frequency � oscillates in time and is
smaller than one for all time moments except t � 
�n��
when the system returns to its initial state� In the case of
in�nitely many oscillators with a continuous distribution
of frequencies the electron will never return exactly to
its initial state� At T � � the interference contribution
will be always suppressed by a factor exp��r��� where
� depends on the interaction strength and the spectrum
of oscillators and rt� is the size of the return path� For
an electron in a di�usive metal rt� grows with time as
r � pDt� and the interference contribution to the return
probability will decay as � exp��Dt�� This is the e�ect
of quantum dephasing at T � ��
Note that this e�ect is qualitatively di�erent from that

discussed in Ref� ���� where it was argued that zero�point
motion of impurities may cause dephasing at T � ��
Later it was pointed out in Ref� ���� � and we fully agree
with this statement ���� � that purely elastic scattering
considered in Ref� ���� cannot cause quantum decoher�
ence� In contrast� in our case the energy exchange be�
tween the electron and the �eld oscillators is possible even
at T � �� in the presence of interaction none of them is
in its  noninteracting� eigenstate� the ground state levels
get broadened� and the energy can be exchanged without

excitation of the �eld oscillators�
The saturation of the dephasing rate at low T was re�

cently discussed by the authors ��� who started from the
framework similar to that of Refs� �
��� and the present
paper� However� in contrast to our analysis� the calcula�
tion ��� involves integration over 
d not �d� wave vector
and a phenomenologically chosen high frequency cuto��
As a result the authors ��� arrived at the estimate for the
decoherence length L� � Nch�pF which does not contain
the elastic mean free path l� This result is not correct�
Also the role of the Pauli principle in the e�ect of quan�
tum dephasing was not clari�ed in Ref� ����
Let us emphasize that the saturation of �� at low T

might not necessarily indicate the failure of the Fermi
liquid hypotheses for disordered metals at T � ���� al�
though it does not support this hypothesis either�� It is
because �� is the dephasing time for real electrons and not
for Landau quasiparticles� In a disordered metal inter�
acting electrons are  bad� particles� their wave functions
dephase even at T � �� The possibility to construct  bet�
ter� quasiparticles is questionable in this case� but any�
way they are not needed within our analysis which allows
to directly calculate the physically measurable quantities
in terms of interacting electrons�

�
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FIG� �� The temperature dependent decoherence rate ��
� �solid curves� plotted together with the experimental data for

two �d gold wires �Au�� and Au�� ��� �squares��

The results of our analysis agree well with the experi�
mental �ndings ���� The corresponding comparison of our
eq� ��� with the experimental data for two gold wires
Au�
 and Au��� ��� at low T is presented in Fig� �� This
agreement was achieved with no �tting parameters and
is even better than one could expect within the accuracy
of the cuto� procedure used in eq� ��� The value of the
decoherence length L� �

p
D�� measured for the sam�

ples Au�� and Au�� Au�� and Au��� ��� is �	�� 
 times
respectively � � times� bigger than one obtained from
���� i�e� the agreement is reasonable also for the remain�
ing four samples ���� Our results both for the magnitude
and the temperature dependence of �� also agree well
with earlier experimental data ������ Furthermore� in �d
wires the scaling L� �

p
D�� �

p
� was observed in ����

Similarly in ��� the linear dependence of ���� on the sheet
resistance of 
d �lms was found� These observations are
also consistent with our eqs� �������

Finally� we would like to point out that the low tem�
perature saturation of �� should cause dramatic conse�
quences for the existing picture of strong localization in
low dimensional metals �������� Our results demonstrate
that for typical metals the e�ective decoherence length
L� is always smaller than the localization length Lloc �
E�g� in �d we have L� � l

p
Nch � Lloc � lNch for

Nch � �� This implies that localization should remain
 weak� at all T � and the �d and 
d metals at least for
pF l � �� do not become insulators even at T � � because
of the e�ect of electron�electron interaction�

In conclusion� we point out that the low temperature
saturation of the electron decoherence time found in re�
cent experiments with mesoscopic conductors can be ex�
plained within the existing theory of weak localization
provided the e�ect of intrinsic quantum 	uctuations of
the electric �eld is properly accounted for� Our results
agree well with the experimental data�
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