
ABC�VHDL

A Synchronous VHDL Subset with a Formal Semantics in HOL

Dirk Eisenbiegler and Ramayya Kumar
Forschungszentrum Informatik
�Prof� Dr��Ing� D� Schmid�

Haid�und�Neu�Stra�e �	��
 ���� Karlsruhe� Germany
e�mail� feisenbiegler�kumarg�fzi�de

November �	� ����

Abstract

VHDL is frequently used for describing purely synchronous circuits� However�
the underlying model of VHDL is much more expressive than it need be� In
this report� a synchronous subset of VHDL named ABC�VHDL is introduced�
ABC�VHDL is dedicated towards logical argumentation and correct circuit syn�
thesis based on VHDL descriptions� Although being conform with the standard
VHDL semantics� the semantics of ABC�VHDL is based on a far simpler model�
synchronous circuit descriptions at the RT�level formalized within higher or�
der logic� This article describes the syntactical aspects of ABC�VHDL� and it
also de�nes the semantics of ABC�VHDL by a mapping between ABC�VHDL
structures and the corresponding formulae in higher order logic�

Contents

� Motivation �

� ABC�VHDL versus VHDL �

��� Processes � 	
��� Architectures �

��� Types� Constants� Functions� Operators and Expressions � � � � � �
��	 Summary �

� Libraries� Entities and Architectures �

��� Libraries �
��� Entities �
��� Architectures �

� Processes ��

	�� The Process Interface ��
	�� The State of a Process ��
	�� Behavior of Processes ��

	 Statements �

�� Data Types Used ��

�� Type A� Type B� and Type C Statements � � � � � � � � � � � � � ��

�� Basic Statements ��

�	 Compound Statements ��

�
 Statement Parts �

A Syntax of ABC�VHDL ��

A�� Conventions �
A�� Basic Expressions �
A�� Syntax Rules �

B Semantics of ABC�VHDL ��

B�� Basics ��
B�� Type Abbreviations ��
B�� ABC�VHDL Statements and Processes � � � � � � � � � � � � � � � �

C Standard ABC�VHDL Type and Constant Semantics ��

C�� Translation for ABC�VHDL Types � � � � � � � � � � � � � � � � � 		
C�� Translation for ABC�VHDL Constants � � � � � � � � � � � � � � � 		

�

Chapter �

Motivation

To argue about VHDL programs on the logical level� a formal semantics� i�e�
a mapping between the syntactic VHDL structures and the corresponding log�
ical formulae� has to be found� Experiences in this area show� that de�ning a
formal semantics is a sophisticated goal due to the complexity of the language
�BGGH��� DaJS��� BrFK�	�� The given informal VHDL semantics is not as
precise as it should be� and this is why very often di�erent VHDL simulators
lead to di�erent simulation results and di�erent formalization approaches lead
to di�erent formal semantics� Another problem is the complexity of the under�
lying timing model� The resulting formulae have to represent this timing model
in an adequate manner� and this is why the resulting formulae may become very
complex� and veri�cation may become an exacting process�

In the area of hardware synthesis� VHDL is often used to describe nothing
but synchronous circuits� Usually the syntax of VHDL sub�languages is de�ned
by sets of restrictions and the semantics is inherited from VHDL �DeOd����
Although synchronous circuits can easily be formalized in a higher order logic
calculus� deriving the semantics of VHDL descriptions in general is rather di��
cult� The underlying model is much more expressive and powerful than it need
be for just describing synchronous circuits�

In this paper� a reduced VHDL language called ABC�VHDL is introduced�
ABC�VHDL is restricted to synchronous circuit descriptions� For ABC�VHDL
a new timing model has been de�ned� The ABC�VHDL timing model conforms
to the VHDL timing model� but it is tailored for synchronous circuits only� and
this makes it far simpler�

VHDL programs do not always represent real circuits in an adequate way�
For example� they may have in�nite loops� such that a process keeps being exe�
cuted without ever reaching a wait statement� Another example for inadequate
circuit descriptions are structures with zero�delay cycles� i�e� a cycle� where
each process produces a delta delay output and passes it to the next process of
the cycle� When formalizing circuit descriptions in logic� it is very important to
ensure� that the resulting formulae are consistent� Inconsistent formulae never
correspond to technically realizable circuits� but any property can formally be
derived from them �ex falso quodlibet�� ABC�VHDL puts a stress on consistency�
It is restricted to well de�ned synchronous circuit descriptions� Zero�delay cy�
cles� in�nite loops� short�circuits etc� are avoided�

All processes are described by means of the lambda calculus� Lambda terms

�

are both logical speci�cations and executable programs� The formulae to be
constructed not only formally describe the processes� but can also be used for
simulation by evaluating the lambda terms in an interpreter of a functional
programming language�

In general� there are two ways of formally embedding languages� deep em�
bedding and shallow embedding �BGGH��� ReKr��b�� Deep embedding means
that the syntax of the language is represented by terms within the logic� and for�
mulae are de�ned to describe the semantics of these logical structures� Shallow
embedding means� that in the logic there are no terms representing the syn�
tax of the language� There is just a function �a program� mapping the syntax
represented outside logic to a formula within the logic�

We chose a shallow embedding approach� A theory with constants and
types for representing ABC�VHDL has been invented within HOL� This theory
has been designed in a way� such that ABC�VHDL representations and their
corresponding HOL representations are very close to one another� i�e� di�er
only in minor syntactical aspects� A program for automatically convertingABC�
VHDL programs into HOL representations has been implemented�

The paper is structured as follows� Chapter � introduces the main principles
of ABC�VHDL and the major syntactical restrictions compared with standard
VHDL� In the next chapters� the ABC�VHDL language is built bottom up�
Chapters �� 	 and
 describe the semantics of ABC�VHDLs entities� architec�
tures� processes� and statements� Appendix A enlists the syntax of ABC�VHDL�
In appendix B the elements de�ned in HOL are enlisted�

�

Chapter �

ABC�VHDL versus VHDL

��� Processes

In ABC�VHDL� only pure input and pure output signals are allowed� Statement
parts of processes are compound statements that are recursively constructed
using certain basic statements and control structures� As basic statements there
are�

�� wait statements�

�� signal assignments�

�� variable assignments and

	� null statements

As control structures there are�

�� sequences of statements�

�� loops and

�� if�then�else structures

General VHDL programs are not restricted to synchronous circuits� In ABC�
VHDL� every sequential program and even every atomic or compound statement
will be represented by an output and transition function� that maps input and
current state to output and next state� In ABC�VHDL� atomic circuits may
either have one or zero clock inputs� and all wait statements must have the
form

wait until clk � ����

where clk is the clock signal of this circuit� The clock signal must not be used
within variable assignments and signal assignments�

In ABC�VHDL� simulation cycles are clock cycles� A simulation cycle starts
with a rising slope of the clock signal� During a clock cycle the processes may
read the input signals and the current variables and depending on these values
certain variable and signal assignments are executed and �nally a new wait
statement is reached�

	

In ABC�VHDL� only zero delay signal assignments are allowed� After getting
the positive slope of the clock signal� the process will immediately read the input
and it will produce its output signal assignments at this very moment�

Figure ��� describes the life of an ABC�VHDL process� The gray shape
symbolizes a program� s� denotes the beginning state� s�� s�� � � � sn denote the
wait statement occurrences� and the arrows denote transitions� In other words�
the total number of control states is equal to the number of wait statements
plus one� An arrow from some sm to some sn indicates� that from one clock
tick to another the process may jump from control state sm to control state sn�
Usually there may be several arrows starting from one control state� since the
succeeding control state not only depends on the current control state but also
on the current values of the variables and inputs�

The control states s�� s�� s�� � � � sn correspond to the control states of the syn�
chronous circuit that is to be described by this program� At time �� the process
starts in the beginning state s�� After the �rst clock tick� it reaches a wait
statement� and in all further clock cycles it jumps from one wait statement oc�
currence to another� The initial state s� will never be reached again� Whenever
the execution reaches the end of the program� it will automatically proceed at
the beginning without delay� When passing through the end and continuing in
the beginning the execution will not stop at position s� to wait there for a clock
period�

There are two kinds of control states a process can be in� First there is the
initial state s�� and second there are the control states s�� s�� � � � related to the
wait statements occurrences� Statements� i�e� parts of ABC�VHDL programs�
will be described in the same way as entire programs except that they not only
have a beginning s� but also an end s� �see �gure ����� Being in state s� means�
that the execution of the processes recently passes through the beginning of the
statement� Reaching s� means� that the process has �nished the execution of
the statement and that it will immediately continue with the next statement if
there is any� In statements� s� and s� do not correspond to control states in the
corresponding synchronous circuit�

s�

s�

s�
s�

Figure ���� A Process

��� Architectures

In ABC�VHDL as well as in VHDL� structures are described by means of ar�
chitectures� ABC�VHDL neither supports generic architectures nor generate
statements are� Furthermore� there is restriction on how structures may be
built� short�circuits and zero�delay�cycles are not allowed�

s�

s�

s�

s�
s�

Figure ���� A Statement

The use of clock signals is restricted� When there is at least one part of the
structure with a clock input� then the entire circuit must have one clock input�
that is connected to all clock inputs of the sub�circuits� All clock signals must
be interconnected� Clock signals and non�clock signals must not be connected�

��� Types� Constants� Functions� Operators and

Expressions

ABC�VHDL does not allow type declarations nor does it allow function or con�
stant declarations� However� arbitrary types� functions and constants are al�
lowed� But before they can be used� their semantics have to be de�ned explic�
itly by giving a corresponding representation in HOL and by de�ning a mapping
between data types� operators and constants in ABC�VHDL and in HOL� There
are two tables� the type table� which de�nes the semantics of ABC�VHDL data
types and the constant table� which de�nes the semantics of ABC�VHDL con�
stants� functions and operators�

Appendix C gives an example for such mappings� Throughout this paper�
these mappings will be used� However� the user may de�ne arbitrary other
mappings�

Expressions are built recursively� Constants� variables and input signals are
expressions� Compound expressions are built by applying functions to tuples of
basic elements or previously built compound expressions� All expressions must
be well typed� i�e� a type is assigned to all basic elements and for all functions
it is de�ned what are the types of its inputs and what is the type of the result�

��� Summary

The main di�erences between ABC�VHDL and VHDL are�

� ABC�VHDL is restricted to purely synchronous circuits

� only pure input and pure output signals are allowed

� each circuit may have a single clock input

� short�circuits and zero�delays are prohibited

� there are no generic architectures

� there are no generate statements

�

� type� constant and function de�nitions cannot be de�ned in ABC�VHDL

� the semantics of types� constants and functions used has to be de�ned
explicitly

�

Chapter �

Libraries� Entities and

Architectures

Throughout this paper� only synchronous circuits at the RT and logical abstrac�
tion level will be considered� Time is considered to be discrete� and the clock
ticks are formally represented by natural numbers� All combinatorial circuits
have zero delay� and D��ip�ops have unit delay� i�e� one clock period�

��� Libraries

Whenever VHDL source text is elaborated by the parser� it is assigned to a
library� The library name is not de�ned within the VHDL source text but is
handled to the parser explicitly by means of user interaction�

In ABC�VHDL� the only elements within libraries are entities and archi�
tectures� Previously de�ned architectures may be used as components within
architecture bodies� However� if the library the architecture belongs to di�ers
from the current library� then the library has to be declared by means of a li�
brary clause� Library clauses are always related to the next entity or architecture
declaration� Libraries declared for entities can be used in all its architectures�

��� Entities

In an entity declaration� the entity name and the names and types of its signal
interface are de�ned� Entity declarations describe the interface of architecture�
whereas the architecture describes its behavior�

There are two types of signals� data signals and clock signals� Each entity
may have one clock signal� The usage signals must not di�er within di�erent
architectures� It is not allowed to use one signal as clock signal in one archi�
tecture and as data signal in another� Within the logical representation� clock
signals will not be formalized explicitly �see chapters 	 and
��

In ABC�VHDL� only pure input and pure output signals are allowed� Let
i�� i��� � � ini be the data input signals and o�� o��� � � ono be the output signals�
��� ���� � � �ni be the types of the input signals and ��� ���� � � �no be the types
of the output signals of the architecture�

In ABC�VHDL� interface signals can be instantiated within the entity decla�
ration� However� due to the restrictions in ABC�VHDL� instantiations of input
signals have no e�ect and therefore are ignored� Using instantiations for in�
terface signals is optional� Whenever an output signal remains uninstantiated�
existentially quanti�ed variables are used to represent these values in logic�

Example

The entity declaration in �gure 	�� describes the interface of an entity named
gcd� The signal clock is used as clock signal� since in the architecture below it
is used within wait�statements�

There are three data input signals named a� b and start� Where a and b
are of type positive and start is of type std�logic� According to appendix
C� the ABC�VHDL type positive is represented by the HOL type num and
std�logic is represented by bool� So the type of the input � becomes

num� num� bool

There are two output signals named ready and result of type std�logic and
positive and instantiations ��� and �� respectively� According to appendix
C� the ABC�VHDL type positive is represented by the HOL type num and
std�logic is represented by bool� The type of the output � is

num� bool

According to appendix C� the expressions ��� and � are represented by F and
�� respectively� The initial state of the output signal is

�F� ��

��� Architectures

All architectures are related to some entity declaration� where its entity name�
the input signals and the output signals are de�ned� Architectures always belong
to the same library as their entity declarations� Within the declarative part of
architectures� internal signals may be de�ned and instantiated� Like output
signals and unlike input signals� instantiations of internal signals do have an
e�ect on the behavior and are not ignored�

The statement part of an architecture de�nes a structure� Its parts are
named concurrent statements and they are interconnected via signals�

Formal Representation of Architectures

All architectures are represented by relations between time dependent input and
output signals� Time dependent signals are represented by functions mapping
time to a value of some data type �� An arbitrary type � may be used for the
value of a signal� In HOL� time is represented by the data type num �natural
number� �� �� � � ��� Signals have the following type�

num� �

�

Architectures are represented by relations between signals� i�e� by a function
mapping a tuple of signals to bool �boolean values� T or F�� In HOL� terms
representing architectures have the following type�

�
�num� ���� �num� ���� � � �� �num� �ni� �
�num� ���� �num� ���� � � �� �num� �ni�

�
� bool

This type only depends on the entity declaration� All architectures of the same
entity are represented by relations with the same type�

Structures

Representing structures in higher order logic is straightforward �HaDa��� The
general scheme is as follows�

�i�� i�� � � � ini � o�� o�� � � � ono �
�y�� x�� � � � ym�
R�x�� x�� � � � xn� � R��� � �� � R��� � �� � � � � �Rk�� � ��

In this formula� a compound circuit R is de�ned as a composition of its parts
R�� R�� � � � Rk� The external signals i�� i�� � � � ini � o�� o�� � � � ono are all�quanti�ed
and the internal signals y�� y�� � � � ym are existentially quanti�ed� The interface
of the compound circuit is connected with all external signals� the interfaces
of its components may be connected to arbitrary internal or external signals
according to the given net list� In such net list descriptions� circuits are repre�
sented by relations� Input and output signals are not distinguished� and there
may be several input and output signals�

Figure ��� gives an example for a formalization of a circuit structure accord�
ing to this scheme� The compound circuit is named R� its parts are named A�
B and C� The inputs of R are a and b� its outputs are x and y and there are
two internal lines named v and w�

A
C

B y

xa

b

R

v

w

�a� b� x� y�
�v� w�
R�a� b� x� y� � A�a� v� v� �B�w� b� y� � C�a� v� x� w�

Figure ���� Formalization of a Structure

��

Concurrent Statements

The structure described by an architecture consists of several concurrent state�
ments� In ABC�VHDL� the following concurrent statements are allowed�

�� processes statements

�� concurrent signal assignments

�� component instantiation statements

According to our formalization scheme� each concurrent statement has to be
represented by a relation between time dependent input and output signals�

The logical formalization of processes will be considered in chapter 	� Con�
current signal assignments are equivalent to processes with exactly one sequen�
tial signal assignment� Therefore� their semantics is not considered explicitly�

Component instantiations are used to instantiate another architecture as a
concurrent statement within the current architecture� Before components can
be used� they have to be declared in the declarative part of the architecture� The
component declaration a component name is de�ned and this component name is
related to some architecture� which is given by its library� entity and architecture
name� Furthermore� the component declaration de�nes a signal interface� The
types and names of the signal interface of the component must equal the types
and names of the signal interface of the architecture the component is related
to�

There may also be signal instantiations within interface lists of component
declarations� So there are two ways to instantiate interface signals� they can
be instantiated within the entity declaration and they can also be instantiated
within the component declaration� where an architecture of the entity is instan�
tiated� If some signal is instantiated at both places� then the signal instantiation
within the component instantiation dominates�

All concurrent statements may have labels� Arbitrary identi�ers may be
used as labels� All labels used within one architecture must di�er� In ABC�
VHDL� labels only have an e�ect to process statements� Di�erent component
instantiations with the same component name may have di�erent component
instantiations� The component declaration can be restricted to some explicitly
enumerated labels�

Within a component instantiation� the association between the signals of the
current architecture �actual signals� and the signals of the component �formal
signals� is described by the port map� The association between actual signals
and formal signals can be done in two ways�

�� a tuple of actual signals� where the order of the elements corresponds to
the order of formal signals given in the component speci�cation

�� a tuple� where each actual signal is assigned to one formal signal and the
order is ambiguous

In logic� port maps are always represented by tuples� In order to derive the
formal representation� port maps of the second group have to be rearranged
according to the interface list of the component declaration�

��

Restrictions to Structures

Structural descriptions at the synchronous abstraction level are not always con�
sistent� In ABC�VHDL� structural descriptions within the architecture body are
allowed only if they meet the following restrictions

�� no short�circuits� output signals of components and input signals of the
compound circuit must not be connected with other output signals of
components or input signals of the compound circuit

�� no zero�delay�cycles� there must not be no ring of combinatorial �zero�
delay� circuits� such that one of the outputs of each of them is connected
with some input of its successor

�� separated clock� clock signals must not be connected with data signals�
and all clock signals must interconnected

In ABC�VHDL� input and output signals are always clearly distinguished� De�
tecting short�circuits is pretty easy�

To detect zero�delay cycles� zero�delay�dependencies are determined for all
processes and architectures� The signal�delay�dependency list is a table with
all outputs and the inputs that have a direct impact on this output� A direct
impact means� that there is a pure combinatorial path from input to output
with no memory unit �delta delay unit� in between�

All basic circuits are de�ned by means of a process statement or a concurrent
signal assignment statement� There are two kinds of processes� ones where
all outputs �may� directly depend on all inputs and others where there is no
output that directly depends on an input �see sections 	 and
�� To determine
the dependencies of architectures� �rst the dependency lists of its parts have to
be determined� Determining the dependency list of an architecture fails if the
structure contains a zero�delay�cycle�

��

Chapter �

Processes

��� The Process Interface

In VHDL� processes are always part of the architecture body� Other than archi�
tectures� there is no explicit interface de�nition for processes� The only signals
a processes may use� are the interface signals of its entity declaration plus the
signals declared in the declarative part of the architecture� The names� types
and instantiations of the signals are de�ned there�

Although processes do not have an explicit interface declaration� it can be
derived� All signals appearing in expressions are called input signals of the
process� All signals occurring at some left hand side of a signal assignment
are called output signals� In ABC�VHDL� input and output signals must be
disjunct� Let i�� i�� � � � ini be the input signals and o�� o�� � � � ono be the output
signals� ��� ��� � � � �ni be the types of the input signals and ��� ��� � � � �no be
the types of the output signals of the process� Let � be an abbreviation for
�� � �� � � � �� �ni and � be an abbreviation for �� � �� � � � �� �ni �

��� The State of a Process

In the declarative part of processes� variables may be declared and instantiated�
Let v�� v�� � � � vnv be the variables declared in the declaration part of the process�
and let ��� ��� � � � �nv be the corresponding types� Let � be the type of the
control state� � depends on the structure of the algorithm� This topic will be
discussed in chapter
�

The state of the process � consists of the following parts� the variable state�
the output state and the control state� In ABC�VHDL� all processes have a
variable state and an output state� There are two kinds of processes� ones with
and others without control state� So � becomes either �� � � � or �� ��

��� Behavior of Processes

The behavior of processes is determined by its statement part and the instanti�
ation given to the process state� The initial state q is given by the instantiations
of the variables� output signals and the initial control state� Its type is �� The

��

� entity gcd is

� port �

� clk 	 in std�logic�

� a
b 	 in positive�

� start 	 in std�logic�

� ready 	 out std�logic 	� ����

� result 	 out positive 	� �

	 ��

 end gcd�

��
�� architecture behavior of gcd is

�� begin process

�� variable x
y
z 	 positive 	� ��

�� begin

�� while start �� ��� loop

�� wait until clk � ����

�� end loop�

�	 ready � ����

�
 if �a b� then

�� x 	� b�

�� y 	� a�

�� else

�� x 	� a�

�� y 	� b�

�� end if�

�� while �y �� �� loop

�� z 	� x � y�

�	 wait until clk � ����

�
 x 	� y�

�� y 	� z�

�� end loop�

�� ready � ����

�� result � x�

�� wait until clk � ����

�� end process�

�� end behavior�

Figure 	��� GCD circuit description in ABC�VHDL

�	

process body can unambiguously be represented by a compound output and
transition function� that maps the input �type �� and the current state �type ��
at time n to the output �type �� at time n and the state �type �� at time n���
The process body is represented by a function f having type � � � � � � ��
How f is derived from the statement part of an ABC�VHDL process will be
discussed in chapter
�

f and q determine the process behavior in an unambiguous manner� To
derive a relation between the input and output signals of the process the HOL
function automatonwill be used� automaton is part of the HOL theory Automata
�see �EiKu�
��� It maps �f�q� with type

��� � � � � �� � �

to a function g � automaton�f� q� with type

�num� ��� �num� ��

g is a function that maps a time dependent input signal to a type dependent
output signal�

The function automaton was been de�ned by means of induction over time
�natural numbers�� At time �� the state is q� f maps the input signal and the
state at some time t to the output at time t and the state at time t��� Figure
	�� sketches the semantics that was given to automaton� automaton�f� q� can
be considered to consist of a combinatorial unit f and a memory unit D q with
initial value q�

automaton�f� q�

�
num� � f�������

�
num� �

�
D

q�

�

Figure 	��� Automaton

According to chapter �� a process is represented by some relation between its
input and output signals� automaton�f� q� is a function rather than a relation�
and the input signals and output signals are bundled� To achieve the required
relation� an equation has to be built� and the bundled input and output signals
have to be split into their parts� The scheme for representing processes is as
follows�

�	t��s��t�� � � � � sp�t��� � automaton�f� q� �	t��sp���t�� � � � � sq�t��

�

Chapter �

Statements

The body of a process consists of a statement part� As already mentioned
in chapter 	� the entire statement part is represented by an output and state
transition function f of type � � � � � � �� We will �rst describe the formal
representation of atomic and compound statements and then describe� how f is
derived from the the statement part� i�e� a compound statement�

The logical type and constant de�nitions used in this chapter are enlisted in
appendix B�

��� Data Types Used

The following �ve HOL data types will be used in this chapter� bool� one� num�
���option and ��
� Table
�� gives an informal de�nition of these datatypes�
bool represents a set consisting of the elements T and F� The datatype one

represents a set that only contains a unique element� The name one is used
for both� for the name of the type and also for the constant representing its
only element� num represents the natural numbers� It is de�ned in a recursive
manner� There are two constructors� the constant � of type num and the
constant SUC� a function mapping type num to num� The natural numbers
are de�ned as the set of all expressions built up by these two constructors� i�e�
�� SUC �� SUC�SUC ��� � � � �

option and � are type operators� option is a unary type operator that maps
an arbitrary type � to a data type named ���option� where ���option represents
a set consisting of the element none and of the elements any�x� for all x of type
�� � is a binary type operator� that is used in in�x style� It maps two arbitrary
types � and
 to ��
� where ��
 represents a set consisting of the elements
INL�x� for every x of type � and the elements INR�y� for every y of type
�

��� Type A� Type B� and Type C Statements

In order to formalize sequential statements of ABC�VHDL� we distinguish three
classes named A� B and C� In simpli�ed terms� the di�erences as follows� On
their way from position s� to s

�� the type A statement never� the type B state�
ment sometimes and the type C statement always reaches a wait statement �see
�gure
����

��

bool � T j F
one � one

num � � j SUC of num

���option � none j any of �

��
 � INL of � j INR of

Table
��� Data Types

Type A statements contain no wait statements� The complete execution of
a type A statement is always performed within a single simulation cycle� Type
B and type C statements both do contain at least one wait statement� For type
C statements the following property must be ful�lled� Starting at the beginning
s� the execution will always reach a wait statement before reaching the end s��
For type B statements this need not be guaranteed� Type B statements are
more general than type C statements� Type C statements always are type B
statements but not the other way round�

s�

s�

s�

s�

s�

s�
s�

s�

s�

s�

s�
s�

type A type B type C

Figure
��� Classi�cation of Statements

The logical representations of ABC�VHDL statements de�ne� how the state�
ment a�ects the state of the process and what output is produced according
to the current process state and the current input� There are two reasons for
classifying sequential statements� First these three classes of statements will
each have a di�erent logical representation� and second there will be restrictions
in combining these three kinds of statements in order to avoid nonterminating
programs�

Let � be the type of the input of the process� � be the type of the output of
the process and � be the type of the variables of the process�

Type A Statements

Type A statements are represented by functions mapping the input� the old
output and the old variable state to the current output and the new variable
state� Type A statements have the following type�

�� � � �� � � �

��

Type B Statements

Type B statements are represented by functions mapping the old input� the old
output� the variable state and the control state to the current output and the
new variable and control state� The logical type of type B statements is de�ned
as follows�

�� � � �� ���option� � � �� ���option

Type � is used to represent the set of wait statement positions within the state�
ment� It depends on how the statement is built �see section
�	�� All other
types ��� � and �� only depend on the process the statement is in�

The control state the processor comes from is either one of the wait statement
positions or the beginning of the statement� By applying the type oparator
option to �� one element is added� The elements any�x�� where x is some element
of type � are used to indicate wait statement positions� The extra element none
is used to indicate the beginning�

The control state the processor goes to is either one of the wait statement
positions or the end of the statement� Also this set of control states is repre�
sented by option� The elements any�x� are again used to indicate wait statement
positions� and the extra element none is used to indicate the end of the state�
ment�

Type C Statements

Type C statements are formalized similar to type B statements except that the
function is split into a pair of two functions� The �rst function describes the
behaviour when being in the initial state b� Due to the de�nition of type C
statements� starting from the beginning� the next control state can only be a
wait statement position� The �rst function has the following type�

�� � � �� o� �� ��

The second function describes the behavior starting from some wait statement
within the statement� Its type is as follows�

�� � � �� � � � � �� ���option

Type C statements have the following logical type�

��� � � �� � � �� �� �
��� � � �� � � � � �� ���option�

Conditions

Conditions are used within if�then�else structures and loops� They are rep�
resented by predicates on input signals and variable states� Their type is as
follows�

�� �� bool

�

Abbreviation Original Type

��� �� ��type a statement �� � � �� � � �

��� �� �� ��type b statement �� � � �� ���option� � � �� ���option

��� �� �� ��type c statement ��� � � �� � � �� �� �
��� � � �� � � � � �� ���option�

��� ��condition �� �� bool

Table
��� Type Abbreviatios

Type Abbreviations for Statements and Conditions

In order to simplify the handling with statements and conditions� type abbrevia�
tions will be used� Figure
�� enlists the type abbreviations and the correspond�
ing types� To switch some term of the original type representation to a term
with the new type representation� mk type a statement� mk type b statement�
mk type c statement� and mk condition is applied� and dest type a statement�
dest type b statement� dest type c statement� and dest condition is applied to
switch back� The logical de�nitions of these type abbreviations are enlisted
in appendix B���

��� Basic Statements

In ABC�VHDL� there are four basic statements�

�� signal assignments�

�� variable assignments�

�� null statements� and

	� wait statements

Variable assignments� signal assignments and null are type A statements� Wait
statements are type C statements�

Signal Assignments

A signal assignment replaces the value of one output signal by the expression
given on the right hand side of the signal assignment� Variables are not af�
fected by signal assignments� and the expression on the right hand side only
depends on variables and input signals but not of output signals� Therefore
signal assignments can unambiguously be described by a function g of type�

�� � � �� �

Since signal assignemts alter only one of the output signals� the output of g
equals its output state input� except that exactly one signal is changed�

��

The function SIGNAL ASSIGNMENT maps such functions g into an expres�
sion of type type a statement� The new output state is determined by g and the
variable state v is left unchangeged�

� SIGNAL ASSIGNMENT�g� �
mk type a statements�	�i� o� v�� �g�i� o� v�� v��

Example� In line � of the GCD circuit ��gure 	��� there is the following signal
assignment

ready � ����

This signal assignment is represented by the following expression �see line with
label � in �gure
���

SIGNAL ASSIGNMENT

�	��a� b� start�� �ready� result�� �x� y� z��� �F� result��

Expanding the de�nition of SIGNAL ASSIGNMENT leads to the following equiv�
alent expression

mk type a statement

�	��a� b� start�� �ready� result�� �x� y� z��� ��F� result�� �x� y� z���

Variable Assignments

Variable assignments are just the other way round� a single variable is altered
whereas the other variables and the signals remain unchanged� Variable assign�
ments can unambiguously be described by a function g of type �� �� �� The
function VARIABLE ASSIGNMENT maps such functions to an expression of type
type a statement �

� VARIABLE ASSIGNMENT�g� �
mk type a statement�	�i� o� v�� �o� g�i� v���

Null Statements

The null statement neither alters the output nor the variables� It is de�ned by�

� NULL STATEMENT �
mk type a statement�	�i� o� v�� �o� v��

Wait Statements

Wait statements are type C statements� There is exactly one wait statement
position within a type C statement� Therefore� data type one is used to represent
�� The old control state and also the new control state are represented by type
�one�option� The formal de�nition is as follows�

�WAIT �
mk type c statement

�
�	�i� o� v�� �o� v� one���
�	�i� o� v� c�� �o� v� none��

�

��

The �rst function describes the behavior when starting from the beginning of
the statement� The output and variable state are left unchanged and the process
turns to the only possible control state named one�

The second function describes the way from some wait statement position
within the statement� Since the set of wait statement positions is represented
by the data type one� c is of type one� whose only value is the constant one� The
output and variable state are left unchanged and the process turns to none� i�e�
the end of the process�

��� Compound Statements

In ABC�VHDL� there are three control structures for recursively combining basic
statements to compound ones�

�� sequences�

�� if�then�else structures� and

�� while�loops

Control structures will be represented by functions that map tuples of state�
ments and conditions to new �compound� statements� A sequences maps a pair
of statements to a compound statement� an if�then�else structure maps a triple
consisting of one condition and two statements to a compound structure� and
a loop maps a pair consisting of a condition and a statement to a compound
statements� The statements which are used as parts of control structures may
either be basic statements or themselves be compound statements�

Since type A� type B and type C statements have di�erent logical types� it
is not possible to represent each control structure by a single function but by
a set of functions for each combination of statements� So there are � sequence
functions and � if�then�else functions� However� there is only a single while�loop
function since while loops are only allowed for type C statement bodies� The
type of the compound statement can directly be derived from the types of its
parts� Table
�� describes� how the type of the compound statement is derived
from the types of its parts�

sequence if�then�else while

A B C
A A B C
B B B C
C C C C

A B C
A A B B
B B B B
C B B C

C � B

Table
��� Construction Rules for Compound Statements

While loops are only allowed for type C statement bodies in order to avoid
in�nite loops� Both type A and type B statements may run from the beginning
to the end position within one simulation cycle� i�e� without reaching a wait
statement� While loops with type A or type B statement bodies therefore might
be executed for an in�nite number of times� In such a simulation� the next clock

��

tick whould never be reached� and therefore such a circuit description whould
not correspond to any real synchronous circuit�

Sequences

Sequence operators map a pair of statements to a compound statement� They
are de�ned for all combinations of statement types� There names are SEQ AA�
SEQ AB� SEQ AC� SEQ AA� etc� where the last two letters of the operator
names indicate the types of the parameters� They are used in in�x fashion�

� represents the set of wait statements within a statement� When combining
two statements by means of a sequence� the number of wait statement positions
becomes the sum of the number of control statements of its parts� Type A
statement do not contain wait statements� If both parts are type A statements�
then the result also becomes a type A statement� If one of the parameters
is a type A statement �with no wait statement� and the other statement is a
type B or type C statement �with at least one wait statement�� then the type
for representing the wait statement set is inherited from the type B or type C
statement� If both paramenters are type B or type C statements� and the set
of wait statement positions is represented by �� and ��� respectively� then the
type of the compound statement becomes �� � ���

Example

Let x be a type B statement and y be a type C statement� Let

��� �� �� ���type b statement

be the type of x and

��� �� �� ���type c statement

be the type of y� The compound statement

�x SEQ BC y�

is a type C statement �see table
���� According to appendix B� its type is

��� �� �� �� � ���type c statement

Therefore� the type of SEQ BC is

��� �� �� ���type b statement� ��� �� �� ���type c statement
� ��� �� �� �� � ���type c statement

The semantics of the sequence operators are formalized within logic� The de��
nitions describe� how the entire output and transition function of the compound
statement is derived from the output and transition function of its parts� You
�nd a complete table in appendix B���

Figure
�	 informally sketches� how a type B and a type C statement are
�bound� together� In simpli�ed terms� the semantics of a sequence consisting
of x and y is as follows�

��

�� When starting from the beginning or from one of the internal states of x�
then �rst x is evaluated� If the control state of the result is an internal wait
statement postition of x� then the result of the compound wait statement
becomes the result produced so far� If the control state of the result is the
end of x� then the output state and the variable state of the result and the
current input are used to evaluate y from the beginning state� The result
of the evaluation of y becomes the result of the sequence�

�� If the evaluation starts from one of the internal wait statements of y� then
this result becomes the result of the entire sequence�

fs�

s�

s�

gs�

s�

s�

s�
s�

�

f SEQ BC gs�

s�

s��

s��

s��
s��

Figure
��� Sequence of a Type B and a Type C Statement

If�Then�Else Structures

If�then�else operators map two statements and a condition to a compound state�
ment� They are de�ned for all combinations of statement types� There names
are IF THEN ELSE AA� IF THEN ELSE AB� etc� where the last two letters of
the operator names indicate the types of the statements�

As in sequences� the number of wait statement positions in if�then�else struc�
tures is the sum of its parts� So deriving � for an if�then�else structure is done
in the same way�

Example

Let c be a condition and x be a type C statement and y be a type A statement�
Let

��� ��condition

be the type of c�

��� �� �� ���type c statement

be the type of x and

��� �� �� ���type a statement

��

be the type of y� The compound statement

�IF THEN ELSE BC c x y�

is a type B statement �see table
���� According to appendix B� its type is

��� �� �� ��type b statement

since the type of SEQ BC is

��� ��condition � ��� �� �� ��type c statement� ��� �� ��type a statement� ��� �� �� ��type b statement

An informal description of the semantics of if�then�else statements�

�� When starting from the beginning� then at �rst the condition c is evalu�
ated� If the result of the condition is true� then the result of the compound
statement is result of the application of the ouput and transition function
of x� Otherwise y is applied�

�� If the evaluation starts from one of the internal wait statements of x� then
this result becomes the result of the if�then�else structure�

�� If the evaluation starts from one of the internal wait statements of y� then
this result becomes the result of the if�then�else structure�

While�Loops

The while statement operator maps a statement and a condition to a compound
statement� While statements are only allowed for type C statement bodies�
Other than type A and type B statements� type C statements cannot be eval�
uated all at once wihin one simulation cycle� but are always interrupted by a
wait statement� Due to this restriction� while loops with in�nite loops� i�e� runs
without ever reaching a wait statement� are avoided�

The compound while statement is a type B statement� since�

�� there are wait statement positions in the body �type C statement�

�� starting from the beginning� the end may be reached emmediately �within
one simulation cycle� if the condition fails

The while statement operator is named WHILE C� Its type is as follows�

��� ��condition� ��� �� �� ��type c statement
� ��� �� �� ��type b statement

The semantics of a �WHILE C c x� is as follows�

�� When starting from the beginning� then the condition c is evaluated �rst�
If the condition is ful�lled� then the body x is evaluated starting from
its beginnning state� Since x is a type C statement� this leads to one
fo the wait statement positions within x � the end cannot be reached
emmediately� If the condition is false� then the end is reached emmediately�

�	

�� When starting from one of the wait statement positions of the body� the
evaluation of the output and transition function of the body may either
lead to another wait statement position or to the end of the body� If
another wait statement position is reached� then the evaluation of the
while loop output and transition function is �nished� If the end of the
body is reached� then the condition is evaluated and according to the
result either the end of the while�statement is reached or the evaluation
is proceeded in the beginning� Due to x being a type C statement� the
proceeding in the beginning will lead to a wait statement within the same
evaluation cycle�

��� Statement Parts

As mentioned in section 	� the behaviour of processes is represented by an output
and state transition function f of the corresponding automaton� In ABC�VHDL�
there are two kinds of processes�

�� type A processes and

�� type C processes

Type A processes

The statement part of a type A process is a �compound� type A statement with
the following restrictions�

�� there are no variables

�� there are no if�then�else structures

�� there must be a sensisitivity list where all input signals are enlisted�

The ouput and transition function f of the corresponding automaton is nothing
but the output and transition function of the type A statement� The function
CLOSE A extracts this function from the type a statement� Let x� v and o be
the type A statement in the body� the initial states of the variables and and the
initial states of the outputs� respectively� The expression �PROCESS A �v� o� x�
is used as an abbreviation for automaton�CLOSE A x� �v� o���

Type A processes can be used to describe combinatorial circuits� Type A
processes correspond to combinatorial circuit i� no variables are used and in all
simulation cycles there is always at least one output signal assignment to each
output signal�

Type C processes

The statement part of a type C process is a �compound� type C statement�
Type C statements have no sensitivity list� Due to their wait statements� they
are sensitive on changes of the clock signal�

Type C statements behave as follows� At time �� the evaluation starts from
the beginning and since the body is a type C statement� some wait statement
position will be reached� The end cannot be reached emmediately� The initial
control state� i�e� the beginning of the process will never be reached again�

�

In all further steps� the process jumps from one wait statement position to the
next� Whenever the end is reached� the evaluation is proceeded in the beginning
immediately within the same simulation cycle�

This very much resembles to a while loop with a condition that always
holds� But others than while loops� the end is never reached� One could use the
WHILE C loop with an always ful�lled condition to formalize this� The disad�
vantage of this approach is an extra control state at the end of the statement
part� This extra control step whould be redundant� since it is unreachable�
This has a negative impact as to veri�cation and synthesis techniques �state
exploration� state optimization� state encoding��

We therefore chose a formalization that di�ers from the WHILE C approach
by not adding an this extra control state� The function deriving the functional
behavior in terms of f from the type C statement body is named CLOSE C�

Other than type A processes� the state of type C processes not only consists
of variable state and output state� but there is also a control state� Let x be
the the type C statement in the body� The initial variable state v and output
state o are derived from the instantiations whereas the initial control state is
always none� The expression �PROCESS C �v� o� x� is used as an abbreviation
for automaton�CLOSE C x� �v� o� none���

��

PROCESS C

���� �� ��� �F� ���
�

�������� WHILE C �	��a� b� start�� �x� y� z��� 	 �start 	� T��WAIT SEQ BC

��	� SIGNAL ASSIGNMENT�	��a� b� start�� �ready� result�� �x� y� z��� �F� result�� SEQ AC

��
� IF THEN ELSE AA �mk condition�	��a� b� start�� �x� y� z��� a � b��
�

���� VARIABLE ASSIGNMENT�	��a� b� start�� �x� y� z��� �b� y� z�� SEQ AA

���� VARIABLE ASSIGNMENT�	��a� b� start�� �x� y� z��� �x� a� z��
�
�

���� VARIABLE ASSIGNMENT�	��a� b� start�� �x� y� z��� �a� y� z�� SEQ AA

���� VARIABLE ASSIGNMENT�	��a� b� start�� �x� y� z��� �x� b� z��
� SEQ AC

���� WHILE C �mk condition�	��a� b� start�� �x� y� z��� �y � ����
�

���� VARIABLE ASSIGNMENT�	��a� b� start�� �x� y� z��� �x� y� x
 y�� SEQ AC

��	� WAIT SEQ CA

��
� VARIABLE ASSIGNMENT�	��a� b� start�� �x� y� z��� �y� y� z�� SEQ AA

���� VARIABLE ASSIGNMENT�	��a� b� start�� �x� y� z��� �x� z� z��
� SEQ BC

���� SIGNAL ASSIGNMENT�	��a� b� start�� �ready� result�� �x� y� z��� �T� result�� SEQ AC

���� SIGNAL ASSIGNMENT�	��a� b� start�� �ready� result�� �x� y� z��� �ready� x�� SEQ AC

���� WAIT

�

Figure
��� Logical representation of the GCD circuit

��

Appendix A

Syntax of ABC�VHDL

A�� Conventions

Italic words are used to indicate syntactical expressions and type writer font is
used for keywords� Syntactical de�nition is indicated by a 		� symbol� a j b
is used to indicate an alternative� �a� is used to indicate an optional expression
and fag is used to indicate� that the expression may be used n times in a series
�with n � f�� �� � � �g�� All symbols except j�f� g� �� � indicate keywords� Some
source text is part of the ABC�VHDL language� if it can be matched with the
syntactical expression vhdl programm according to the syntax rules recursively
describing it �see section A����

A�� Basic Expressions

� entity identi�er� architecture identi�er� component identi�er�
signal identi�er� variable identi�er and library identi�er�

Arbitrary� user de�ned names used to indicate entities� architectures� com�
ponents� signals� variable and libraries� Keywords are not allowed as iden�
ti�ers� Identi�ers of the same group and with the same scope must di�er�
Also variable identi�ers and signal identi�ers with the same scope must
di�er�

� subtype indication�

One of the data types de�ned in the type table �see section ����

� constant� in�x operator� pre�x operator and functor�

one of the constants� in�x operators� pre�x operators and functors de�ned
in the constant table �see section ����

A�� Syntax Rules

architecture body 		�

architecture architecture identi�er of entity identi�er is
architecture declarative part begin fconcurrent statementg end

�architecture identi�er� �

�

architecture declarative part 		�
fblock declarative itemg

association element 		�
signal identi�er �� signal identi�er j signal identi�er

block declarative item 		�

signal declaration j component declaration j
con�guration speci�cation

component declaration 		�

component component identi�er port clause end component �

component instantiation statement 		�
component identi�er port map � fassociation element
g
association element �

concurrent signal assignment statement 		�
signal identi�er � expression �

concurrent statement 		�
�label identi�er 	� concurrent statement unlabeled

concurrent statement unlabeled 		�

process statement j component instantiation statement j
concurrent signal assignment statement

con�guration speci�cation 		�

for instantiation list 	 component identi�er use entitiy

library identi�er�entity identi�er�architecture identi�er��

entity declaration 		�

entity entity identi�er is port clause end �entity identi�er� �

expression 		�

variable identi�er j
signal identi�er j
constant j
� expression � j
expression in�x operator expression j
pre�x operator expression j
functor � fexpression
g expression �

if statement 		�
if expression then fsequential statementg felseif expression theng
�else sequential statement�

instantiation 		�

	� expression

instantiation list 		�
flabel identi�er
g label identi�er j other j all

��

interface signal declaration 		�

fsignal identi�er
g signal identi�er 	 �mode� subtype indication
�instantiation�

library clause 		�
library flibrary identi�er
g library identi�er �

loop statement 		�
while expression loop fsequential statementg end loop

mode 		�

in j out

port clause 		�
port � finterface signal declaration �g interface signal declaration � �

process statement 		�
process �sensitivity list� fvariable declarationg begin

fsequential statementg end process �

sensitivity list 		�
� fsignal identi�er
g signal identi�er �

sequential statement 		�
wait statement j signal assignment statement j
variable assignment statement j if statement j loop statement

signal assignment statement 		�
signal identi�er � expression

signal declaration 		�

signal fsignal identi�er
g signal identi�er � subtype indication
�instantiation� �

variable assignment statement 		�
variable identi�er 	� expression

variable declaration 		�

variable fvariable identi�er
g variable identi�er 	
subtype indication �instantiation�

vhdl declaration 		�

entity declaration j architecture body j library clause

vhdl program 		�

fvhdl declarationg

wait statement 		�
wait until signal identi�er � ��� �

��

Appendix B

Semantics of ABC�VHDL

B�� Basics

Type Constants

bool

one

num

���option

��

Constants

T � bool

F � bool

one � one

� � num

SUC � num� num

none � ���option

any � �� ���option

INL � �� ���
�

INR �
 � ���
�

PRIMREC bool � bool� �� �� �

PRIMREC one � one� �� �

PRIMREC num � num� �� ��� num� ��� �

��

PRIMREC option � ���option�
 � ���
��

PRIMREC sum � ���
�� ��� ��� �
 � ��� �

Theorems

� �a b� ��f�
�f T � a� �
�f F � b�

� ��a b� PRIMREC bool T a b � a� �
��a b� PRIMREC bool F a b � b�

� �a� ��f�
f one � a

� �a�
PRIMREC one one a � a

� �a b� ��f�
�f � � a� �
��c� f�SUC c� � b �f c� c�

� ��a b� PRIMREC num � a b � a� �
��a b c� PRIMREC num �SUC c� a b � b �PRIMREC num c a b� c�

� �a b� ��f�
�f none � a� �
��c� f�any c� � b c�

� ��a b� PRIMREC option none a b � a� �
��a b c� PRIMREC option �any c� a b � b c�

� �a b� ��f�
��c� f�INL c� � a c� �
��c� f�INR c� � b c�

� ��a b c� PRIMREC sum �INL c� a b � a c� �
��a b c� PRIMREC sum �INR c� a b � b c�

��

B�� Type Abbreviations

Type Constants

��� �� ��type a statement

��� �� �� ��type b statement

��� �� �� ��type c statement

��� ��condition

Constants

mk type a statement �
��� � � �� � � ��
� ��� �� ��type a statement

dest type a statement �
��� �� ��type a statement
� �� � � � �� � � ��

mk type b statement �
��� � � �� ���option� � � �� ���option�
� ��� �� �� ��type b statement

dest type b statement �
��� �� �� ��type b statement

� �� � � � �� ���option� � � �� ���option�

mk type c statement �
��� � � �� � � �� �� � �� � � � �� � � � � �� ���option�
� ��� �� �� ��type c statement

dest type c statement �
��� �� �� ��type c statement
� �� � � � �� � � �� �� � ��� � � �� � � � � �� ���option�

Theorems

� �a� ��f�
�b� f�mk type a statement b� � a b

� �x� mk type a statement�dest type a statement x� � x

� �x� dest type a statement�mk type a statement x� � x

� �a� ��f�
�b� f�mk type b statement b� � a b

� �x� mk type b statement�dest type b statement x� � x

� �x� dest type b statement�mk type b statement x� � x

��

� �a� ��f�
�b� f�mk type c statement b� � a b

� �x� mk type c statement�dest type c statement x� � x

� �x� dest type c statement�mk type c statement x� � x

� �a� ��f�
�b� f�mk condition b� � a b

� �x� mk condition�dest condition x� � x

� �x� dest condition�mk condition x� � x

�	

B�� ABC�VHDL Statements and Processes

Constants

negate condition �
��� ��condition � ��� ��condition

SIGNAL ASSIGNMENT �
��� � � �� ��

� ��� �� ��type a statement

VARIABLE ASSIGNMENT �
��� �� ��

� ��� �� ��type a statement

NULL STATEMENT �
��� �� ��type a statement

WAIT �
��� �� �� one�type c statement

SEQ AA �
��� �� ��type a statement� ��� �� ��type a statement

� ��� �� ��type a statement

SEQ AB �
��� �� ��type a statement� ��� �� �� ��type b statement

� ��� �� �� ��type b statement

SEQ AC �
��� �� ��type a statement� ��� �� �� ��type c statement

� ��� �� �� ��type c statement

SEQ BA �
��� �� �� ��type b statement� ��� �� ��type a statement

� ��� �� �� ��type b statement

SEQ BB �
��� �� �� ���type b statement� ��� �� �� ���type b statement

� ��� �� �� �� � ���type b statement

SEQ BC �
��� �� �� ���type b statement� ��� �� �� ���type c statement

� ��� �� �� �� � ���type c statement

SEQ CA �
��� �� �� ��type c statement� ��� �� ��type a statement

� ��� �� �� ��type c statement

SEQ CB �
��� �� �� ���type c statement� ��� �� �� ���type b statement

� ��� �� �� �� � ���type c statement

�

SEQ CC �
��� �� �� ���type c statement� ��� �� �� ���type c statement

� ��� �� �� �� � ���type c statement

IF THEN ELSE AA �
��� ��condition

� ��� �� ��type a statement� ��� �� ��type a statement
� ��� �� ��type a statement

IF THEN ELSE AB �
��� ��condition

� ��� �� ��type a statement� ��� �� �� ��type b statement

� ��� �� �� ��type b statement

IF THEN ELSE AC �
��� ��condition

� ��� �� ��type a statement� ��� �� �� ��type c statement
� ��� �� �� ��type b statement

IF THEN ELSE BA �
��� ��condition

� ��� �� �� ��type b statement� ��� �� ��type a statement
� ��� �� �� ��type b statement

IF THEN ELSE BB �
��� ��condition

� ��� �� �� ���type b statement� ��� �� �� ���type b statement

� ��� �� �� �� � ���type b statement

IF THEN ELSE BC �
��� ��condition

� ��� �� �� ���type b statement� ��� �� �� ���type c statement
� ��� �� �� �� � ���type b statement

IF THEN ELSE CA �
��� ��condition

� ��� �� �� ��type c statement� ��� �� ��type a statement
� ��� �� �� ��type b statement

IF THEN ELSE CB �
��� ��condition

� ��� �� �� ���type c statement� ��� �� �� ���type b statement

� ��� �� �� �� � ���type b statement

IF THEN ELSE CC �
��� ��condition

� ��� �� �� ���type c statement� ��� �� �� ���type c statement
� ��� �� �� �� � ���type c statement

WHILE C �
��� ��condition� ��� �� �� ��type c statement

� ��� �� �� ��type b statement

��

CLOSE A �
��� �� ��type a statement

� �� � � �� � � � � �

PROCESS A �
� � �� ��� �� ��type a statement

� �num� ��� num� �

CLOSE C �
��� �� �� ��type c statement

� �� �� � ��� ���option� � � �� � ��� ���option

PROCESS C �
� � �� ��� �� �� ��type c statement

� �num� ��� �num� ��

Theorems

� �cond� negate condition cond �
mk condition�� dest conditioncond�

� �f� SIGNAL ASSIGNMENT f �
mk type a statement�	�si� so� sq�� f��si� so� sq�� sq��

� �f� VARIABLE ASSIGNMENT f �
mk type a statement�	�si� so� sq�� �so� f�si� sq���

� NULL STATEMENT �
mk type a statement�	�si� so� sq�� �so� sq��

� WAIT �
mk type c statement

���	�si� so� sq�� �so� sq� one��� �	�si� so� sq� ss�� �so� sq� none���

� �pf� pg�
�pf SEQ AA pg� �
mk type a statement

�	�si� so� sq��
let �so� sq� � dest type a statement pf �si� so� sq� in
let �so� sq� � dest type a statement pg �si� so� sq� in
�so� sq��

� �pf� pg�
�pf SEQ AB pg� �
mk type b statement

�	�si� so� sq� ss��
let �so� sq� � dest type a statement pf �si� so� sq� in
let �so� sq� ss� � dest type b statement pg �si� so� sq� ss� in
�so� sq� ss��

��

� �pf� pg�
�pf SEQ AC pg� �
mk type c statement

�let �pga� pgb� � dest type c statement pg in
�	�si� so� sq��
let �so� sq� � dest type a statement pf �si� so� sq� in
let �so� sq� ss� � pga�si� so� sq� in
��so� sq� ss�� pgb���

� �pf� pg�
�pf SEQ BA pg� �
mk type b statement

�	�si� so� sq� ss��
let �so� sq� ss� � dest type b statement pf �si� so� sq� ss� in
PRIMREC option ss
�let �so� sq� � dest type a statement pg �si� so� sq� in
�so� sq� ss��

�	dummy� so� sq� ss���

� �pf� pg�
�pf SEQ BB pg� �
�let pfs � dest type b statement pf in
let pgs � dest type b statement pg in
mk type b statement

�	�si� so� sq� ss��opt��
PRIMREC option ss��opt
�let �so� sq� ss�opt� � pfs �si� so� sq� none� in
PRIMREC option ss�opt
�let �so� sq� ss�opt� � pgs �si� so� sq� none� in
�so� sq�PRIMREC option ss�opt none �	ss�� any�INR ss�����

�	ss�� so� sq� any�INLss����
�	ss��� PRIMREC sum ss��
�	ss��
let �so� sq� ss�opt� � pfs�si� so� sq� any ss�� in
PRIMREC option ss�opt
�let �so� sq� ss�opt� � pgs�si� so� sq� none� in
�so� sq�PRIMREC option ss�opt none �	ss�� any�INR ss�����

�	ss�� so� sq� any�INL ss����
�	ss�� let �so� sq� ss�opt� � pgs�si� so� sq� any ss�� in
�so� sq�PRIMREC option ss�opt none �	ss�� any�INR ss���������

�

� �pf� pg�
�pf SEQ BC pg� �
mk type c statement

�let �pga� pgb� � dest type c statement pg in
let pfs � dest type b statement pf in
��	�si� so� sq��
let �so� sq� ss�opt� � pfs �si� so� sq� none� in
PRIMREC option ss�opt
�let �so� sq� ss�� � pga �si� so� sq� in

so� sq� INRss��
�	ss�� so� sq� INL ss����

�	�si� so� sq� ss����
PRIMREC sum ss��
�	ss��
let�so� sq� ss�opt� � pfs�si� so� sq� any ss�� in
PRIMREC option ss�opt
�let �so� sq� ss�� � pga�si� so� sq� in
�so� sq� any�INR ss����

�	ss�� so� sq� any�INL ss����
�	ss��
let �so� sq� ss�opt� � pgb�si� so� sq� ss�� in
�so� sq�PRIMREC option ss�opt none �	ss�� any�INR ss��������

� �pf� pg�
�pf SEQ CA pg� �
mk type c statement

�let �pfa� pfb� � dest type c statementpf in
�pfa�
�	�si� so� sq� ss��
let �so� sq� ssopt� � pfb�si� so� sq� ss� in
PRIMREC option ssopt
�let �so� sq� � dest type a statementpg�si� so� sq� in
�so� sq� none��

�	ss� so� sq� ssopt����

��

� �pf� pg�
�pf SEQ CB pg� �
mk type c statement

�let �pfa� pfb� � dest type c statement pf in
let pgs � dest type b statement pg in
��	�si� so� sq��
let �so� sq� ss�� � pfa �si� so� sq� in
�so� sq� INLss����

�	�si� so� sq� ss����
PRIMREC sum ss��
�	ss��
let �so� sq� ss�opt� � pfb�si� so� sq� ss�� in
PRIMREC option ss�opt
�let �so� sq� ss�opt� � pgs�si� so� sq� none� in
�so� sq�PRIMREC option ss�opt none �	ss�� any�INR ss�����

�	ss�� �so� sq� any�INL ss�����
�	ss��
let �so� sq� ss�opt� � pgs�si� so� sq� any ss�� in
�so� sq�PRIMREC option ss�opt none �	ss�� any�INR ss��������

� �pf� pg�
�pf SEQ CC pg� �
mk type c statement

�let �pfa� pfb� � dest type c statement pf in
let �pga� pgb� � dest type c statement pg in
��	�si� so� sq��
let �so� sq� ss�� � pfa�si� so� sq� in
�so� sq� INL ss����

�	�si� so� sq� ss����
PRIMREC sum ss��
�	ss��
let �so� sq� ss�opt� � pfb�si� so� sq� ss�� in
PRIMREC option ss�opt
�let �so� sq� ss�� � pga�si� so� sq� in
�so� sq� any�INR ss����

�	ss�� �so� sq� any�INL ss�����
�	ss��
let �so� sq� ss�opt� � pgb�si� so� sq� ss�� in
�so� sq�PRIMREC option ss�opt none �	ss�� any�INR ss��������

� �cond� pf� pg�
IF THEN ELSE AA cond pf pg �
mk type a statement

�	�si� so� sq��
�dest condition cond �si� sq���
�dest type a statement pf �si� so� sq�� j
�dest type a statement pg �si� so� sq���

	�

� �cond� pf� pg�
IF THEN ELSE AB cond pf pg �
mk type b statement

�	�si� so� sq� ss��
let pgs � dest type b statementpg in
PRIMREC option ss
��dest condition cond �si� sq���
�let �so� sq� � dest type a statementpf�si� so� sq� in
�so� sq� none�� j

�pgs�si� so� sq� none���
�	ss� pgs�si� so� sq� anyss���

� �cond� pf� pg�
IF THEN ELSE AC cond pf pg �
mk type b statement

�let �pga� pgb� � dest type c statement pg in
	�si� so� sq� ssopt��
PRIMREC option ssopt
��dest conditioncond�si� sq���
�let �so� sq� � dest type a statement pf �si� so� sq� in
�so� sq� none�� j

�let �so� sq� ss� � pga�si� so� sq� in
�so� sq� anyss���

�	ss� pgb�si� so� sq� ss���

� �cond� a� b�
IF THEN ELSE BA cond a b �
IF THEN ELSE AB �negate condition cond� b a

� �cond� pf� pg�
IF THEN ELSE BB cond pf pg �
mk type b statement

�	�si� so� sq� ss��opt��
let pfs � dest type b statement pf in
let pgs � dest type b statement pg in
PRIMREC option ss��opt
��dest conditioncond�si� sq���
�let �so� sq� ss�opt� � pfs�si� so� sq� none� in
�so� sq�PRIMREC optionss�optnone�	ss�� any�INL ss����� j

�let �so� sq� ss�opt� � pgs�si� so� sq� none� in
�so� sq�PRIMREC optionss�optnone�	ss�� any�INR ss������

�	ss���
PRIMREC sum ss��
�	ss��
let �so� sq� ss�opt� � pfs�si� so� sq� anyss�� in
�so� sq�PRIMREC option ss�opt none �	ss�� any�INL ss�����

�	ss��
let �so� sq� ss�opt� � pgs�si� so� sq� anyss�� in
�so� sq�PRIMREC option ss�opt none �	ss�� any�INR ss�������

	�

� �cond� pf� pg�
IF THEN ELSE BC cond pf pg �
mk type b statement

�let �pga� pgb� � dest type c statement pg in
	�si� so� sq� ss��opt�� let pfs � dest type b statement pf in

PRIMREC option ss��opt
��dest conditioncond�si� sq���
�let �so� sq� ss�opt� � pfs �si� so� sq� none� in
�so� sq�PRIMREC option ss�opt none �	ss�� any�INL ss����� j

�let �so� sq� ss�� � pga�si� so� sq� in
�so� sq� any�INRss�����

�	ss���
PRIMREC sum ss��
�	ss��
let �so� sq� ss�opt� � pfs�si� so� sq� any ss�� in
�so� sq�PRIMREC option ss�opt none �	ss�� any�INL ss�����

�	ss��
let �so� sq� ss�opt� � pgb�si� so� sq� ss�� in
�so� sq�PRIMREC option ss�opt none �	ss�� any�INR ss�������

� �cond� a� b�
IF THEN ELSE CA cond a b �
IF THEN ELSE AC �negate condition cond� b a

� �cond� a� b�
IF THEN ELSE CB cond a b �
IF THEN ELSE BC �negate condition cond� b a

� �cond� pf� pg�
IF THEN ELSE CC cond pf pg �
mk type c statement

�let �pfa� pfb� � dest type c statement pf in
let �pga� pgb� � dest type c statement pg in
��	�si� so� sq��
�dest conditioncond�si� sq���
�let �so� sq� ss�� � pfa�si� so� sq� in
�so� sq� INLss���

�let �so� sq� ss�� � pga�si� so� sq� in
�so� sq� INRss�����

�	�si� so� sq� ss����
PRIMREC sumss�� �	ss��

let �so� sq� ss�opt� � pfb�si� so� sq� ss�� in
�so� sq�PRIMREC optionss�optnone�	ss�� any�INLss�����

�	ss��
let �so� sq� ss�opt� � pgb�si� so� sq� ss�� in
�so� sq�PRIMREC optionss�optnone�	ss�� any�INRss��������

	�

� �cond� pf�
WHILE C cond pf �
mk type b statement

�let �pfa� pfb� � dest type c statement pf in
let conds � dest condition cond in
	�si� so� sq� ssopt��
PRIMREC option ssopt
��conds�si� sq���
�let �so� sq� ss� � pfa�si� so� sq� in
�so� sq� anyss�� j

�so� sq� none��
�	ss�
let �so� sq� ssopt� � pfb�si� so� sq� ss� in
PRIMREC option ssopt
��conds�si� sq���
�let �so� sq� ss� � pfa�si� so� sq�in
�so� sq� anyss��

�so� sq� none���	ss� �so� sq� ssopt����

� �pf�
CLOSE C pf �
�let �pfa� pfb� � dest type c statement pf in
	�si� �so�� sq�� ssopt��
PRIMREC option ssopt
�let �so� sq� ss� � pfa�si� so�� sq� in
�so�� �so� sq�� anyss��

�	ss�
let �so� sq� ssopt� � pfb�si� so�� sq� ss� in
PRIMREC option ssopt
�let �so� sq� ss� � pfa�si� so� sq� in
�so�� �so� sq�� anyss��

�	ss� �so�� �so� sq�� anyss����

� �z�� pf�
PROCESS C z� pf �
automaton �CLOSE C pf� z�� none�

� �pf�
CLOSE A pf �
�	�si� so�� sq��
let �so� sq� � dest type a statement pf �si� so�� sq� in
�so�� so� sq��

� �z�� pf�
PROCESS A z� pf �
automaton�CLOSE A pf� z��

	�

Appendix C

Standard ABC�VHDL Type

and Constant Semantics

The following tables only describe the default settings� Arbitrary mappings may
be de�ned�

C�� Translation for ABC�VHDL Types

ABC�VHDL HOL
boolean bool

std�logic bool

positive num

C�� Translation for ABC�VHDL Constants

ABC�VHDL HOL
��� F

��� T

not �
and �
or �
mod MOD

div DIV

� �
�� 	�a� b����a � b�
�

� �
 �

� �

������� � � �� �� �� � � �

		

Bibliography

�BGGH��� R� Boulton� A� Gordon� M� Gordon� J� Herbert� and J� van Tas�
sel� Experiences with Embedding hardware description languages
in HOL� In V� Stavridou� T�F� Melham� and R� Boute� editors�
Conference on Theorem Provers in Circuit Design� IFIP Transac�
tions A���� pages �����
�� North�Holland� �����

�BrFK�	� Peter T� Breuer� Luis Sanchez Fernandez� and Carlos Delgado Kloos�
Clean formal semantics for VHDL� In EDAC ���� pages �	���	��
Paris� France� ���	� IEEE Computer Society Press�

�DaJS��� W� Damm� B� Josko� and R� Schl�or� A net�based semantics for
VHDL� In Robert Werner� editor� EURO�DAC ���� pages
�	�
���
Hamburg� Germany� ����� IEEE Computer Society Press�

�DeOd��� Alain Debreil and Philippe Oddo� Synchronous designs in VHDL� In
Robert Werner� editor� EURO�DAC ���� pages 	��	��� Hamburg�
Germany� ����� IEEE Computer Society Press�

�EiKu�
� D� Eisenbiegler and R� Kumar� An automata theory dedicated to�
wards formal circuit synthesis� In Higher Order Logic Theorem Prov�

ing and Its Applications� Aspen Grove� Utah� USA� September ���
�
Springer�

�HaDa�� F�K� Hanna and N� Daeche� Speci�cation and veri�cation of dig�
ital systems using higher�order predicate logic� IEE Proc� Pt� E�
��������	���
	� ����

�Melh� F� Melham� Automating recursive type de�nitions in higher order
logic� Technical Report �	�� University of Cambridge Computer
Laboratory� ���

�OlCo��� S� Olcoz and J�M� Colom� A petri net approach for the analysis of
VHDL descriptions� In CHARME��� number �� in Lecture Notes
in Computer Science� pages �
���� Arles�France� May ����� Springer
Verlag�

�ReKr��b� R� Reetz and T� Kropf� Hardwarebeschreibungssprachen und for�
male Veri�kation� Technical Report SFB�
�C��	���� Universit�at
Karlsruhe� Institut f�ur Rechnerentwurf und Fehlertoleranz� Septem�
ber ����� http���goethe�ira�uka�de�hvg�techreports�SFB�
�C��	�
���ps�gz�

	

Index

ABC�VHDL
di�erences� �

architectures
declaration� �
formal representation� �

association elements� ��
automaton� �

component declarations� ��
component instantiations� ��
concurrent signal assignments� ��
concurrent statements� �� ��
conditions

formal representation� �
constants� �
control structures� ��

entity declarations�
expressions� �

functions� �

if�then�else structures� ��

labels� ��
libraries�

null statements� ��

operators� �

processes� ��
process state� ��
type A� �

type C� �

sequences of statements� ��
sequential statements� ��

classi�cation� ��
shortcircuits� ��
signal assignments� ��
signal declarations� �

signal instantiations� �� ��
statement part� ��
statements

type A� ��
type B� �
type C� �

structures
formal representation� ��
restrictions� ��

types� �

variable assignments� ��

wait statements� ��
while�loops� �	

zero�delay�cycles� ��

	�

