
9. J. Angele: Operationalisierung des Modells der Expertise mit KARL. Doctoral dissertation,
University of Karlsruhe, Germany, 1993 (in german).

10. C. Floyd: A systematic look at prototyping. InApproaches to Prototyping, R. Budde et al.,
eds. Springer, Berlin, 1984.

11. B.W. Boehm: A spiral model of software development and enhancement. InIEEE Computer
21, 1988, 61-72.

12. D. Landes: Development of knowledge-based systems on the basis of an executable specifi-
cation. InExpertensysteme ‘93, F. Puppe and A. Günter, eds. Springer, Berlin, 1993, 139-
152 (in german). English version available as research report 265, Institut für Angewandte
Informatik und Formale Beschreibungsverfahren, University of Karlsruhe, 1993.

13. L. Chung: Representation and utilization of non-functional requirements for information
system design. InAdvanced Information Systems Engineering, R. Andersen, J.A. Bubenko,
A. Sølvberg, eds. LNCS 498, Springer, Berlin, 1991, 5-30.

14. J. Mylopoulos, L. Chung, and B. Nixon: Representing and using non-functional require-
ments: a process-oriented approach. InIEEE Transactions on Software Engineering 18(6),
1992, 483-497.

15. G. Guida and G. Mauri: Evaluating performance and quality of knowledge-based systems:
foundation and methodology. InIEEE Transactions on Knowledge and Data Engineering
5(2), 1993, 204-224.

16. D.O. Williams, C. Tomlinson, C.K. Bright, and T. Rajan: The CommonKADS quality view-
point. Technical report KADSII/T2.2/TR/LR/0040/1.0, Lloyd’s Register, London, 1992.

17. G. Schreiber, H. Akkermans, and B. Wielinga: On problems with the knowledge level hy-
pothesis. InProceedings of the 5th Knowledge Acquisition for Knowledge-Based Systems
Workshop KAW’90 (Banff, Canada, November 4-9), 1990.

18. D. Harel: Dynamic logic. InHandbook of Philosophical Logic Vol. II, D. Gabbay and F.
Guenthner, eds. Reidel, Dordrecht, 1984, 497-604.

19. J. Reichardt: Preventative software engineering. InSoftware Engineering - ESEC’93, I.
Sommerville and M. Paul, eds. Lecture Notes in Computer Science 717, Springer, Berlin,
1993, 251-262.

20. D.N. Card with R.L. Glass:Measuring Software Design Quality. Prentice Hall, Englewood
Cliffs, 1990.

21. D.L. Parnas: On the criteria to be used in decomposing systems into modules. InCommuni-
cations of the ACM 15(12), 1972, 1053-1058

22. C. Batini, G. Di Battista, and G. Santucci: Structuring primitives for a dictionary of entity
relationship data schemas. InIEEE Transactions on Software Engineering 19(4), 1993, 344-
365.

23. P. Jaeschke, A. Oberweis, and W. Stucky: Extending ER model clustering by relationship
clustering. InProceedings of the 12th International Conference on the Entity-Relationship
Approach ERA´93 (Dallas, Texas, December 15-17), 1993.

24. E. Yourdon:Modern Structured Analysis. Prentice-Hall, Englewood Cliffs, 1989.
25. G. Schreiber: Operationalizing models of expertise. In [5], 119-149.
26. B.H. Far, T.Takizawa, and Z. Koono: An SDL-based expert system for automatic software

design. InSDL’93: Using Objects, O. Færgemand and A. Sarma, eds. Elsevier, Amsterdam,
1993, 399-410.

27. D. Landes, D. Fensel, and J. Angele: Formalizing and operationalizing a design task with
KARL. In Formal Specification of Complex Reasoning Systems, J. Treur and T. Wetter, eds.
Ellis Horwood, New York, 1993, 105-141.

28. C. Potts and G. Bruns: Recording the reasons for design decisions. InProceedings of the 10th
International Conference on Software Engineering (Singapore, April 11-15), 1988, 418-427.

29. J. Lee: Extending the Potts and Bruns model for recording design rationale. InProceedings
of the 13th International Conference on Software Engineering (Austin, Texas, May 13-17),
1991, 114-125.

30. I.D. Baxter: Design maintenance systems. InCommunications of the ACM 35(4), 1992, 73-
89.

stitute their justification. The model adopted for treating non-functional require-
ments and describing design rationale is to some extent based on ideas developed
in [13, 14] and [28, 29], respectively. Besides making the treatment of non-func-
tional requirements more transparent, the explicit description of design decisions
also ensures traceability of functional requirements since design decisions con-
nect parts of the implemented system to those sections of the model of expertise
from which they are derived. In addition, the hyper model [4] links these sections
in the model of expertise back to the knowledge protocols where the correspond-
ing requirements were expressed informally by the expert. Clearly, the explicit
documentation of design process and rationale poses an additional burden on the
designer. However, the granularity of the description is in the choice of the de-
signer. Furthermore, this description establishes a basis for providing automated
support of the design process itself in a similar way as in, e.g., [26], thus relieving
the designer from some low-level tasks. Yet, this aspect has not been addressed
in MIKE so far.

Currently, work on a prototypical software environment supporting the de-
sign phase in MIKE is under way. Furthermore, our design approach and
DesignKARL are used to (manually) design a system for the configuration of el-
evators.

Acknowledgement

The discussions with Jürgen Angele, Dieter Fensel, and Rudi Studer and
their comments on drafts of the paper are gratefully acknowledged.

References

1. J. Angele and D. Fensel: A spiral model for knowledge engineering. Research report 245,
Institut für Angewandte Informatik und Formale Beschreibungsverfahren, University of
Karlsruhe, 1992.

2. J. Angele, D. Fensel, D. Landes, S. Neubert, and R. Studer: Model-Based and Incremental
Knowledge Engineering: The MIKE Approach. InKnowledge Oriented Software Design, J.
Cuena, ed. IFIP Transactions A-27, Elsevier, Amsterdam, 1993, 139-168.

3. D. Landes and R. Studer: The design process in MIKE. InProceedings of the 8th Knowledge
Acquisition for Knowledge-Based Systems Workshop KAW’94 (Banff, Canada, January 30 -
February 4), 1994.

4. S. Neubert: Model construction in MIKE. InKnowledge Acquisition for Knowledge-Based
Systems,N. Aussenac et al., eds. Lecture Notes in Artificial Intelligence 723, Springer, Ber-
lin, 1993, 200-219.

5. G. Schreiber, B. Wielinga, and J. Breuker, eds.:KADS - A Principled Approach to Knowl-
edge-Based Systems Development. Academic Press, London, 1993.

6. B.J. Wielinga, A.Th. Schreiber, and J.A. Breuker: KADS: A modelling approach to knowl-
edge engineering. InKnowledge Acquisition 4(1), 1992, 5-53.

7. J. Angele, D. Fensel, and R. Studer: The model of expertise in KARL. InProceedings of the
2nd World Congress on Expert Systems(Lisbon/Estoril, Portugal, January 10-14), 1994.

8. D. Fensel: The knowledge acquisition and representation language KARL. Doctoral disser-
tation, University of Karlsruhe, Germany, 1993.

ordered set since in the former case, the identification of the most recent schedule
can be reduced to linear effort (if a new schedule is always put at the beginning
of the list) in contrast to an effort of O(n logn) in the second alternative. In some
cases, the selection of an alternative may be due to the fact that some potential
alternatives are excluded because they are incompatible with previous design ac-
tivities or, conversely, implied by earlier activities. DesignKARL encompasses
additional language primitives to express suchimplications andexclusions be-
tween subgoals. In the scheduling example, for instance, the reduction of storage
needs by recording only the most recent schedule is excluded for reasons of ex-
plainability (see also figure 2). Finally, the basic quality of interdependencies be-
tween requirements can be described by means ofcorrelations. Correlations
indicate if actions taken to satisfy one requirement positively or negatively affect
the fulfilment of another requirement. For instance, efficiency with respect to
processing time and efficiency with respect to storage space are in general in-
verselycorrelated.

CONCLUSION

An important factor for the improvement of the quality of a software product is
the reduction of the overall complexity which the developers have to master.
High complexity increases the potential for errors. In MIKE, the attempt to re-
duce complexity has several facets. First of all, the separation of the development
process into different phases reduces complexity since each step can emphasize
one particular aspect while neglecting others. In particular, in the design phase
in MIKE, attention can be restricted to the question how non-functional require-
ments determine the actual realisation of the system as the fulfilment of function-
al requirements has already been ascertained in the knowledge acquisition phase.
Yet, life-cycle-based approaches are sometimes criticized because they lack the
capability to provide immediate feedback. In order to account for this aspect,
MIKE tightly integrates prototyping in its life-cycle. During knowledge acquisi-
tion, prototyping has a mostly explorative flavour whereas emphasis changes to
experimental prototyping in the design phase. In addition to evaluating design
decisions by means of prototyping, evaluation can also be based on quantitative
measures for non-functional requirements.

Due to the possibility to impose proper structure on the artefact using
DesignKARL’s structuring primitives, not only the complexity of the design
process, but also the complexity of the design product can be reduced to more
manageable pieces.

The transparency of the design process is also improved by the possibility to
explicitly describe design decisions and relate them to the requirements that con-

scription of the artifact. To that end, DesignKARL introduces an operator which
allows to refer to different versions of the model. Furthermore, DesignKARL
provides language primitives to express individual design decisions such as, e.g.,
the choice of a particular data structure. Four basic types of design decisions have
been identified. Arealise design decision captures the refinement of either algo-
rithms (including declarative specifications) or data structures (including KARL
language primitives) through more implementation-oriented constructs. For in-
stance, a class and a predicate defining an ordering on the elements of the class
can be refined into a sequence of elements of the respective class which captures
the ordering directly. Therealise expression then describes the relationship be-
tween the former and the refined representation as an invariant. A second type of
design decisions affects thestructure of some part of the artefact. For instance,
an elementary inference action can be turned into a processing module by intro-
ducing additional control information because of efficiency considerations. Like-
wise, astructure design decision is also used if the interface of a module is
modified. Anintroduce design decision signifies that a new construct is intro-
duced while anabandon design decision signifies the inverse, namely, that a con-
struct has been removed from the model.

With these language primitives, it is possible to express which steps are per-
formed during the design process. However, there is no indication yetwhy these
steps were carried out. As has been outlined in the previous section, a model con-
struction step is viewed as the gradual decomposition of a requirement until a
collection of design decisions can be identified which contribute to meet the top-
level requirement. Conversely, the goal decomposition can be interpreted as the
justification for the design decisions taken in that particular step. Thus, in order
to document the rationale behind design decisions, DesignKARL provides addi-
tional language primitives for the description of requirements and their decom-
position. In particular, the description of a requirement may refer to a measure
which allows to estimate the difference of current and desired status of the re-
quirement.

In addition to the fact that a requirement may be decomposed to a collection
of other requirements, various other relationships exist between requirements.
As goals may be decomposed in various ways, the designer has to select one of
the available alternatives which seems to be most suitable in the given context.
The reasons for preferring one alternative over another can be expressed by
means ofpreferences. Preferences can only relate nodes in the AND/OR tree
which have the same ancestor and which constitute alternative goals. Preferring
one alternative over another involves comparing alternatives with respect to cri-
teria which usually are based on the measures associated with the respective re-
quirements. Returning to our previous example, a representation of the collection
of schedules as an ordered list would be preferred over a representation as an un-

type in the design phase is a hybrid prototype which is composed of parts of the
KARL specification, which are executed by means of the KARL interpreter, and
other parts which have already been operationalized in the target language. Cur-
rently, work is in progress which aims at facilitating the operationalization for a
selected target language (C++) by providing automated support in the conversion
of DesignKARL primitives into primitives of the target language.

When design decisions have been made, not only the design decisions as
such, but also their admissibility must be checked, i.e. it must be ascertained that
the system exhibits the required functionality after all. Admissibility might also
be ensured by formal means, e.g., by restricting design decisions to semantics-
preserving transformations. In MIKE, a more pragmatic stance is taken by
checking admissibility by means of testing. To that end, the fact that the model
of expertise is still available as an operational prototype can be exploited. Thus,
the results of running the DesignKARL prototype can easily be compared with
those of the KARL prototype. Furthermore, test cases that have already been
used in the evaluation of the KARL prototype during knowledge acquisition may
now be used again for checking the design prototype.

Prototyping also offers the possibility of integrating customers and users in
the evaluation process more tightly, which might lead to the clarification which
non-functional requirements must be met. This is true for the reasoning compo-
nent, but even more so for the user interface as the front-end of the system.
Therefore, prototyping should not be limited to the reasoning component, but in-
clude other components as well. Yet, prototyping other constituents of the sys-
tem is beyond the scope of this paper.

DESCRIPTION OF DESIGN PROCESS AND RATIONALE

Various authors (cf. e.g. [28, 29, 30]) argue that it is insufficient to only use a
description of the artefact as it currently stands as the basis for development and
maintenance. If no additional information is available, it is hard to find out which
design decisions and activities have already taken place, nor is there an account
of the reasons why decisions had been made. As a consequence, “a maintainer
may repeat mistakes that were made by the original designer but not documented
or may undo earlier decisions that are not manifest in the code” [28, p. 418]. Fur-
thermore, due to the tentative nature of many design decisions, it may be neces-
sary to return to an earlier stage of the design process for trying other design
alternatives. In this case, historical information facilitates the choice of design
decisions to undo.

Therefore, information about the history of the design process and the ra-
tionale behind decisions is part of the design model in MIKE in addition to a de-

Measurement
Measurement of performance and quality is viewed by many authors as an im-
portant step in the process of turning software development from an art into an
engineering discipline. This holds for “conventional” software (cf., e.g., [20]) as
well as for kbs (cf., e.g., [15]). “During kbs design and construction, methods and
tools are needed for measuring the degree of performance and the quality
achieved by the system [...]” such that “[...] the work done is reviewed and as-
sessed, wrong design decisions and bad construction steps are corrected, and ap-
propriate indications for the continuation of the project are provided” [15, p.
204]. Specifically, “the greatest potential leverage for software measurement lies
in design, not code, analysis” [20, p. 3]. Adopting this philosophy for the design
phase in MIKE, each non-functional requirement should, whenever possible, be
linked to a quantitative measure or at least a qualitative rating should be possible
if this cannot be achieved. For instance, for efficiency, suitable measures may be
time complexity of algorithms or storage needs of data structures employed or
simply the runtime behaviour of particular parts of the model. Maintainability or
understandability can be linked to complexity: Card [20] shows in a case study
how complexity may be used to predict, e.g., the effort required for maintaining
a software system. In his approach, the complexity of a modular software design
is determined by two factors, namely the interconnectivity between modules and
the internal complexity of individual modules, i.e. the average number of “deci-
sions” in the modules.

Such measures may then be used for rating the progress made towards the
fulfilment of a requirement if the desired value of the measure can be estimated
on the basis of similar projects, or for choosing between design alternatives. In
MIKE, no particular measures are prescribed - development of metrics is an ac-
tive field of research which may supply new measures that may turn out useful
for a particular kbs development effort. Individual measures may then be com-
bined according to the framework outlined in [15].

Prototyping
Still, the definition of appropriate measures may not be viable for all of the posed
requirements. But even those requirement for which no suitable measure can be
supplied can be evaluated by means of prototyping. In contrast to prototyping in
the knowledge acquisition phase which focuses on finding out what the function-
al requirements really are, prototyping in the design phase aims at the evaluation
of design choices. Thus, the flavour of prototyping turns from explorative to ex-
perimental [10]. On the one hand, critical design choices have to be evaluated as
soon as possible. On the other hand, only limited conclusions can be drawn if the
prototype is run in an intermediate setting, i.e. neither in the target software en-
vironment, nor on the intended hardware. In order to meet both goals, the proto-

which can be achieved directly by appropriatedesign decisions, such as, e.g., re-
fining a particular data structure to a more elaborate one. Thus, a design activity
is composed by a collection of design decisions.

Example Let us illustrate this view of the model construction step by means of
an example. In a simple scheduling task [27], the requirement for efficiency of
the overall scheduling task can be met by taking care for the efficiency of the
subtask which proposes new potential schedules. Proposing a new schedule in-
volves finding and extending the most recent partial schedule. This problem can
be solved efficiently either by storing only the most recent schedule, thus reduc-
ing storage needs, or by recording earlier schedules in such a way that the last
one is easily accessible. The first alternative, however, is discarded since infor-
mation on previous partial schedules is necessary for explaining how the system
arrives at a solution. Therefore, the second option is pursued, resulting in several
design decisions, such as, e.g., realizing parts of the model by appropriate data
structures and abandoning earlier, less efficient ways of identifying the desired
schedule. The conjunction of these design decisions achieves the desired goal.
The resulting decomposition is depicted schematically in figure 2. ♦

Figure 2 Schematic decomposition of requirements

After one or more design activities have been carried out, their effects have
to beevaluated, i.e. it must be checked if they actually improved the status of the
design model with respect to the selected requirements. As a second aspect of
evaluation, it has to be ascertained that the system is still capable of exhibiting
the required functionality as it is specified in the model of expertise. Two basic
strategies are possible for the evaluation of the design model in MIKE: measure-
ment and prototyping.

REQ Efficiency PMODULE Schedule

REQ Efficiency

REQ SpaceEfficiency REQ ProcEfficiency

REALIZE ... REALIZE ... STRUCTURE ... ABANDON ...

REQ Explainability

PMODULE Propose

INFERENCE ACTION
create_schedule

refers-to

refers-to

refers-to

achieves

achieves

achieves

OR

AND

excludes

refines

refines

ABANDON ...

by DesignKARL is not restricted. However, using these primitives freely makes
it much harder to determine which portions of the model of expertise correspond
to a particular section of the design model. [25] argues that the possibility to re-
late parts of the design and, later, parts of the implemented system to the sections
of the model of expertise they were derived from proves to be advantageous in
several respect. For instance, in case that the structure of the model of expertise
is preserved during design, this relationship may be exploited for supporting the
maintenance of the system. Similarly, structure-preserving design may improve
the knowledge-based system´s explanation capabilities since explanations may
resort to more intuitive representations in the model of expertise or even the hy-
per model rather than only referring to implementation-biased representations.
Therefore, structural modifications which go beyond refining existing structures
should be employed carefully or avoided altogether unless there are good reasons
for them. Yet, restructuring cannot be avoided if the target software environment
is not compatible with the structure embodied in the model of expertise.

THE DESIGN PROCESS

The design phase in MIKE begins when the model of expertise has been evalu-
ated, i.e. when it has been assured that the reasoning component of the kbs actu-
ally fulfils the posed functional requirements. Therefore, non-functional
requirements play the dominant role in the design phase. Then, design proceeds
by analysing the requirements that have been posed in order to pick the one to be
addressed next, for instance, by rating requirements by risk and selecting the one
associated with the highest risk.

When a requirement has been selected, the designer looks for design activi-
ties which are likely to contribute towards fulfilling the selected requirement. As
a consequence of such activities, the shape of the design model will change, giv-
ing rise to a new version of the model. Thus, performing design activities can be
interpreted as amodel construction step. The process of arriving at suitable ac-
tivities can be viewed as first posing a top-level goal, namely to reach a situation
in which the model of the reasoning component meets the chosen requirement.
In general, such a top-level goal cannot be met all at once. Rather, the goals will
be decomposed into subgoals (cf., e.g., [14, 26]). Some of these subgoals must
be fulfilled jointly to satisfy the higher-level goal while others constitute alterna-
tive subgoals such that the higher-level goal is fulfilled if any of the subgoals is
met, thus giving rise to an AND/OR tree of goals. Basically, two aspects may
lead to a decomposition: a requirement (i.e. a goal) may either be reduced to a
collection of more basic requirements or the scope of the requirement, i.e. the
portion of the design product to which it refers, may be made more specific. De-
composition to more basic goals is continued until elementary goals are reached

useful early in the design process since clusters may indicate which parts of the
knowledge might be candidates for being encapsulated in a module. Conversely,
if modules have already been established, clusters cannot be formed across mod-
ule boundaries. If the need to do so arises, this might be an indication that the
module structure should be critically reviewed.

Processing Modules In KARL, it is possible to decompose inference actions and
subtasks into more elementary components. Processing modules impose struc-
ture on the inference and task layer in addition to this type of refinement. Be-
cause of their close relationship, modules are not introduced separately at the two
layers, but each processing module corresponds to the refinement of a composed
inference action together with its associated subtask. The inference part of a
processing module describes the roles and inference actions (or algorithms)
which constitute the refinement of the composed inference action, while the con-
trol part specifies the control flow between those inference actions (or algo-
rithms). Thus, the distinction between the different types of knowledge is still
retained.

Like domain modules, processing modules communicate through interfaces.
Similar to the situation at the domain layer, two dimensions of partitioning are
established: modules can interact with modules at the same level of refinement,
but also with modules which are part of their refinement. In contrast to the clus-
tering mechanism at the domain layer, refinement at the inference and task layers
prescribes a decomposition which usually will also be reflected in the implemen-
tation. The interface relates a processing module to its abstraction and its refine-
ments according to the refinement relationship between inference actions. In
addition, the interface signifies which data or control information the processing
module exchanges with other parts of the system or external agents such as the
user, but also which data are exchanged within the reasoning component, i.e. it
is indicated which roles serve as input or output roles for the inference actions
described in the processing module and which domain modules supply data to
input or output roles.

During knowledge acquisition, decomposition is accomplished like the de-
composition of data flow diagrams in Structured Analysis [24]. Usually, this re-
sults in a tree structure, any module being part of the refinement of at most one
other module. This may cause redundancy as multiple copies of basically the
same inference step may appear in the decomposition. In order to remove these
redundancies, DesignKARL allows to define parameterized processing modules
which may be used at various places and which are dynamically instantiated as
needed.

Structure-preservation In principle, the use of the structuring primitives supplied

by the importing modules.

Clusters Modularization defines a horizontal partitioning of the domain layer
with respect to the degree of abstraction. Nevertheless, large domain layers may
still require additional means to facilitate an understanding of the model. A sim-
ilar problem is encountered in database applications if conceptual models grow
so large that the entity relationship (ER) diagrams describing them become vir-
tually unreadable. Several proposals (cf., e.g., [22, 23]) aim at alleviating this
problem by means of ER model clustering, thus establishing hierarchies of ER
diagrams.

Since the language primitives for describing the terminological structure of
an application in KARL closely correspond to those of an extended ER diagram,
clustering can be applied to KARL domain layers as well. Class clustering (cor-
responding to entity clustering in ER clustering approaches) allows to condense
object classes into a cluster if they are related by is-a-relationships. In addition,
classes that constitute the range restrictions of attributes of such object classes
may be included in the cluster, which corresponds roughly to the notion of dom-
inance grouping as proposed in [23]. However, we take a slightly more liberal
stance in that relationships between the range restrictions may be included in the
resulting cluster as well. In the superordinate schema, clusters resulting from this
type of clustering can be used like simple object classes.

Complex predicate clustering (corresponding to complex relationship clus-
tering in ER clustering approaches) allows to collapse a sub-diagram of the
graphical notation of a KARL domain schema into a cluster which can be used
like a simple predicate in superordinate diagrams [23]. In particular, this com-
prises the formation of a predicate cluster from a collection of semantically sim-
ilar relationships.

Certain rules must be obeyed to ensure that clusters behave consistently with
their refinements. These rules define how the links between a cluster and its en-
vironment, i.e. all the entity types or relationship types to which the cluster is
connected, have to be set when the cluster is replaced by its refinement. These
rules are expressed in DesignKARL like the transformations in [22] by indicat-
ing the set of items in the higher-order diagram that has to be replaced by another
set of items in the refinement and vice versa. Basically these rules define a pro-
duction rule of a graph grammar.

In contrast to modules, which prescribe a partitioning of the implementation
(provided the implementation environment includes the possibility to define
modules), clustering is only a means to improve understandability during the de-
velopment, but which has no counterpart in the implementation. Clustering is

which are employed to refine items of the declarative specification.
DesignKARL offers a collection of standard data types with predefined opera-
tions that may be performed on data items of the respective types. The data types
provided are value, class, predicate, set, sequence, stack, queue, n-ary tree, hash
table, index structure, and reference. Algorithms can be described either in a log-
ic-based fashion or in an “imperative” fashion. The logic-basic variant resembles
the specification of bodies of inference actions since the description of an algo-
rithm is basically made up of a set of logical clauses. However, in contrast to the
specification of inference actions, more sophisticated data structures and their
predefined operations may now be used. The “imperative” specification of algo-
rithms looks similar to control flow specifications at the task layer of the model
of expertise, but once again dropping the limitation of KARL to a very restricted
collection of data types.

Structuring the Model
Besides refining the model of expertise due to efficiency considerations, require-
ments such as maintainability or reusability may require to impose a particular
structure on the model, thus reducing the interconnectivity between parts of the
model. Design in general is even characterized as “warfare against interconnec-
tivity” [19, p. 260]. Furthermore, appropriate structure also reduces the overall
cognitive complexity of the design, thus making the design easier and less error-
prone to implement for a programmer and consequently leading to higher soft-
ware quality [20]. In conventional software engineering, modules have been pro-
posed as a means to achieve such a reduction of interconnectivity or complexity,
with the additional advantage of hiding irrelevant details to parts that need not
care about them (cf., e.g., [21]). In order to achieve these benefits for kbs as well,
DesignKARL offers domain modules and processing modules as structuring
primitives.

Domain Modules Domain modules collect related domain knowledge in a single
place. Each domain module contains definitions of data structures (including
classes and predicates) and rules describing the extension of these data struc-
tures. As usual, a module may use of knowledge defined elsewhere and, con-
versely, supply knowledge to other modules. The module interfaces restrict
access to external knowledge: knowledge defined elsewhere may be used only if
it is mentioned in the import section of the module that intends to use it and if
another module exists that makes the knowledge publicly available in its export
section. In the module body, extensions of imported or local data structures are
described by means of logical expressions. A subset of these data structures may
be exported to other modules. The export of a data structure implies that its ex-
tension will also become known to the importing module. The rules defining the
extension are not accessible, but determine the semantics that must be respected

efficiency plays a twin role since two aspects have to be distinguished: efficiency
of the problem-solving method itself and efficiency of its realization [17]. The
first aspect is addressed during knowledge acquisition since it affects function-
ality, whereas the second aspect constitutes a non-functional requirement.

DESIGN ACTIVITIES AND DesignKARL

In MIKE, the formalism for the description of the model of expertise is the spec-
ification language KARL. Inspired by KADS [5, 6], KARL distinguishes three
basic types of knowledge, namely domain knowledge, inference knowledge, and
task knowledge, each of which constitutes a separate knowledge layer. For all
three types of knowledge, KARL provides appropriate language primitives. Do-
main knowledge is described primarily in terms of objects, object classes and
predicates, while inference knowledge is expressed by means of inference ac-
tions and generic object classes and predicates which are associated to so-called
knowledge roles, which, roughly speaking, serve as input and output parameters
for inference actions. The bodies of inference actions as well as rules for describ-
ing the extension of object classes and predicates are specified declaratively by
means of logical expressions. The control over the execution of inference actions
is expressed declaratively using dynamic logic [18]. For legibility, these expres-
sions are rewritten into constructs that are familiar from structured programming,
such as sequence, alternative, and iteration. The connection between the different
types of knowledge is established by the fact that calls to primitive programs at
the task layer cause the corresponding inference actions to be executed. On exe-
cution, inference actions use the contents of their input roles, i.e. the extension
of the classes and predicates which are associated to these roles, for computing
the extension of classes and predicates associated with their output roles. For
some roles, a connection to domain knowledge can be specified by logical ex-
pressions which indicate how domain-specific knowledge items correspond to
items which are associated with the respective roles.

The language primitives available in KARL largely preclude to “program”
a solution to the problem at hand already during knowledge acquisition. Rather,
the knowledge engineer is forced to specify what is needed for solving the prob-
lem in principle, yet without caring for an efficient realization. Usually, efficien-
cy constitutes the most important requirement that has to be met by the final
system besides being able to solve the problem at all. Since the issue of an effi-
cient realization constitutes a non-functional requirement, it is addressed in the
design phase. To that end, DesignKARL as an extension of KARL contains ad-
ditional language primitives which are targeted to support efficiency considera-
tions. Efficiency can be built into the solution in the usual way, namely by
developing appropriate algorithms and introducing suitable data structures

how a computer system can solve a particular expert task. Due to the nature of
the development process, timely feedback is required in order to find out if the
system can really solve the task adequately. This can be achieved by evaluating
a simulation of the behaviour of the future system on the basis of the developed
model of expertise. To that end, MIKE uses theexecutable specification lan-
guage KARL [7, 8]. As a consequence, the resulting document of the knowledge
acquisition phase is a running prototype of the system’s reasoning component.

Usually, a kbs also encompasses constituents such as, e.g., a user interface,
a data management component, etc. besides it reasoning core. The user interface
is particularly important for the success and acceptance of the kbs. At the current
stage of the project, however, MIKE currently focuses on the problem-solving
core of the system, i.e. reasoning mechanisms and knowledge base, since devel-
opment issues concerning the other constituents are already much better under-
stood through comparable work in “conventional” software engineering. Yet,
this does not imply that the development of these external components and the
problem-solving component should be carried out in complete independence.
Rather, they should be developed in parallel to make sure that existing depend-
encies can be accounted for in due time.

Running the model of expertise allows evaluating it by means of explorative
prototyping [9]. Therefore, it can be assured early during development that the
specification covers the functional requirements correctly. While knowledge ac-
quisition addresses only the functional requirements, the design phase can focus
onnon-functional requirements (cf. also [12]) since the latter requirements con-
strain how functionality may be realized. The difference between the types of re-
quirements addressed in the knowledge acquisition phase and in the design phase
is less clear cut in many other approaches than it is in MIKE. Normally the ques-
tion how to realize some required functionality during design includes the issue
of inventing an appropriate computational solution which supplies that function-
ality. In MIKE an operational, though mostly inefficient, solution is already de-
veloped during knowledge acquisition, and in the design phase this solution is
only refined (or modified) such that it conforms to additional non-functional re-
quirements.

So far, only some authors [13, 14] particularly focus on non-functional re-
quirements. [15] and [16] provide taxonomies of factors that determine the qual-
ity of knowledge-based systems, but do not distinguish functional and non-
functional aspects. On the basis of these taxonomies,efficiency, maintainability,
understandability, reliability, portability, and requirements resulting from the
chosen hardware or software environment or the system architecture have been
identified as important top-level non-functional requirements for the design
phase in MIKE (but the list may still require extension). It should be noted that

possesses an operational semantics [9], which makes it possible to evaluate the
model by basically explorative prototyping [10]. The tight integration of proto-
typing into the development process is a consequence of the iterative and approx-
imative nature of that process.

Models in the knowledge acquisition phase focus on how the considered
task can be solved, but abstract from how this solution will finally be realized on
a computer. The latter issue is addressed in the design phase and described in its
result, the design model. The design model then contains an account of the re-
quirements the kbs has to fulfil and indicates how they can be met. The design
model serves as the basis for implementing the requirements in the final system
as the result of the implementation phase. Finally, in the evaluation phase, it has
to be determined if the implemented system in its entirety actually meets the
posed requirements.

Due to the iterative and approximative character of the development proc-
ess, the classical waterfall model for system development is unsuitable. Rather,
the life-cycle phases are traversed in a cyclic fashion similar to Boehm’s spiral
model [11]. Furthermore, each of the phases consists of several subphases which
in turn are traversed in a cyclic manner (see Figure 1). More details on the life-
cycle of MIKE can be found in [2, 9].

Figure 1 The knowledge engineering process in MIKE (reprinted from [2])

THE BASIS FOR THE DESIGN PHASE

The goal of the knowledge acquisition phase is the development of a model of

Evaluation

Acquisition

Design

ImplementationTask
Analysis

Model

Model
Construction

Evaluation

Requirements
Analysis

Model
Construction

Model
Evaluation

More principled methods for constructing kbs are required for being able to
build large systems to be used and maintained over a long period of time. MIKE
(Model-based Incremental Knowledge Engineering) [2] has been proposed as
such a principled framework. MIKE aims at integrating the benefits of life-cycle
models, prototyping, and formal specifications. The focus of this paper lies on
the design phase of the MIKE life-cycle and the activities in that phase that are
intended to improve the quality of the developed system. A short account of the
basic principles of MIKE will be given in order to clarify the context of the de-
sign phase. Then, the design approach in MIKE will be characterized. An impor-
tant feature of our design approach is the timely evaluation of design decisions
by means of prototyping, but also by rating their success on the basis of quanti-
tative measures. Furthermore, for reasons of transparency and traceability, the
design process and its underlying rationale must be recorded in addition to a de-
scription of the design product. DesignKARL [3] is sketched as the formalism
for describing the design product as well as the design process and its rationale.

CORE IDEAS OF MIKE

The main goal of an expert system is the ability to adequately solve a task which
normally requires expert knowledge to be carried out. In particular, the knowl-
edgehow to solve the task is an indispensable part of the expertise. In contrast to
earlier opinions, it is nowadays widely accepted that the required knowledge
cannot simply be extracted from an expert and transferred to a computer system.
Rather, knowledge engineering has to be viewed as an incremental modelling
process. Due to that characteristic, early feedback by reality is required and mod-
el revisions must be possible in any stage. Furthermore, in order to master the
overall complexity, experience from software engineering indicates that devel-
opment must be split into several steps each of which concentrates on particular
aspects of the overall task while abstracting from others. In MIKE, these steps
areknowledge acquisition, design, implementation, andevaluation. Consequent-
ly, different representations are provided each of which is particularly suited for
one of the development steps or substeps thereof.

The first substep in the knowledge acquisition phase consists of obtaining a
natural language description of the expertise. This knowledge then has to be in-
terpreted, giving rise to a semi-formal, but structured description in the so-called
hyper model[4]. Interpretation is followed by formalization, resulting in a so-
calledmodel of expertise, the shape of which is strongly influenced by ideas from
KADS [5, 6]. In particular, three basic knowledge types are distinguished each
of which is represented at a different layer of the model of expertise. The repre-
sentation formalism for the model of expertise in MIKE is the formal specifica-
tion language KARL [7, 8]. Besides its model-theoretic semantics, KARL also

An Approach to the Design of Knowledge-Based Systems

Dieter Landes
Institut für Angewandte Informatik und Formale Beschreibungsverfahren
Universität Karlsruhe, D-76128 Karlsruhe, Germany
e-mail: landes@aifb.uni-karlsruhe.de

ABSTRACT

The issue how to achieve a principled transition from knowledge acquisition to
implementation such that a knowledge-based system (kbs) of high quality results
is rarely discussed in the knowledge engineering literature. Here, this topic is ad-
dressed in the context of the design phase of the MIKE approach to kbs develop-
ment. In MIKE, design decisions are motivated primarily by non-functional
requirements. Due to the iterative nature of the design process, design decisions
have to be evaluated early. In MIKE, this can be achieved by experimental pro-
totyping, but also by quantitative measures associated to requirements. Further-
more, in order to improve transparency and traceability, the description of the
design includes a record of the design decisions and their motivation in addition
to a description of the artefact. DesignKARL is sketched as the formalism for ex-
pressing these aspects.

INTRODUCTION

In recent years, rapid prototyping as the prevailing paradigm for building kbs
turned out to be insufficient for building large-scale systems for long-term use
(cf. e.g. [1]). In particular, the complexity of the development task is nearly un-
manageable since the knowledge engineer has to tackle a variety of tasks in a
completely intertwined fashion, i.e. she must simultaneously analyse the given
information, design, implement, and evaluate the system. Consequently, differ-
ent aspects of knowledge must be considered in parallel and will often be mixed
up in the implementation, leading to poorly structured systems. As another draw-
back, the final implementation often constitutes the only documentation of the
expertise embodied in the kbs.

