ABC-VHDL

A Synchronous VHDL Subset with a Formal Semantics in HOL

Dirk Eisenbiegler and Ramayya Kumar
Forschungszentrum Informatik
(Prof. Dr.-Ing. D. Schmid)
Haid—und—Neu-Strafle 10-14 76131 Karlsruhe, Germany
e-mail: {eisenbiegler . kumar}@fzi.de

November 20, 1995

Abstract

VHDL is frequently used for describing purely synchronous circuits. However,
the underlying model of VHDL is much more expressive than it need be. In
this report, a synchronous subset of VHDL named ABC-VHDL is introduced.
ABC-VHDL is dedicated towards logical argumentation and correct circuit syn-
thesis based on VHDL descriptions. Although being conform with the standard
VHDL semantics, the semantics of ABC-VHDL is based on a far simpler model:
synchronous circuit descriptions at the RT-level formalized within higher or-
der logic. This article describes the syntactical aspects of ABC-VHDL, and it
also defines the semantics of ABC-VHDL by a mapping between ABC-VHDL
structures and the corresponding formulae in higher order logic.

Contents

1 Motivation

2 ABC-VHDL versus VHDL
2.1 Processes e
2.2 Architectures
2.3 Types, Constants, Functions, Operators and Expressions
2.4 SUMMATY . . v v v v e e e e e e e e e e

3 Libraries, Entities and Architectures
3.1 Libraries
3.2 Enmtities
3.3 Architectures

SO U

© 0o o @@

Processes

4.1 The Process Interface
4.2 The Stateof a Process
4.3 Behavior of Processes

Statements

5.1 Data TypesUsed
5.2 Type A, Type B, and Type C Statements
5.3 Basic Statements oo
5.4 Compound Statements
5.5 Statement Parts

Syntax of ABC-VHDL

A1l Conventions
A2 BasicExpressions.,
A3 SyntaxRules,

Semantics of ABC-VHDL

B.1 Basics
B.2 Type Abbreviations
B.3 ABC-VHDL Statements and Processes

Standard ABC-VHDL Type and Constant Semantics

C.1 Translation for ABC-VHDL Types
C.2 Translation for ABC-VHDL Constants

16
16
16
19
21
25

28
28
28
28

31
31
33
35

Chapter 1

Motivation

To argue about VHDL programs on the logical level, a formal semantics, i.e.
a mapping between the syntactic VHDL structures and the corresponding log-
ical formulae, has to be found. Experiences in this area show, that defining a
formal semantics is a sophisticated goal due to the complexity of the language
[BGGH92, DaJS93, BrFK94]. The given informal VHDL semantics is not as
precise as it should be, and this is why very often different VHDL simulators
lead to different simulation results and different formalization approaches lead
to different formal semantics. Another problem is the complexity of the under-
lying timing model. The resulting formulae have to represent this timing model
in an adequate manner, and this is why the resulting formulae may become very
complex, and verification may become an exacting process.

In the area of hardware synthesis, VHDL is often used to describe nothing
but synchronous circuits. Usually the syntax of VHDL sub-languages is defined
by sets of restrictions and the semantics is inherited from VHDL [DeOd93].
Although synchronous circuits can easily be formalized in a higher order logic
calculus, deriving the semantics of VHDL descriptions in general is rather diffi-
cult. The underlying model is much more expressive and powerful than it need
be for just describing synchronous circuits.

In this paper, a reduced VHDL language called ABC-VHDL is introduced.
ABC-VHDL is restricted to synchronous circuit descriptions. For ABC-VHDL
a new timing model has been defined. The ABC-VHDL timing model conforms
to the VHDL timing model, but it is tailored for synchronous circuits only, and
this makes it far simpler.

VHDL programs do not always represent real circuits in an adequate way.
For example, they may have infinite loops, such that a process keeps being exe-
cuted without ever reaching a wait statement. Another example for inadequate
circuit descriptions are structures with zero—delay cycles, i.e. a cycle, where
each process produces a delta delay output and passes it to the next process of
the cycle. When formalizing circuit descriptions in logic, it is very important to
ensure, that the resulting formulae are consistent. Inconsistent formulae never
correspond to technically realizable circuits, but any property can formally be
derived from them (ez falso quodlibet). ABC-VHDL puts a stress on consistency.
It is restricted to well defined synchronous circuit descriptions. Zero—delay cy-
cles, infinite loops, short-circuits etc. are avoided.

All processes are described by means of the lambda calculus. Lambda terms

are both logical specifications and executable programs. The formulae to be
constructed not only formally describe the processes, but can also be used for
simulation by evaluating the lambda terms in an interpreter of a functional
programming language.

In general, there are two ways of formally embedding languages: deep em-
bedding and shallow embedding [BGGH92, ReKr93b]. Deep embedding means
that the syntax of the language is represented by terms within the logic, and for-
mulae are defined to describe the semantics of these logical structures. Shallow
embedding means, that in the logic there are no terms representing the syn-
tax of the language. There is just a function (a program) mapping the syntax
represented outside logic to a formula within the logic.

We chose a shallow embedding approach. A theory with constants and
types for representing ABC-VHDL has been invented within HOL. This theory
has been designed in a way, such that ABC-VHDL representations and their
corresponding HOL representations are very close to one another, i.e. differ
only in minor syntactical aspects. A program for automatically converting ABC-
VHDL programs into HOL representations has been implemented.

The paper is structured as follows: Chapter 2 introduces the main principles
of ABC-VHDL and the major syntactical restrictions compared with standard
VHDL. In the next chapters, the ABC-VHDL language is built bottom up.
Chapters 3, 4 and 5 describe the semantics of ABC-VHDLs entities, architec-
tures, processes, and statements. Appendix A enlists the syntax of ABC-VHDL.
In appendix B the elements defined in HOL are enlisted.

Chapter 2

ABC-VHDL versus VHDL

2.1 Processes

In ABC-VHDL, only pure input and pure output signals are allowed. Statement
parts of processes are compound statements that are recursively constructed
using certain basic statements and control structures. As basic statements there
are:

1. wait statements,
2. signal assignments,
3. variable assignments and
4. null statements

As control structures there are:
1. sequences of statements,
2. loops and
3. if-then-else structures

General VHDL programs are not restricted to synchronous circuits. In ABC-
VHDL, every sequential program and even every atomic or compound statement
will be represented by an output and transition function, that maps input and
current state to output and next state. In ABC-VHDL, atomic circuits may
either have one or zero clock inputs, and all wait statements must have the
form

wait until clk = ’1’;

where clk is the clock signal of this circuit. The clock signal must not be used
within variable assignments and signal assignments.

In ABC-VHDL, simulation cycles are clock cycles. A simulation cycle starts
with a rising slope of the clock signal. During a clock cycle the processes may
read the input signals and the current variables and depending on these values
certain variable and signal assignments are executed and finally a new wait
statement is reached.

In ABC-VHDL, only zero delay signal assignments are allowed. After getting
the positive slope of the clock signal, the process will immediately read the input
and it will produce its output signal assignments at this very moment.

Figure 2.1 describes the life of an ABC-VHDL process. The gray shape
symbolizes a program: sy denotes the beginning state, si,ss,...s, denote the
wait statement occurrences, and the arrows denote transitions. In other words,
the total number of control states is equal to the number of wait statements
plus one. An arrow from some s,, to some s, indicates, that from one clock
tick to another the process may jump from control state s,, to control state s,,.
Usually there may be several arrows starting from one control state, since the
succeeding control state not only depends on the current control state but also
on the current values of the variables and inputs.

The control states sg,s1,S2, .. .S, correspond to the control states of the syn-
chronous circuit that is to be described by this program. At time 0, the process
starts in the beginning state so. After the first clock tick, it reaches a wait
statement, and in all further clock cycles it jumps from one wait statement oc-
currence to another. The initial state s will never be reached again. Whenever
the execution reaches the end of the program, it will automatically proceed at
the beginning without delay. When passing through the end and continuing in
the beginning the execution will not stop at position sy to wait there for a clock
period.

There are two kinds of control states a process can be in. First there is the
initial state so, and second there are the control states sg,ss,... related to the
wait statements occurrences. Statements, i.e. parts of ABC-VHDL programs,
will be described in the same way as entire programs except that they not only
have a beginning so but also an end s’ (see figure 2.2). Being in state sy means,
that the execution of the processes recently passes through the beginning of the
statement. Reaching s’ means, that the process has finished the execution of
the statement and that it will immediately continue with the next statement if
there is any. In statements, sy and s’ do not correspond to control states in the
corresponding synchronous circuit.

So

Figure 2.1: A Process

2.2 Architectures

In ABC-VHDL as well as in VHDL, structures are described by means of ar-
chitectures. ABC-VHDL neither supports generic architectures nor generate
statements are. Furthermore, there is restriction on how structures may be
built: short-circuits and zero-delay-cycles are not allowed.

Figure 2.2: A Statement,

The use of clock signals is restricted. When there is at least one part of the
structure with a clock input, then the entire circuit must have one clock input,
that is connected to all clock inputs of the sub-circuits. All clock signals must
be interconnected. Clock signals and non-clock signals must not be connected.

2.3 Types, Constants, Functions, Operators and
Expressions

ABC-VHDL does not allow type declarations nor does it allow function or con-
stant declarations. However, arbitrary types, functions and constants are al-
lowed. But before they can be used, their semantics have to be defined explic-
itly by giving a corresponding representation in HOL and by defining a mapping
between data types, operators and constants in ABC-VHDL and in HOL. There
are two tables: the type table, which defines the semantics of ABC-VHDL data
types and the constant table, which defines the semantics of ABC-VHDL con-
stants, functions and operators.

Appendix C gives an example for such mappings. Throughout this paper,
these mappings will be used. However, the user may define arbitrary other
mappings.

Expressions are built recursively. Constants, variables and input signals are
expressions. Compound expressions are built by applying functions to tuples of
basic elements or previously built compound expressions. All expressions must
be well typed, i.e. a type is assigned to all basic elements and for all functions
it is defined what are the types of its inputs and what is the type of the result.

2.4 Summary
The main differences between ABC-VHDL and VHDL are:
e ABC-VHDL is restricted to purely synchronous circuits
e only pure input and pure output signals are allowed
e cach circuit may have a single clock input
e short-circuits and zero-delays are prohibited
e there are no generic architectures

e there are no generate statements

e type, constant and function definitions cannot be defined in ABC-VHDL

e the semantics of types, constants and functions used has to be defined
explicitly

Chapter 3

Libraries, Entities and
Architectures

Throughout this paper, only synchronous circuits at the RT and logical abstrac-
tion level will be considered. Time is considered to be discrete, and the clock
ticks are formally represented by natural numbers. All combinatorial circuits
have zero delay, and D-flipflops have unit delay, i.e. one clock period.

3.1 Libraries

Whenever VHDL source text is elaborated by the parser, it is assigned to a
library. The library name is not defined within the VHDL source text but is
handled to the parser explicitly by means of user interaction.

In ABC-VHDL, the only elements within libraries are entities and archi-
tectures. Previously defined architectures may be used as components within
architecture bodies. However, if the library the architecture belongs to differs
from the current library, then the library has to be declared by means of a li-
brary clause. Library clauses are always related to the next entity or architecture
declaration. Libraries declared for entities can be used in all its architectures.

3.2 Entities

In an entity declaration, the entity name and the names and types of its signal
interface are defined. Entity declarations describe the interface of architecture,
whereas the architecture describes its behavior.

There are two types of signals: data signals and clock signals. Each entity
may have one clock signal. The usage signals must not differ within different
architectures. It is not allowed to use one signal as clock signal in one archi-
tecture and as data signal in another. Within the logical representation, clock
signals will not be formalized explicitly (see chapters 4 and 5).

In ABC-VHDL, only pure input and pure output signals are allowed. Let
i', i2,... i™ be the data input signals and o', 0?,... o™ be the output signals,
tr, 12,... 1™ be the types of the input signals and w', w?,... w™ be the types

of the output signals of the architecture.

In ABC-VHDL, interface signals can be instantiated within the entity decla-
ration. However, due to the restrictions in ABC-VHDL, instantiations of input
signals have no effect and therefore are ignored. Using instantiations for in-
terface signals is optional. Whenever an output signal remains uninstantiated,
existentially quantified variables are used to represent these values in logic.

Example

The entity declaration in figure 4.1 describes the interface of an entity named
ged. The signal clock is used as clock signal, since in the architecture below it
is used within wait-statements.

There are three data input signals named a, b and start. Where a and b
are of type positive and start is of type std_logic. According to appendix
C, the ABC-VHDL type positive is represented by the HOL type num and
std_logic is represented by bool. So the type of the input ¢+ becomes

num X num X bool

There are two output signals named ready and result of type std_logic and
positive and instantiations 0’ and 0, respectively. According to appendix
C, the ABC-VHDL type positive is represented by the HOL type num and
std_logic is represented by bool. The type of the output w is

num X bool

According to appendix C, the expressions >0’ and 0 are represented by F and
0, respectively. The initial state of the output signal is

(F,0)

3.3 Architectures

All architectures are related to some entity declaration, where its entity name,
the input signals and the output signals are defined. Architectures always belong
to the same library as their entity declarations. Within the declarative part of
architectures, internal signals may be defined and instantiated. Like output
signals and unlike input signals, instantiations of internal signals do have an
effect on the behavior and are not ignored.

The statement part of an architecture defines a structure. Its parts are
named concurrent statements and they are interconnected via signals.

Formal Representation of Architectures

All architectures are represented by relations between time dependent input and
output signals. Time dependent signals are represented by functions mapping
time to a value of some data type a. An arbitrary type o may be used for the
value of a signal. In HOL, time is represented by the data type num (natural
number: 0,1,...). Signals have the following type:

num — «

Architectures are represented by relations between signals, i.e. by a function
mapping a tuple of signals to bool (boolean values: T or F). In HOL, terms
representing architectures have the following type:

(

(num — 1) x (num — ¢2) x ... x (num — /™) X
(num — w') x (num — w?) x ... x (num — wW™)

)

— bool

This type only depends on the entity declaration. All architectures of the same
entity are represented by relations with the same type.

Structures

Representing structures in higher order logic is straightforward [HaDa86]. The
general scheme is as follows:

Vil 42, .. .4% 0, 0%, ... 0.
Jyt, 22, .. y™.
R(zY,2%,...a™) = R'(..)AR*(..)A...AR*(..)

In this formula, a compound circuit R is defined as a composition of its parts
R',R?,...R*. The external signals i',i?,...i" 0",0%,...0™ are all-quantified
and the internal signals y',y?,...y™ are existentially quantified. The interface
of the compound circuit is connected with all external signals, the interfaces
of its components may be connected to arbitrary internal or external signals
according to the given net list. In such net list descriptions, circuits are repre-
sented by relations. Input and output signals are not distinguished, and there
may be several input and output signals.

Figure 3.1 gives an example for a formalization of a circuit structure accord-
ing to this scheme. The compound circuit is named R, its parts are named A,
B and C. The inputs of R are a and b, its outputs are x and y and there are
two internal lines named v and w.

Ya,b,z,y.
Jou, w.
R(a,b,z,y) = A(a,v,v) A B(w,b,y) A C(a,v,z,w)

Figure 3.1: Formalization of a Structure

10

Concurrent Statements

The structure described by an architecture consists of several concurrent state-
ments. In ABC-VHDL, the following concurrent statements are allowed:

1. processes statements
2. concurrent signal assignments
3. component instantiation statements

According to our formalization scheme, each concurrent statement has to be
represented by a relation between time dependent input and output signals.

The logical formalization of processes will be considered in chapter 4. Con-
current signal assignments are equivalent to processes with exactly one sequen-
tial signal assignment. Therefore, their semantics is not considered explicitly.

Component instantiations are used to instantiate another architecture as a
concurrent statement within the current architecture. Before components can
be used, they have to be declared in the declarative part of the architecture. The
component declaration a component name is defined and this component name is
related to some architecture, which is given by its library, entity and architecture
name. Furthermore, the component declaration defines a signal interface. The
types and names of the signal interface of the component must equal the types
and names of the signal interface of the architecture the component is related
to.

There may also be signal instantiations within interface lists of component
declarations. So there are two ways to instantiate interface signals: they can
be instantiated within the entity declaration and they can also be instantiated
within the component declaration, where an architecture of the entity is instan-
tiated. If some signal is instantiated at both places, then the signal instantiation
within the component instantiation dominates.

All concurrent statements may have labels. Arbitrary identifiers may be
used as labels. All labels used within one architecture must differ. In ABC-
VHDL, labels only have an effect to process statements. Different component
instantiations with the same component name may have different component
instantiations. The component declaration can be restricted to some explicitly
enumerated labels.

Within a component instantiation, the association between the signals of the
current architecture (actual signals) and the signals of the component (formal
signals) is described by the port map. The association between actual signals
and formal signals can be done in two ways:

1. a tuple of actual signals, where the order of the elements corresponds to
the order of formal signals given in the component specification

2. a tuple, where each actual signal is assigned to one formal signal and the
order is ambiguous

In logic, port maps are always represented by tuples. In order to derive the
formal representation, port maps of the second group have to be rearranged
according to the interface list of the component declaration.

11

Restrictions to Structures

Structural descriptions at the synchronous abstraction level are not always con-
sistent. In ABC-VHDL, structural descriptions within the architecture body are
allowed only if they meet the following restrictions

1. no short-circuits: output signals of components and input signals of the
compound circuit must not be connected with other output signals of
components or input signals of the compound circuit

2. no zero-delay-cycles: there must not be no ring of combinatorial (zero-
delay) circuits, such that one of the outputs of each of them is connected
with some input of its successor

3. separated clock: clock signals must not be connected with data signals,
and all clock signals must interconnected

In ABC-VHDL, input and output signals are always clearly distinguished. De-
tecting short-circuits is pretty easy.

To detect zero-delay cycles, zero-delay-dependencies are determined for all
processes and architectures. The signal-delay-dependency list is a table with
all outputs and the inputs that have a direct impact on this output. A direct
impact means, that there is a pure combinatorial path from input to output
with no memory unit (delta delay unit) in between.

All basic circuits are defined by means of a process statement or a concurrent
signal assignment statement. There are two kinds of processes: ones where
all outputs (may) directly depend on all inputs and others where there is no
output that directly depends on an input (see sections 4 and 5). To determine
the dependencies of architectures, first the dependency lists of its parts have to
be determined. Determining the dependency list of an architecture fails if the
structure contains a zero-delay-cycle.

12

Chapter 4

Processes

4.1 The Process Interface

In VHDL, processes are always part of the architecture body. Other than archi-
tectures, there is no explicit interface definition for processes. The only signals
a processes may use, are the interface signals of its entity declaration plus the
signals declared in the declarative part of the architecture. The names, types
and instantiations of the signals are defined there.

Although processes do not have an explicit interface declaration, it can be
derived. All signals appearing in expressions are called input signals of the
process. All signals occurring at some left hand side of a signal assignment
are called output signals. In ABC-VHDL, input and output signals must be
disjunct. Let ',42,...4™ be the input signals and o', 0?,...0" be the output
signals, «!,42,...1™ be the types of the input signals and w',w?,...w" be
the types of the output signals of the process. Let ¢ be an abbreviation for

! x 12 x ... x ™ and w be an abbreviation for w! x w? x ... x W™,

4.2 The State of a Process

In the declarative part of processes, variables may be declared and instantiated.
Let v',v?,...v™ be the variables declared in the declaration part of the process,
and let ¢',¢%,...¢"™ be the corresponding types. Let v be the type of the
control state. v depends on the structure of the algorithm. This topic will be
discussed in chapter 5.

The state of the process o consists of the following parts: the variable state,
the output state and the control state. In ABC-VHDL, all processes have a
variable state and an output state. There are two kinds of processes: ones with
and others without control state. So o becomes either ¢ X w X v or ¢ X w.

4.3 Behavior of Processes
The behavior of processes is determined by its statement part and the instanti-

ation given to the process state. The initial state ¢ is given by the instantiations
of the variables, output signals and the initial control state. Its type is o. The

13

M~
O © 00N Ot ik W N~

Qo G G W W L WA NN DNDNDNDNDNDNDLD M M MMM
DOUTHR WNHR OO OTHR WN RO O WD Otk W

entity gcd is

port (
clk : in std_logic;
a,b : in positive;
start : in std_logic;
ready : out std_logic := ’0’;
result : out positive :=0

)

end gcd;

architecture behavior of gcd is
begin process

variable x,y,z : positive := O;
begin
while start /= ’1° loop
wait until clk = ’1’;
end loop;
ready <= ’07;
if (a < b) then
X := b;
y = a;
else
X = a;
y := b;
end if;
while (y /= 0) loop
Z =X - Y;
wait until clk = ’1’;
X = y;
y = z;
end loop;
ready <= ’1’;
result <= x;
wait until clk = ’1’;

end process;
end behavior;

Figure 4.1: GCD circuit description in ABC-VHDL

14

process body can unambiguously be represented by a compound output and
transition function, that maps the input (type ¢) and the current state (type o)
at time n to the output (type w) at time n and the state (type o) at time n + 1.
The process body is represented by a function f having type ¢ x ¢ — w X 0.
How f is derived from the statement part of an ABC-VHDL process will be
discussed in chapter 5.

f and ¢ determine the process behavior in an unambiguous manner. To
derive a relation between the input and output signals of the process the HOL
function automaton will be used. automaton is part of the HOL theory Automata
(see [EiKu95]). It maps (f,q) with type

(lxoc—>wxo)xo
to a function g = automaton(f, ¢) with type
(num = ¢) = (num = w)

g is a function that maps a time dependent input signal to a type dependent
output signal.

The function automaton was been defined by means of induction over time
(natural numbers). At time 0, the state is ¢. f maps the input signal and the
state at some time ¢ to the output at time ¢ and the state at time ¢t + 1. Figure
4.2 sketches the semantics that was given to automaton. automaton(f,q) can
be considered to consist of a combinatorial unit f and a memory unit D? with
initial value q.

automaton(f, q)

Figure 4.2: Automaton

According to chapter 3, a process is represented by some relation between its
input and output signals. automaton(f,¢) is a function rather than a relation,
and the input signals and output signals are bundled. To achieve the required
relation, an equation has to be built, and the bundled input and output signals
have to be split into their parts. The scheme for representing processes is as
follows:

(Mt.(s(t),...,sP(t))) = automaton(f, q) (At.(sPT1(t),...,s9(t))

15

Chapter 5

Statements

The body of a process consists of a statement part. As already mentioned
in chapter 4, the entire statement part is represented by an output and state
transition function f of type + X 0 — w x 0. We will first describe the formal
representation of atomic and compound statements and then describe, how f is
derived from the the statement part, i.e. a compound statement.

The logical type and constant definitions used in this chapter are enlisted in
appendix B.

5.1 Data Types Used

The following five HOL data types will be used in this chapter: bool, one, num,
(a)option and a + 3. Table 5.1 gives an informal definition of these datatypes.
bool represents a set consisting of the elements T and F. The datatype one
represents a set that only contains a unique element. The name one is used
for both: for the name of the type and also for the constant representing its
only element. num represents the natural numbers. It is defined in a recursive
manner. There are two constructors: the constant 0 of type num and the
constant SUC, a function mapping type num to num. The natural numbers
are defined as the set of all expressions built up by these two constructors, i.e.
0, SUCO, SUC(SUCO),

option and + are type operators. option is a unary type operator that maps
an arbitrary type a to a data type named (a))option, where (a))option represents
a set consisting of the element none and of the elements any(z) for all z of type
«. + is a binary type operator, that is used in infix style. It maps two arbitrary
types a and 3 to a + 3, where a + 3 represents a set consisting of the elements
INL(z) for every z of type a and the elements INR(y) for every y of type S.

5.2 Type A, Type B, and Type C Statements

In order to formalize sequential statements of ABC-VHDL, we distinguish three
classes named A, B and C. In simplified terms, the differences as follows: On
their way from position sy to s’, the type A statement never, the type B state-
ment sometimes and the type C statement always reaches a wait statement (see
figure 5.1).

16

bool = T]|F

one = one

num = 0| SUCof num
(a)option = none | any of «
a+p = INLofa | INRof

Table 5.1: Data Types

Type A statements contain no wait statements. The complete execution of
a type A statement is always performed within a single simulation cycle. Type
B and type C statements both do contain at least one wait statement. For type
C statements the following property must be fulfilled: Starting at the beginning
so the execution will always reach a wait statement before reaching the end s'.
For type B statements this need not be guaranteed. Type B statements are
more general than type C statements. Type C statements always are type B
statements but not the other way round.

s S — So
L
Sl ! Sl e ——
type A type B type C

Figure 5.1: Classification of Statements

The logical representations of ABC-VHDL statements define, how the state-
ment affects the state of the process and what output is produced according
to the current process state and the current input. There are two reasons for
classifying sequential statements: First these three classes of statements will
each have a different logical representation, and second there will be restrictions
in combining these three kinds of statements in order to avoid nonterminating
programs.

Let ¢ be the type of the input of the process, w be the type of the output of
the process and ¢ be the type of the variables of the process.

Type A Statements

Type A statements are represented by functions mapping the input, the old
output and the old variable state to the current output and the new variable
state. Type A statements have the following type:

LXWXO—wXo

17

Type B Statements

Type B statements are represented by functions mapping the old input, the old
output, the variable state and the control state to the current output and the
new variable and control state. The logical type of type B statements is defined
as follows:

L X w X ¢ x (y)option = w X ¢ X ()option

Type v is used to represent the set of wait statement positions within the state-
ment. It depends on how the statement is built (see section 5.4). All other
types (1, w and ¢) only depend on the process the statement is in.

The control state the processor comes from is either one of the wait statement
positions or the beginning of the statement. By applying the type oparator
option to v, one element is added. The elements any(z), where x is some element
of type «v are used to indicate wait statement positions. The extra element none
is used to indicate the beginning.

The control state the processor goes to is either one of the wait statement
positions or the end of the statement. Also this set of control states is repre-
sented by option. The elements any(x) are again used to indicate wait statement
positions, and the extra element none is used to indicate the end of the state-
ment.

Type C Statements

Type C statements are formalized similar to type B statements except that the
function is split into a pair of two functions. The first function describes the
behaviour when being in the initial state b. Due to the definition of type C
statements, starting from the beginning, the next control state can only be a
wait statement position. The first function has the following type:

LXWX@—0XopX7.

The second function describes the behavior starting from some wait, statement
within the statement. Its type is as follows:

LXwX@Xy—wX X (y)option
Type C statements have the following logical type:
LXxXwxd—owxXPxy) X

(tXwxX@xy—=wxdx (y)option)

Conditions

Conditions are used within if-then-else structures and loops. They are rep-
resented by predicates on input signals and variable states. Their type is as
follows:

Lt X ¢ — bool

18

Abbreviation Original Type

(¢, w, @)type_a_statement LXWXP—wXo
(v, w, &, v)type_b_statement L X w X ¢ X (y)option = w X ¢ X (y)option

(v, w, @, v)type_c_statement (LXWwX@P—>wXdxy) X
(L XwX@Xy—wXdx (y)option)

(¢, ¢)condition L X ¢ — bool

Table 5.2: Type Abbreviatios

Type Abbreviations for Statements and Conditions

In order to simplify the handling with statements and conditions, type abbrevia-
tions will be used. Figure 5.2 enlists the type abbreviations and the correspond-
ing types. To switch some term of the original type representation to a term
with the new type representation, mk_type_a_statement, mk_type_b_statement,
mk_type_c_statement, and mk_condition is applied, and dest_type_a_statement,
dest_type_b_statement, dest_type_c_statement, and dest_condition is applied to
switch back. The logical definitions of these type abbreviations are enlisted
in appendix B.2.

5.3 Basic Statements

In ABC-VHDL, there are four basic statements:
1. signal assignments,
2. variable assignments,
3. null statements, and
4. wait statements
Variable assignments, signal assignments and null are type A statements. Wait
statements are type C statements.
Signal Assignments

A signal assignment replaces the value of one output signal by the expression
given on the right hand side of the signal assignment. Variables are not af-
fected by signal assignments, and the expression on the right hand side only
depends on variables and input signals but not of output signals. Therefore
signal assignments can unambiguously be described by a function g of type:

LXWXP—w

Since signal assignemts alter only one of the output signals, the output of g
equals its output state input, except that exactly one signal is changed.

19

The function SIGNAL_ASSIGNMENT maps such functions g into an expres-
sion of type type_a_statement. The new output state is determined by g and the
variable state v is left unchangeged.

F SIGNAL_ASSIGNMENT (g) =
mk_type_a_statements(\(¢, 0,v). (¢(%,0,v),v))

Example: In line 18 of the GCD circuit (figure 4.1) there is the following signal
assignment

ready <= ’0’;

This signal assignment is represented by the following expression (see line with
label 18 in figure 5.3)

SIGNAL_ASSIGNMENT
(AM(a, b, start), (ready, result), (x,y, z)). (F,result))

Expanding the definition of SIGNAL_ASSIGNMENT leads to the following equiv-
alent expression

mk_type_a_statement
(M((a, b, start), (ready, result), (x,y, z)). ((F,result), (z,y, z)))

Variable Assignments

Variable assignments are just the other way round: a single variable is altered
whereas the other variables and the signals remain unchanged. Variable assign-
ments can unambiguously be described by a function g of type ¢ X ¢ — ¢. The
function VARIABLE_ASSIGNMENT maps such functions to an expression of type
type_a_statement :

F VARIABLE_ASSIGNMENT(g) =
mk_type_a_statement(\(7, 0,v). (0, g(i,v)))

Null Statements
The null statement neither alters the output nor the variables. It is defined by:

F NULL.STATEMENT =
mk_type_a_statement(A(Z, 0,v). (0,v))

Wait Statements

Wait statements are type C statements. There is exactly one wait statement
position within a type C statement. Therefore, data type one is used to represent
~. The old control state and also the new control state are represented by type
(one)option. The formal definition is as follows:

FWAIT =
mk_type_c_statement

(
(A\(i,0,v). (0,v,0ne)),
(A\(i,0,v,¢).(0,v,none))

)

20

The first function describes the behavior when starting from the beginning of
the statement. The output and variable state are left unchanged and the process
turns to the only possible control state named one.

The second function describes the way from some wait statement position
within the statement. Since the set of wait statement positions is represented
by the data type one, ¢ is of type one, whose only value is the constant one. The
output and variable state are left unchanged and the process turns to none, i.e.
the end of the process.

5.4 Compound Statements

In ABC-VHDL, there are three control structures for recursively combining basic
statements to compound ones:

1. sequences,
2. if-then-else structures, and
3. while-loops

Control structures will be represented by functions that map tuples of state-
ments and conditions to new (compound) statements. A sequences maps a pair
of statements to a compound statement, an if-then-else structure maps a triple
consisting of one condition and two statements to a compound structure, and
a loop maps a pair consisting of a condition and a statement to a compound
statements. The statements which are used as parts of control structures may
either be basic statements or themselves be compound statements.

Since type A, type B and type C statements have different logical types, it
is not possible to represent each control structure by a single function but by
a set of functions for each combination of statements. So there are 9 sequence
functions and 9 if-then-else functions. However, there is only a single while-loop
function since while loops are only allowed for type C statement bodies. The
type of the compound statement can directly be derived from the types of its
parts. Table 5.3 describes, how the type of the compound statement is derived
from the types of its parts.

sequence if-then-else while
| A B C | A B C
AlA B C Al A B B c B
B|B B C B|B B B
cl|c ¢ ¢ C | B B ¢C

Table 5.3: Construction Rules for Compound Statements

While loops are only allowed for type C statement bodies in order to avoid
infinite loops. Both type A and type B statements may run from the beginning
to the end position within one simulation cycle, i.e. without reaching a wait
statement. While loops with type A or type B statement bodies therefore might
be executed for an infinite number of times. In such a simulation, the next clock

21

tick whould never be reached, and therefore such a circuit description whould
not, correspond to any real synchronous circuit.

Sequences

Sequence operators map a pair of statements to a compound statement. They
are defined for all combinations of statement types. There names are SEQ_AA,
SEQ_AB, SEQ_AC, SEQ_AA, etc. where the last two letters of the operator
names indicate the types of the parameters. They are used in infix fashion.

v represents the set of wait statements within a statement. When combining
two statements by means of a sequence, the number of wait statement positions
becomes the sum of the number of control statements of its parts. Type A
statement do not contain wait statements. If both parts are type A statements,
then the result also becomes a type A statement. If one of the parameters
is a type A statement (with no wait statement) and the other statement is a
type B or type C statement (with at least one wait statement), then the type
for representing the wait statement set is inherited from the type B or type C
statement. If both paramenters are type B or type C statements, and the set
of wait statement positions is represented by v' and 42, respectively, then the
type of the compound statement becomes ! + 2.

Example

Let = be a type B statement and y be a type C statement. Let
(t,w, @, ')type_b_statement
be the type of and
(1, w, b, v?)type_c_statement
be the type of y. The compound statement
(zr SEQ-BCy)
is a type C statement (see table 5.3). According to appendix B, its type is
(t,w, d, v + v?)type_c_statement
Therefore, the type of SEQ_BC is

(t,w, @, v')type_b_statement — (1, w, ¢, y?)type_c_statement
- (1w, d, 7' + 7?)type_c_statement

The semantics of the sequence operators are formalized within logic. The defi-
nitions describe, how the entire output and transition function of the compound
statement is derived from the output and transition function of its parts. You
find a complete table in appendix B.3.

Figure 5.4 informally sketches, how a type B and a type C statement are
“bound” together. In simplified terms, the semantics of a sequence consisting
of z and y is as follows:

22

1. When starting from the beginning or from one of the internal states of x,
then first z is evaluated. If the control state of the result is an internal wait
statement postition of z, then the result of the compound wait statement
becomes the result produced so far. If the control state of the result is the
end of x, then the output state and the variable state of the result and the
current input are used to evaluate y from the beginning state. The result
of the evaluation of y becomes the result of the sequence.

2. If the evaluation starts from one of the internal wait statements of y, then
this result becomes the result of the entire sequence.

S f
S0~ fSEQBCyg
Sl
So - g :>
s =
s =

Figure 5.2: Sequence of a Type B and a Type C Statement,

If-Then-Else Structures

If-then-else operators map two statements and a condition to a compound state-
ment. They are defined for all combinations of statement types. There names
are IF_.THEN_ELSE_AA, IF_THEN_ELSE_AB, etc. where the last two letters of
the operator names indicate the types of the statements.

As in sequences, the number of wait statement positions in if-then-else struc-
tures is the sum of its parts. So deriving ~ for an if-then-else structure is done
in the same way.

Example

Let ¢ be a condition and z be a type C statement and y be a type A statement.
Let

(¢, ¢)condition
be the type of c,

(t,w, @,7v')type_c_statement
be the type of z and

(1,w, @,7?)type_a_statement

23

be the type of y. The compound statement
(IF_THEN_ELSE_BC c z y)
is a type B statement (see table 5.3). According to appendix B, its type is
(¢, w, @, v)type_b_statement
since the type of SEQ_BC is
(¢, ¢)condition — (v,w, @, y)type_c_statement — (1, w, ¢)type_a_statement— (v, w, ¢, v)type_b_statement
An informal description of the semantics of if-then-else statements:

1. When starting from the beginning, then at first the condition c is evalu-
ated. If the result of the condition is true, then the result of the compound
statement is result of the application of the ouput and transition function
of z. Otherwise y is applied.

2. If the evaluation starts from one of the internal wait statements of x, then
this result becomes the result of the if-then-else structure.

3. If the evaluation starts from one of the internal wait statements of y, then
this result becomes the result of the if-then-else structure.

While-Loops

The while statement operator maps a statement and a condition to a compound
statement. While statements are only allowed for type C statement bodies.
Other than type A and type B statements, type C statements cannot be eval-
uated all at once wihin one simulation cycle, but are always interrupted by a
wait statement. Due to this restriction, while loops with infinite loops, i.e. runs
without ever reaching a wait statement, are avoided.

The compound while statement is a type B statement, since:

1. there are wait statement positions in the body (type C statement)

2. starting from the beginning, the end may be reached emmediately (within
one simulation cycle) if the condition fails

The while statement operator is named WHILE_C. Its type is as follows:

(¢, ¢)condition — (1, w, @, y)type_c_statement
— (t,w, @, v)type_b_statement

The semantics of a (WHILE_C ¢ z) is as follows:

1. When starting from the beginning, then the condition c is evaluated first.
If the condition is fulfilled, then the body x is evaluated starting from
its beginnning state. Since z is a type C statement, this leads to one
fo the wait statement positions within x — the end cannot be reached
emmediately. If the condition is false, then the end is reached emmediately.

24

2. When starting from one of the wait statement positions of the body, the
evaluation of the output and transition function of the body may either
lead to another wait statement position or to the end of the body. If
another wait statement position is reached, then the evaluation of the
while loop output and transition function is finished. If the end of the
body is reached, then the condition is evaluated and according to the
result either the end of the while-statement is reached or the evaluation
is proceeded in the beginning. Due to z being a type C statement, the
proceeding in the beginning will lead to a wait statement within the same
evaluation cycle.

5.5 Statement Parts

As mentioned in section 4, the behaviour of processes is represented by an output
and state transition function f of the corresponding automaton. In ABC-VHDL,
there are two kinds of processes:

1. type A processes and

2. type C processes

Type A processes

The statement part of a type A process is a (compound) type A statement with
the following restrictions:

1. there are no variables
2. there are no if-then-else structures
3. there must be a sensisitivity list where all input signals are enlisted.

The ouput and transition function f of the corresponding automaton is nothing
but the output and transition function of the type A statement. The function
CLOSE_A extracts this function from the type a statement. Let x, v and o be
the type A statement in the body, the initial states of the variables and and the
initial states of the outputs, respectively. The expression (PROCESS_A (v, 0) x)
is used as an abbreviation for automaton(CLOSE_A z, (v, 0)).

Type A processes can be used to describe combinatorial circuits. Type A
processes correspond to combinatorial circuit iff no variables are used and in all
simulation cycles there is always at least one output signal assignment to each
output signal.

Type C processes

The statement part of a type C process is a (compound) type C statement.
Type C statements have no sensitivity list. Due to their wait statements, they
are sensitive on changes of the clock signal.

Type C statements behave as follows: At time 0, the evaluation starts from
the beginning and since the body is a type C statement, some wait statement
position will be reached. The end cannot be reached emmediately. The initial
control state, i.e. the beginning of the process will never be reached again.

25

In all further steps, the process jumps from one wait statement position to the
next. Whenever the end is reached, the evaluation is proceeded in the beginning
immediately within the same simulation cycle.

This very much resembles to a while loop with a condition that always
holds. But others than while loops, the end is never reached. One could use the
WHILE_C loop with an always fulfilled condition to formalize this. The disad-
vantage of this approach is an extra control state at the end of the statement
part. This extra control step whould be redundant, since it is unreachable.
This has a negative impact as to verification and synthesis techniques (state
exploration, state optimization, state encoding).

We therefore chose a formalization that differs from the WHILE_C approach
by not adding an this extra control state. The function deriving the functional
behavior in terms of f from the type C statement body is named CLOSE_C.

Other than type A processes, the state of type C processes not only consists
of variable state and output state, but there is also a control state. Let x be
the the type C statement in the body. The initial variable state v and output
state o are derived from the instantiations whereas the initial control state is
always none. The expression (PROCESS_C (v,0) x) is used as an abbreviation
for automaton(CLOSE_C x, (v, 0, none)).

26

PROCESS_C
((0,0,0), (F,0))

[15,16,17] WHILE_C (A((a, b, start), (x,y, 2)). Astart # T))WAIT SEQ_BC
[18] SIGNAL_ASSIGNMENT (A((a, b, start), (ready, result), (x,y, z)). (F,result)) SEQ_AC
[19] IF_THEN_ELSE_AA (mk_condition(A((a, b, start), (z,y, 2)). a < b))
(

[20] VARIABLE_ASSIGNMENT (A((a, b, start), (x,y, z))- (b,y, z)) SEQ_AA
[21] VARIABLE_ASSIGNMENT (A((a, b, start), (x,y, z)). (z,a, 2))

2
[24] VARIABLE_ASSIGNMENT (A((a, b, start), (x,y, z)). (a,y, z)) SEQ-AA
[24] VARIABLE_ASSIGNMENT (A((a, b, start), (x,y, z)). (z,b, 2))

) SEQ-AC
[26] WHILE_C (mk_condition(A((a, b, start), (x,y,2)). (y =0)))

(
[27] VARIABLE_ASSIGNMENT (A((a, b, start), (x,y, z)). (z,y,z — y)) SEQ-AC
[28] WAIT SEQ_CA
[29] VARIABLE_ASSIGNMENT (A((a, b, start), (z,y, 2)). (y,y, z)) SEQ-AA
[30] VARIABLE_ASSIGNMENT (A((a, b, start), (x,y, 2)). (z,2,2))

) SEQ_BC
[32] SIGNAL_ASSIGNMENT (A((a, b, start), (ready, result), (x,y, z)). (T, result)) SEQ_AC
[33] SIGNAL_ASSIGNMENT (A((a, b, start), (ready, result), (x,y, z)). (ready, z)) SEQ_AC
[34] WAIT

Figure 5.3: Logical representation of the GCD circuit

27

Appendix A

Syntax of ABC-VHDL

A.1 Conventions

Ttalic words are used to indicate syntactical expressions and type writer font is
used for keywords. Syntactical definition is indicated by a ::= symbol. a | b
is used to indicate an alternative, [a] is used to indicate an optional expression
and {a} is used to indicate, that the expression may be used n times in a series
(with n € {0,1,...}). All symbols except |,{, }, [,] indicate keywords. Some
source text is part of the ABC-VHDL language, if it can be matched with the
syntactical expression vhdl_programm according to the syntax rules recursively
describing it (see section A.3).

A.2 Basic Expressions

e entity_identifier, architecture_identifier, component_identifier,
signal_identifier, variable_identifier and library_identifier:

Arbitrary, user defined names used to indicate entities, architectures, com-
ponents, signals, variable and libraries. Keywords are not allowed as iden-
tifiers. Identifiers of the same group and with the same scope must differ.
Also variable identifiers and signal identifiers with the same scope must
differ.

e subtype_indication:

One of the data types defined in the type table (see section 2.3)

e constant, infix_operator, prefix_operator and functor:

one of the constants, infix operators, prefix operators and functors defined
in the constant table (see section 2.3)

A.3 Syntax Rules

architecture_body : :=
architecture architecture_identifier of entity_identifier is
architecture_declarative_part begin {concurrent_statement} end
[architecture_identifier] ;

28

architecture_declarative_part : :=
{block_declarative_item}

association_element : :=
signal_identifier => signal_identifier | signal_identifier

block_declarative_item : :=
signal_declaration | component_declaration |
configuration_specification

component_declaration : :=
component component_identifier port_clause end component ;

component_instantiation_statement : :=
component_identifier port map ({association_element ,}
association_element)

concurrent_signal_assignment_statement : :=
signal_identifier <= expression ;

concurrent_statement : :=
[label_identifier :] concurrent_statement_unlabeled

concurrent_statement_unlabeled : :=
process_statement | component_instantiation_statement |
concurrent_signal_assignment_statement

configuration_specification : :=
for instantiation_list : component_identifier use entitiy
library_identifier. entity_identifier (architecture_identifier) ;

entity_declaration : :=
entity entity_identifier is port_clause end [entity_identifier] ;

expression : :=
variable_identifier |
signal_identifier |
constant |
(expression) |
expression infix_operator expression |
prefix_operator expression |
functor ({expression ,} expression)

if_statement : :=
if expression then {sequential_statement} {elseif expression then}
[else sequential statement]

instantiation : :=
1= expression

instantiation_list : :=
{label.identifier ,} labelidentifier | other | all

29

interface_signal_declaration : :=
{signal_identifier ,} signal_identifier : [mode] subtype_indication
[instantiation]

library_clause : :=
library {library_identifier ,} library_identifier ;

loop_statement : :=
while expression loop {sequential statement} end loop

mode ::=
in | out

port_clause : :=
port ({interface_signal_declaration ;} interface_signal_declaration) ;

process_statement ::=
process [sensitivity_list] {variable_declaration} begin
{sequential_statement} end process ;

sensitivity_list : :=
({signal_identifier ,} signal_identifier)

sequential_statement : :=
wait_statement | signal assignment_statement |
variable_assignment_statement | if_statement | loop_statement

signal_assignment_statement : :=
signal_identifier <= expression

signal_declaration : :=
signal {signal_identifier ,} signal_identifier ; subtype_indication
[instantiation] ;

variable_assignment_statement : :=
variable_identifier := expression

variable_declaration : :=
variable {variable_identifier ,} variable_identifier :
subtype_indication [instantiation]

vhdl_declaration : :=
entity_declaration | architecture_body | library_clause

vhdl_program : :=
{vhdl_declaration}

wait_statement : :=
wait until signal_identifier = >1° ;

30

Appendix B

Semantics of ABC-VHDL

B.1 Basics

Type Constants

bool

one

num
(a)option

a+p

Constants
T : bool
F : bool
one : one
0 : num
SUC : num — num
none : («a)option
any : a — («a)option
INL : a = (a+ 8)
INR : 8 — (a+f)
PRIMREC_ bool : bool - a = a — «
PRIMREC.one : one - a = «

PRIMREC.num : num — a — (@ — num — a) = «

31

PRIMREC_ option : (a)option — 8 — (o = 3) =
PRIMRECsum : (a+f8) = (a =) = (B —=7v) =~

Theorems
- Vab. 3'f.
(fT=a)A
(fF =b)

- (Yab. PRIMREC_bool T ab = a) A
(Vab. PRIMREC bool F a b = b)

F Va. 3'f
fone = a

F Va.
PRIMREC oneonea=a

F Vab. 3'f
(fo=a) A
(Ve. f{SUC) = b (fe) ¢)

F (Vab. PRIMREC.numOab = a) A
(Va b c. PRIMREC.num (SUC c¢) ab = b (PRIMREC_.num cab) c)

F Vab. 3f
(fnone = a) A
(Ve. flany ¢) = be)

F (Vab. PRIMREC option nonea b = a) A
(Va b c. PRIMREC_ option (any ¢) ab = b c)

F Vab. 3'f
(Ve. f{INLc) =ac) A
(Ve. f(INRc)=bc)

F (Vabc. PRIMRECsum (INLc)ab=ac) A
(Vabec. PRIMREC.sum (INRc¢)ab=bc)

32

B.2 Type Abbreviations

Type Constants
(¢, w, @)type_a_statement
(¢, w, @, v)type_b_statement
(¢, w, @, y)type_c_statement
(

t, ¢)condition

Constants

mk_type_a_statement :
(tXxwxod—=wxo)
— (1, w, @)type_a_statement

dest_type_a_statement :
(1, w, ®)type_a_statement
S (L XwXod—=wxo)

mk_type_b_statement :
(t X w X ¢ x (7y)option = w X ¢ X (y)option)
— (t,w, @, y)type_b_statement

dest_type_b_statement :
(¢, w, @, v)type_b_statement
= (1 X w X ¢ x (y)option = w x ¢ x (y)option)

mk_type_c_statement :
(LXwXd—=>wXdxy) X (1L XwXdXy—wxX ¢ X (y)option)
= (1, w, @, y)type_c_statement

dest_type_c_statement :
(v, w, @, v)type_c_statement
S (UXwXp—=2>wXdxy) X (1 XwXoXy—wx ¢ X (y)option)

Theorems

F Va.3f.
Vb. f(mk_type_a_statement b) = a b

F Vx. mk_type_a_statement(dest_type_a_statement x) = x

F Vx. dest_type_a_statement(mk_type_a_statement x) = x

F Va.3f.
Vb. f(mk_type_b_statement b) = a b

F Vx. mk_type_b_statement(dest_type_b_statement x) = x

F Vx. dest_type_b_statement(mk_type_b_statement x) = x

33

Va. 3.
Vb. f{mk_type_c_statement b) = a b

Vx. mk_type_c_statement(dest_type_c_statement x) = x

Vx. dest_type_c_statement(mk_type_c_statement x) = x

Va. 3f.
Vb. f{mk_condition b) = ab

Vx. mk_condition(dest_condition x) = x

Vx. dest_condition(mk_condition x) = x

34

B.3 ABC-VHDL Statements and Processes

Constants

negate_condition
(¢, ¢)condition — (¢, ¢)condition

SIGNAL_ASSIGNMENT
(tLXwXd—w)
— (1, w, ®)type_a_statement

VARIABLE_ASSIGNMENT
(tx ¢ —)

— (1, w, @)type_a_statement

NULL.STATEMENT
(¢, w, ®)type_a_statement

WAIT
(¢, w, ¢, one)type_c_statement

SEQ_AA
(t,w, @)type_a_statement — (1, w, P)type_a_statement
— (1, w, @)type_a_statement

SEQ_AB
(v, w, @)type_a_statement — (1, w, ¢, v)type_b_statement
— (1, w, @, v)type_b_statement

SEQ_AC
(v, w, @)type_a_statement — (1, w, ¢, y)type_c_statement
— (1, w, @, v)type_c_statement

SEQ_BA
(¢, w, @, v)type_b_statement — (1, w, ¢)type_a_statement
— (1, w, @, v)type_b_statement

SEQ_BB
(1,w, ¢,y)type_b_statement — (1, w, ¢, ¥*)type_b_statement
= (1,w, ¢,y + 7?)type_b_statement

SEQ_BC
(1, w,,7")type_b_statement — (1, w, ¢, ¥*)type_c_statement
= (1w, ¢, vt + 7?)type_c_statement

SEQ_CA
(v, w, &, v)type_c_statement — (1, w, §)type_a_statement
— (1, w, @, y)type_c_statement

SEQ-CB
(t,w, @, v")type_c_statement — (1,w, @, v?)type_b_statement
= (1,w, ¢,y + 7?)type_c_statement

35

SEQ_CC
(t,w, ¢, 7")type_c_statement — (1, w, ¢, 7?)type_c_statement
= (1w, ¢,y + 7?)type_c_statement

IF_-THEN_ELSE_AA
(¢, ¢)condition
— (1, w, ¢)type_a_statement — (1,w, ¢)type_a_statement
— (t,w, ¢)type_a_statement

IF_THEN_ELSE_AB
(¢, ¢)condition
— (1, w, ¢)type_a_statement — (¢,w, ¢, y)type_b_statement
— (t,w, ¢,v)type_b_statement

IF_-THEN_ELSE_AC
(¢, ¢)condition
— (1, w, ¢)type_a_statement — (1, w, ¢, y)type_c_statement
= (t,w, ¢, 7)type_b_statement

IF_THEN_ELSE_BA
(¢, ¢)condition
= (1, w, @, v)type_b_statement — (1, w, ¢)type_a_statement
= (t,w, ¢, v)type_b_statement

IF_.THEN_ELSE_BB
(¢, ¢)condition
= (1,w, ¢, 7')type_b_statement — (1, w, ¢, v?)type_b_statement
- (t,w, d,7' + ~?)type_b_statement

IF_-THEN_ELSE_BC
(¢, ¢)condition
— (1,w, ¢, 7")type_b_statement — (1, w, ¢, 7*)type_c_statement
= (t,w, d,v' + v?)type_b_statement

IF_THEN_ELSE_CA
(¢, ¢)condition
— (1, w, @, v)type_c_statement — (1, w, ¢)type_a_statement
= (t,w, ¢, v)type_b_statement

IF_-THEN_ELSE_CB
(¢, ¢)condition
— (1,w, ¢, v?)type_c_statement — (1,w, ¢, v)type_b_statement
= (t,w, d,7' + ~?)type_b_statement

IF_-THEN_ELSE_CC
(¢, ¢)condition
— (1,w, ¢, v')type_c_statement — (1, w, @, v?)type_c_statement
= (t,w, d, ' + v?)type_c_statement

WHILE_C
(¢, ¢)condition — (1,w, ¢, y)type_c_statement
— (1, w, ¢, v)type_b_statement

36

CLOSE_A
(1, w, ®)type_a_statement
SUXWX O >WXWXP

PROCESS_A
w X ¢ = (1,w, P)type_a_statement
= (num = ¢) = num - w

CLOSE_C
(¢, w, @, y)type_c_statement
— 1 X (w X @) X (y)option — w X (w X @) x (y)option

PROCESS_C
w X ¢ = (1,w, P, v)type_c_statement
= (num =) = (num — w)

Theorems

F Vcond. negate_condition cond =

mk_condition(— o dest_conditioncond)
F VI SIGNAL_ASSIGNMENT f=

mk_type_a_statement(A(si, so, sq). f{(si, so, sq), sq))
F VI VARIABLE_ASSIGNMENT f=

mk_type_a_statement(A(si, so, sq). (so, f(si, sq)))
F NULL.STATEMENT =

mk_type_a_statement(\(si, o, sq). (50, 5q))
F WAIT =

mk_type_c_statement

(((A(si, 50,5). (0, 5,0n€)), (A(si, 50,5, 55). (50, 50, none)))

= Vpf, pg.

(pf SEQ-AA pg) =

mk_type_a_statement
(\(si, so, 5q).
let (so, sq) = dest_type_a_statement pf (si, o, sq) in
let (so0, sq) = dest_type_a_statement pg (si, 0, 5q) in
(s0,59))

= Vpf, pg.

(pf SEQ-AB pg) =
mk_type_b_statement
(\(si, so, sq, ss).
let (so, sq) = dest_type_a_statement pf (si, so, sq) in
let (so, sq, ss) = dest_type_b_statement pg (si, so, sq, $s) in
(so, 5q, s5))

37

 Vpf, pg.
(pfSEQ-AC pg) =
mk_type_c_statement
(let (pga, pgb) = dest_type_c_statement pg in
(\(si, 80, 5q).
let (s0,sq) = dest_type_a_statement pf (si, so, sq) in
let (so, sq, ss) = pga(si, so, sq) in
((50,5q, 55), peb)))

= Vpf, pg.
(pfSEQ_BA pg) =
mk_type_b_statement
(\(si, s0, sq, s5).
let (so, sq, ss) = dest_type_b_statement pf (si, so, 5q, $s) in
PRIMREC option ss
(let (so,sq) = dest_type_a_statement pg (si, s0, sq) in
(so, 5q, s5))

(Adummy. so, sq, ss)))

~ Vpf, pg.
(pf SEQ_BB pg) =
(let pfs = dest_type_b_statement pfin
let pgs = dest_type_b_statement pg in
mk_type_b_statement
(\(si, so, sq, ss12opt).
PRIMREC _option ss12opt
(let (so, sq, sslopt) = pfs (si, so, sq, none) in
PRIMREC _option sslopt
(let (so, sq, ss2opt) = pgs (si, so, sq, none) in
(so, sq, PRIMREC _option ss2opt none (Ass2. any(INR ss2))))
(Ass1. so, sq, any(INLss1)))
(Ass12. PRIMREC sum ss12
(Ass1.
let (so, sq, sslopt) = pfs(si, so, sq,any ssl) in
PRIMREC _option sslopt
(let (so, sq, ss2opt) = pgs(si, so, sq, none) in
(so, sq, PRIMREC option ss2opt none (Ass2. any(INR ss2))))
(Ass1. so, sq,any(INL ss1)))
(Ass2. let (so, sq, ss2opt) = pgs(si, so, sq, any ss2) in
(so, sq, PRIMREC _option ss2opt none (Ass2. any(INR ss52))))))))

38

 Vpf, pg.
(pf SEQ-BC pg) =
mk_type_c_statement
(let (pga, pgb) = dest_type_c_statement pg in
let pfs = dest_type_b_statement pfin
(A5, 50, 50).
let (so, sq, sslopt) = pfs (si, so, sq, none) in
PRIMREC _option sslopt
(let (so, sq, ss2) = pga (si, 0, sq) in
50, sq, INRss2)
(Ass1. so, sq, INL ss1)),
(\(si, so, sq, s512).
PRIMREC_sum ss12
(AssI.
let(so, sq, sslopt) = pis(si, s0, sq, any ss1) in
PRIMREC _option sslopt
(let (so, sq, ss2) = pgal(si, so, sq) in
(s0,sq,any(INR ss2)))
(Ass1. so, sq,any(INL ss1)))
(Ass2.
let (so, sq, ss2opt) = pgb(si, so, sq, $s2) in
(s0, sq, PRIMREC _option ss2opt none (Ass2. any(INR ss2)))))))

+ Vpf, pg.
(pf SEQ-CA pg) =
mk_type_c_statement
(let (pfa, pfb) = dest_type_c_statementpfin
(pfa,
(\(si, s0, 54, S5).
let (s0, sq, ssopt) = pfb(si, o, 5q, $s) in
PRIMREC _option ssopt
(let (so, sq) = dest_type_a_statementpg(si, so, sq) in
(s0, sq, none))
(Ass. s0, sq, ssopt))))

39

 Vpf, pg.
(pf SEQ-CB pg) =
mk_type_c_statement
(let (pfa, pfb) = dest_type_c_statement pfin
let pgs = dest_type_b_statement pg in
(51,50, 5q).
let (so, sq, ss1) = pfa(si, so,sq) in
(so, sq, INLss1)),
(\(si, s0, 5q, $512).
PRIMREC_sum ss12
(AssI.
let (so, sq, sslopt) = pfb(si, so, sq, ss1) in
PRIMREC _option sslopt
(let (so, sq, ss2opt) = pgs(si, so, sq, none) in
(s0, sq, PRIMREC option ss2opt none (Ass2. any(INR ss2))))
(Ass1. (so, sq,any(INL ss1))))
(Ass2.
let (so, sq, ss2opt) = pgs(si, so, sq, any $s2) in
(s0, sq, PRIMREC _option ss2opt none (Ass2. any(INR ss2)))))))

= Vpf, pg.
(pfSEQ_CC pg) =
mk_type_c_statement
(let (pfa, pfb) = dest_type_c_statement pfin
let (pga, pgb) = dest_type_c_statement pg in
(A5, 50, 50).
let (so, sq, ss1) = pfa(si, so, sq) in
(s0,sq, INL ss1)),
(\(si, s0, 5q, $512).
PRIMREC_sum ss12
(AssI.
let (so, sq, sslopt) = pfb(si, so, sq, ss1) in
PRIMREC _option sslopt
(let (so, sq, ss2) = pgal(si, 50, sq) in
(50, sq,any(INR s52)))
(Ass1. (so, sq,any(INL ss1))))
(Ass2.
let (so, sq, ss2opt) = pgb(si, so, sq, $s2) in
(s0, sq, PRIMREC _option ss2opt none (Ass2. any(INR ss2)))))))

F Vcond, pf, pg.
IF_THEN_ELSE_AA cond pf pg =
mk_type_a_statement
(\(si, so, 5q).
(dest_condition cond (si, sq)) =
(dest_type_a_statement pf (si, so, 5q)) |
(dest_type_a_statement pg (si, 50, 5q)))

40

F Vcond, pf, pg.
IF_-THEN_ELSE_AB cond pf pg =
mk_type_b_statement
(\(si, s0, sq, s5).
let pgs = dest_type_b_statementpg in
PRIMREC option ss

((dest_condition cond (si, sq)) =

(let (so, sq) = dest_type_a_statementpf{si, so, sq) in
(s0,sq, none)) |

(pgs(si, so, 5q, none)))

(Ass. pgs(si, so, sq, anyss)))

F Vcond, pf, pg-
IF_-THEN_ELSE_AC cond pfpg =
mk_type_b_statement
(let (pga, pgb) = dest_type_c_statement pg in
A(si, 50, sq, ssopt).
PRIMREC option ssopt
((dest_conditioncond(si, sq)) =
(let (so, sq) = dest_type_a_statement pf (si, so, sq) in
(50,50, none)) |
(let (so, sq, ss) = pgal(si, so, sq) in
(s0, 8q, anyss)))
(Ass. pgb(si, so, sq, s5)))

F Ycond, a,b.
IF_THEN_ELSE BA conda b =
IF_THEN_ELSE_AB (negate_condition cond) b a

F Vcond, pf, pg-
IF_-THEN_ELSE BB cond pf pg =
mk_type_b_statement
(\(si, so, sq, ss12opt).
let pfs = dest_type_b_statement pfin
let pgs = dest_type_b_statement pg in
PRIMREC option ss12opt
((dest_conditioncond(si, sq)) =

(let (so, sq, sslopt) = pfs(si, so, sq, none) in
(s0, sq, PRIMREC optionssloptnone(AssI. any(INL ss1)))) |

(let (so, sq, ss2opt) = pgs(si, so, sq, none) in
(s0, sq, PRIMREC optionss2optnone(Ass2. any(INR s52)))))

(Ass12.

PRIMREC_sum ss12

(AssI.
let (s0, sq, sslopt) = pfs(si, so, sq, anyss1) in
(s0, sq, PRIMREC option sslopt none (Ass1. any(INL ss1))))
(Ass2.
let (s0, sq, ss2opt) = pgs(si, so, sq, anyss2) in
(s0, sq, PRIMREC _option ss2opt none (Ass2. any(INR ss2))))))

41

F Vcond, pf, pg.
IF_-THEN_ELSE BC cond pfpg =
mk_type_b_statement
(let (pga, pgb) = dest_type_c_statement pg in
A(si, 80, 8q,88120pt). let pfs = dest_type_b_statement pfin
PRIMREC _option ss12opt
((dest_conditioncond(si, sq)) =
(let (so, sq, sslopt) = pfs (si, so, sq, none) in
(so, sq, PRIMREC option ssIopt none (Ass1. any(INL ss1)))) |
(let (so, sq, ss2) = pgal(si, so, sq) in
(so, sq,any(INRss2))))
(Ass12.
PRIMREC sum ss12
(Ass1.
let (so, sq, sslopt) = pfs(si, so, sq, any ss1) in
(so, sq, PRIMREC option ssIopt none (AssI. any(INL ss1))))
(Ass2.
let (so, sq, ss2opt) = pgb(si, so, sq, ss2) in
(so, sq, PRIMREC _option ss2opt none (Ass2. any(INR ss2))))))

F Ycond, a,b.
IF_-THEN_ELSE_CA conda b =
IF_THEN_ELSE_AC (negate_condition cond) b a

F Ycond, a,b.
IF_-THEN_ELSE_CB conda b =
IF_THEN_ELSE_BC (negate_condition cond) b a

F Vcond, pf, pg-
IF_THEN_ELSE_CC cond pfpg =
mk_type_c_statement
(let (pfa, pfb) = dest_type_c_statement pfin
let (pga, pgb) = dest_type_c_statement pg in
((\(si, s0,5q).
(dest_conditioncond(si, sq)) =
(let (so, sq, ss1) = pfa(si, so, sq) in
(so,sq, INLss1))
(let (so, sq, ss2) = pgal(si, so, sq) in
(so,sq,INRss2))),
(\(si, s0, 5q, 512).
PRIMREC_sumss12 (Assl.
let (so, sq, sslopt) = pfb(si, so, sq, ss1) in
(so, sq, PRIMREC _optionssloptnone(Assl. any(INLss1))))
(Ass2.
let (so, sq, ss2opt) = pgb(si, so, sq, $52) in
(s0, sq, PRIMREC _optionss2optnone(Ass2. any(INRss2)))))))

42

F Vcond, pf.
WHILE_C cond pf =
mk_type_b_statement
(let (pfa, pfb) = dest_type_c_statement pfin
let conds = dest_condition cond in
A(si, 50, sq, ssopt).
PRIMREC _option ssopt
((conds(si, sq)) =
(let (so, sq, ss) = pfa(si, so, sq) in
(50, sq, anyss)) |
(so, sq, none))
(Ass.
let (so, sq, ssopt) = pfb(si, so, sq, ss) in
PRIMREC _option ssopt
((conds(si, sq)) =
(let (so, sq, ss) = pfa(si, so, sq)in
(50, 50, anyss))
(s0, sq, none))(Ass. (s0, sq, ssopt))))

F Vpf.
CLOSE_C pf=
(let (pfa, pfb) = dest_type_c_statement pfin
A(si, (507, 5q), ssopt).
PRIMREC _option ssopt
(let (so, sq, ss) = pfa(si, so’, sq) in
(50", (50, 59), anyss))
(Ass.
let (so, sq, ssopt) = pfb(si, s0’, sq, ss) in
PRIMREC option ssopt
(let (so, sq, ss) = pfa(si, so, sq) in
(50", (s0, 5q), anyss))
(Ass. (50, (50, 50), anyss))))

F Vz0, pf.
PROCESS_C z0 pf =
automaton (CLOSE_C pf, z0, none)

F Vpf.
CLOSE_A pf=
(\(si, s0’, 5q).
let (s0,sq) = dest_type_a_statement pf (si, so’,sq) in
(50", 50, 50))

F Vz0, pf.
PROCESS_A z0 pf =
automaton(CLOSE_A pf, z0)

43

Appendix C

Standard ABC-VHDL Type
and Constant Semantics

The following tables only describe the default settings. Arbitrary mappings may
be defined.

C.1 Translation for ABC-VHDL Types

ABC-VHDL | HOL
boolean bool
std_logic bool
positive num

C.2 Translation for ABC-VHDL Constants

ABC-VHDL | HOL
’0° F

’1? T

not -

and A

or \Y

mod MOD
div DIV
/= Ma,b).=(a =)
+ +

< <

> >
0,1,2,... 0,1,2,.

44

Bibliography

[BGGH92] R. Boulton, A. Gordon, M. Gordon, J. Herbert, and J. van Tas-

[BrFK94]

[DaJS93]

[De0Od93]

[EiKu95]

[HaDag6]

[Melh88]

[01C093]

[ReKr93b]

sel. Experiences with Embedding hardware description languages
in HOL. In V. Stavridou, T.F. Melham, and R. Boute, editors,
Conference on Theorem Provers in Circuit Design, IFIP Transac-
tions A-10, pages 129-156. North-Holland, 1992.

Peter T. Breuer, Luis Sanchez Fernandez, and Carlos Delgado Kloos.
Clean formal semantics for VHDL. In EDAC 94, pages 641-647,
Paris, France, 1994. IEEE Computer Society Press.

W. Damm, B. Josko, and R. Schlér. A net-based semantics for
VHDL. In Robert Werner, editor, EURO-DAC 93, pages 514-519,
Hamburg, Germany, 1993. IEEE Computer Society Press.

Alain Debreil and Philippe Oddo. Synchronous designs in VHDL. In
Robert Werner, editor, EURO-DAC 93, pages 486-491, Hamburg,
Germany, 1993. IEEE Computer Society Press.

D. Eisenbiegler and R. Kumar. An automata theory dedicated to-
wards formal circuit synthesis. In Higher Order Logic Theorem Prov-
ing and Its Applications, Aspen Grove, Utah, USA, September 1995.
Springer.

F.K. Hanna and N. Daeche. Specification and verification of dig-
ital systems using higher-order predicate logic. IEE Proc. Pt. E,
133(3):242-254, 1986.

F. Melham. Automating recursive type definitions in higher order
logic. Technical Report 140, University of Cambridge Computer
Laboratory, 1988.

S. Olcoz and J.M. Colom. A petri net approach for the analysis of
VHDL descriptions. In CHARME93, number 683 in Lecture Notes
in Computer Science, pages 15-26, Arles,France, May 1993. Springer
Verlag.

R. Reetz and T. Kropf. Hardwarebeschreibungssprachen und for-
male Verifikation. Technical Report SFB358-C2-4/93, Universitét
Karlsruhe, Institut fiir Rechnerentwurf und Fehlertoleranz, Septem-
ber 1993. http://goethe.ira.uka.de/hvg/techreports/SFB358-C2-4-
93.ps.gz.

45

Index

ABC-VHDL signal instantiations, 9, 11

differences, 6 statement part, 13
statements

architectures type A, 17
declaration, 9 type B, 18
formal representation, 9 type C, 18

association elements, 11 structures

automaton, 15 formal representation, 10

. restrictions, 12
component declarations, 11

component instantiations, 11 types, 6
concurrent signal assignments, 11
concurrent statements, 9, 11 variable assignments, 20
conditions

formal representation, 18 wait statements, 20
constants, 6 while-loops, 24

control structures, 21
zero-delay-cycles, 12

entity declarations, 8
expressions, 6

functions, 6
if-then-else structures, 23

labels, 11
libraries, 8

null statements, 20
operators, 6

processes, 13
process state, 13
type A, 25
type C, 25

sequences of statements, 22

sequential statements, 16
classification, 16

shortcircuits, 12

signal assignments, 19

signal declarations, 9

46

