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Abstract

 

: The paper discusses an approach which
allows the specification of a knowledge-based system
(kbs) at several levels. The 

 

Knowledge Acquisition
and Representation Language KARL

 

 combines a
description of a kbs at the conceptual level supported
by graphical modelling primitives with a description
at a formal and executable level. Therefore, a KARL-
specification can be used as a means for
communication between expert and knowledge
engineer as well as an intermediate representation,
closing the conceptual gap between an informal
specification and an implementation of a kbs. In the
paper, KARL is mainly discussed as a 

 

graphical
modelling language

 

.

 

Introduction

 

There is a clear need for combining formal and
executable specification of a kbs with descriptions at
a high conceptual level supported by graphical
representation primitives. In the paper, we discuss the
Knowledge Acquisition and Representation
Language KARL, which integrates formal
specifications with a 

 

graphical modelling language

 

.
KARL uses a refined version of the KADS model of
expertise [SWB93] as the conceptual model for a kbs
description. These modelling primitives can be
represented graphically. In addition, these primitives
have a unique and precise semantics and can be used
to define an executable prototype.
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 To some extent,
KARL can be viewed as a high-level graphical
programming language.
Section one of the paper introduces the main rationale
of our approach. Section two introduces the
description of a kbs at the conceptual level. Section
three touches the description at the formal and
executable level and section four discusses the
graphical modelling primitives of KARL. A
comparison with related work completes the paper.

 

1 Knowledge Level Modelling

 

Originally, expert systems or kbs were developed

 

1.  „Graphical objects have to be more than nice pictures
on the screen.“ [BFN91]

 

using the rapid prototyping approach. The acquired
knowledge was immediately implemented and the
running prototype was used as a guide for the further
knowledge acquisition process. The distinction of
symbol level and knowledge level [New82] created
the conceptual framework for a different process
models for the development of kbs.
A knowledge level description of the 

 

task

 

 solved by
the system and the 

 

knowledge

 

, which is required to
solve the task, is constructed during a modelling
activity. This knowledge level description is built
independently of the design and implementation
activity. The separation of analysis and design/
implementation resembles a lesson learnt in software
engineering. In response to the so-called software
crisis in the late sixties, methodologies, process
models, methods, and tools have been developed to
maintain the software development process and its
results. A significant result was the separation of the
description what a system should do from how this
can be achieved by a specific implementation, i.e. the
separation of analysis or requirement engineering at
the one hand and design and implementation at the
other hand. As a result, several description techniques
have been developed to describe the specification as
it emerges from the analysis step. Mainly, these
specification techniques follow three lines:
•

 

Informal specification techniques

 

 like structured
analysis [You89] or object-oriented analysis
[CoY91] allow the description at a high and
informal level. These approaches broadly use
graphical means like entity-relationship diagrams,
dataflow diagrams, flow charts, and state-transition
diagrams. The specifications are easy to understand
and very useful as a mediating representation for
the communication between user and system
developer.

•

 

Formal specification techniques

 

 like Z or VDM
[BHL90] allow a unique and detailed specification
of the functionality of a system. In the case of Z, a
software system is specified as a partial
mathematical function by applying the theory of
finite sets. Specifications can be checked via formal
methods.

•

 

Executable specification techniques

 

 like PAISLey
[Zav91] add the flavour of prototyping to the
specification process. The results can be evaluated
by a running prototype. Often, this is nearly the
only way to end up with realistic descriptions of the
desired functionality of the systems.

Several authors argue for the combination of these
description techniques (cf. section 5 of this paper) so
as to overcome the disadvantages when used stand-
alone. Informal specifications contain ambiguity and
contradictions and lack precision. Conversely, formal
descriptions and their formal semantics are hard to
understand and it is very difficult to extract an
intuition about the functionality of a system given the
huge amount of details of a formal specification only.
The need for the combination becomes obvious
regarding the two different purposes of specifications
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[FBA93]:
• It should serve as a 

 

mediating representation

 

supporting the communication between the user
and the system developers. In the case of kbs, it
should mediate the communication between user
and expert at the one hand and the knowledge
engineer at the other hand.

• It should serve as an intermediate representation
closing the gap between an intuition about the
functionality of a systems and its actual design and
implementation.

The 

 

Knowledge Acquisition and Representation
Language KARL

 

 ([FAL91], [AFS94]) provides such
an integrated specification approach for the domain of
kbs. A kbs is described at three levels:
•

 

Conceptual level:

 

 A refined KADS Model of
Expertise is used to describe the kbs at a conceptual
level. A specification is divided into several layers
and a set of predefined modelling primitives is
provided at each layer to describe the different
knowledge types. Most of the primitives have a
graphical representation which should support their
understandability.

•

 

Formal level:

 

 KARL combines perfect Herbrand
model semantics of Horn logic [Prz88] with the
modal semantics of dynamic logic [Koz90] to
define a formal semantics for the specification of
static and dynamic aspects of a kbs.

•

 

Operational level:

 

 A fixpoint operator [Llo87] and
a sequence operator are defined which compute the
semantics of a KARL specification for a given
input. Therefore, specifications in KARL can be
evaluated by prototyping.

The development of the language KARL is part of the
MIKE-project (Model-based and Incremental
Knowledge Engineering) [AFL93], which aims at a
developing method for kbs covering all steps from
initial knowledge acquisition to design and
implementation. Besides KARL, a hypertext-based
tool has been implemented which allows to structure
verbal protocols in a so-called semiformal Hyper
model [NeM93]. This semiformal model can be used
to built up a formal specification with KARL by
refining the informal specification. An interpreter for
KARL has been implemented which includes a
debugger. Currently, work is done to extent KARL to
cover design aspects [LaS94].

 

2 The Conceptual Level

 

We first introduce the KADS model of expertise
before we show some refinements of it.

 

2.1 The KADS Model of Expertise

 

A very important part of the KADS methodology
[SWB93] is the 

 

model of expertise

 

 which describes
the different kinds of knowledge required to solve the
given tasks. The model of expertise distinguishes
different types of knowledge, defines primitives to
express them, and organizes them into several layers.
Precisely it distinguishes static knowledge and three
types of control knowledge.
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 The goal of a model of
expertise is to provide a model of the problem solving

 

behaviour independently of a certain implementation. 

 

Domain layer:

 

 It represents knowledge about the
application domain of the system. An important
property of the domain layer is that the knowledge
should be represented as independently as possible
from the way it will be used. It has two main
purposes. First, it should define a conceptualization of
the domain. Second, it should define a declarative
theory of the domain providing all the domain
knowledge required to solve the given tasks.

 

Inference layer:

 

 This second layer defines the first
type of control knowledge. It specifies the inferences
that constitute a problem-solving method and
specifies how to 

 

use

 

 the knowledge from the domain
layer in these inferences. This is done in two ways:
the inference layer specifies
• the

 

 inference steps

 

 that can be made using the
domain knowledge, and 

• the 

 

knowledge roles,

 

 which

 

 

 

model the premises and
conclusions of the inferences.

The inference steps are assumed to be elementary in
the sense that they are completely described by their
names, an input/output specification and a reference
to the domain knowledge that they use. The inference
layer specifies the inference steps and knowledge
roles as well as the data-dependencies between these
steps and roles. These dependencies are specified in a
network of inference actions and knowledge roles
known as an 

 

inference structure

 

. The inference layer

 

restricts

 

 the use of the domain layer knowledge and

 

abstracts

 

 from it. It restricts all possible inferences to
the set of inferences which are defined by it. This is
done to improve the efficiency of the problem-solving
process. The inference layer abstracts from the
domain layer by using task-specific names for
inferences and roles. The domain-independent
formulation of the inference layer should support its
reuse, i.e. its application for similar tasks in different
application domains. A 

 

domain view

 

 must specify the
relationship between the generic terms used at the
inference layer and the domain-specific knowledge
specified at the domain layer. Mainly, roles have to be
connected with domain concepts and inference
actions have to be connected with knowledge
required for them.

 

Task layer:

 

 A task represents a fixed strategy for
achieving problem solving goals. The purpose of the
task layer is to specify 

 

control

 

 over the execution of
the basic inference steps specified at the inference
layer. This is done by imposing an ordering on these
steps in terms of execution sequences, iterations,
conditional statements etc. The description of a task
consists of three components: The goal which is
fulfilled by the task; the control terms which
correspond to knowledge role of the inference layer
and which are used to specify conditions for the
control flow; and the task structure which

 

1.  Because there is still significant disagreement about the
third type of control knowledge (i.e., the 

 

strategic layer

 

)
we have neither regarded it for the KARL model nor will
we further discuss it in this paper.



 

hierarchically refines a given task to subtasks and
elementary steps, i.e. inference actions.

 

2.2 The Refined Model of Expertise of KARL

 

Originally, KADS proposed KL-ONE as language for
the domain layer. KL-ONE defines a very restricted
set of language primitives which enables strong
characterisations of decidability and efficiency of
reasoning with it. Yet, for a specification language a
broad syntactical variety of modelling primitives
seems necessary to make the step from an informal to
a formal description as smooth as possible. Therefore,
KARL integrates concepts of object-oriented
databases and logic for the domain layer, the
inference layer, and their connections. KARL
provides the sublanguage 

 

Logical-KARL (L-KARL)

 

for this purpose. L-KARL is a derivate of Frame-logic
(F-logic) [KLW93]. L-KARL distinguishes classes,
objects, and values. L-KARL provides classes and an
is-a hierarchy with multiple attribute inheritance to
describe terminological knowledge. Attributes can be
single-valued or set-valued, i.e. the value can be a set.
Attributes can be used to describe objects as well as
classes. Attributes have defined domain and range
types.
Intensional and factual knowledge is described by
logical relationships between classes, objects, and
values. Objects are grouped into classes via an is-
element-of relationship. The logical language to
describe relationships between classes, objects, and
values is Horn logic with equality and function
symbols extended by (stratified) negation.
A domain layer is structured and hierarchically
ordered by the is-a hierarchy between classes and a
module hierarchy.
Besides its use at the domain layer, L-KARL is used
to specify the logical relationship defined by an
inference action at the inference layer. Extending
KADS, L-KARL can be used to define a
terminological structure of a knowledge role. In
KADS, such roles are flat containers, whereas in
KARL they can be used to define a 

 

task-specific
terminology

 

 independently from the domain-specific
terminology. The need for such a task-specific
terminology is one of the most significant results of
the role-limiting method approach ([Mar88],
[Pup93]).
A second improvement compared to KADS at the
inference layer is the introduction of 

 

hierarchical
refinement

 

 similar to levelled dataflow diagrams
[You89]. Therefore, in KARL large specifications are
possible.
Furthermore, L-KARL is used to specify the mapping
between domain layer and inference layer. Modified
Horn logic can be used to define a view from the
problem-solving method on the domain knowledge.
The sublanguage 

 

Procedural-KARL (P-KARL)

 

 is
used to specify the control flow of a problem-solving
method at the task layer. Sequence, branch, loops, and
procedure calls are the means to specify control flow
and the hierarchical task structure. Conditions can be
specified via logical statements about the contents of

 

knowledge roles. The goal of a task is only described
informally.

 

3 The Formal and Executable Level

 

The logical language L-KARL used to describe the
domain layer, the inference layer, and their
connection has a Herbrand model semantics [Llo87].
KARL allows stratified negation under the closed-
world assumption using the minimal (i.e., perfect)
Herbrand model as semantics [Prz88]. Constraints
check this model for correctness. 
The procedural knowledge is represented by P-
KARL. It is a variant of Dynamic Logic which has a
modal semantics [Koz90]. The integration of the
modal semantics of the task-layer and the Herbrand
models of L-KARL is as follows: the models of L-
KARL are used to define an interpretation for a P-
KARL language, i.e. the perfect Herbrand model of a
set of clauses is used to interpret a function symbol
occurring in value assignments in P-KARL.
An operational semantics for KARL is defined in
[Ang93]. In contrast to Prolog, the evaluation of these
clauses is set-oriented [Ull88]: not one but all
instantiations of a predicate are computed. This
semantics was used to implement an interpreter and
debugger in C which supports knowledge evaluation
by prototyping. The main restriction for executable
specifications is that the perfect Herbrand models
have to be finite.
For more details see [Fen93] and [Ang93].

 

4 The Graphical Modelling Primitives of
KARL

 

KARL provides graphical representations of most
modelling primitives to improve their
understandability. Every graphical symbol has a
defined meaning given by the formal semantics of
KARL. In particular, the following graphical
representation formalisms are used:
• A variant of 

 

Enhanced-Entity-Relationship (EER)
diagrams

 

 [ElN89] for the domain layer,
• a variant of 

 

levelled dataflow diagrams

 

 [You89] for
the inference layer, and

• a variant of 

 

programflow diagrams

 

 [Din66001] for
the task layer.

Specifications of real-world systems become
unintelligible because of their complexity. Therefore
all three graphical representations include

 

hierarchical refinement

 

 to allow to represent the
system on different levels of refinement.

 

4.1 The Three Layers

 

Figure 1 shows a model of expertise of a solution of
the so-called 

 

Sisyphus problem

 

. Sisyphus is a project
that aims at comparing different approaches to
aspects of knowledge engineering [Lin92]. An
assignment problem is posed, in which employees are
assigned to office places with several requirements to
be met. Extracts of this example are used to illustrate
the graphical primitives of KARL.
The domain terminology and the domain knowledge
required by the problem-solving method is defined at



 

the domain layer. The inference layer contains the

elementary inference steps and knowledge roles of it.
Components (employees) and slots (places) are
combined by the inference action 

 

create

 

. 

 

Prune

 

eliminates illegal states, and 

 

check

 

 searches for valid
solutions. The control flow between these inferences
is defined at the task layer. 

 

4.2 The Domain Layer

 

Enhanced-Entity-Relationship (EER) diagrams
[ElN89] are a well-known technique to represent
static knowledge graphically. A similar
representation is used here for the domain layer of
KARL. Classes, domain and range restrictions of

attributes, and is-a terms are represented graphically.
In our example a class of employees is which are
described by their projects. It also indicate if the
employees smoke or not. An additional class 

 

boss

 

contains employees who have to be handled in a

Task 

Inference

Domainsmoke

employee 
placement

place

layer

layer

layer

CheckStates Solution

Comp SlotsCreate

Prune

Create

Prune

Check

∅ (Solution)

yes

no

Fig. 1. An example for a model of expertise.
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smoker project

place
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locationplacement
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domain range

class classx

Boolean String

String

Integer

x
range

= the range of the attribute is 

x =set-valued attribute for objects
domain range

class classx

a value type

....

Fig. 2. Graphical representation at the domain layer.

 

specific way. Furthermore, there is a list of rooms
with a description of where they are situated.Figure 2
shows the graphical representation. Ground facts are
represented by tables. Rules and constraints are not
represented graphically. This would, however, be
possible by applying the ideas given in [Cru92] that
allow the visualization of literals and the introduction
of user-defined icons.

 

4.3 The Inference Layer

 

The terminological knowledge which is defined in
inference actions and knowledge roles can be
represented by the same graphical primitives as
introduced at the domain layer.
As, in the interpretation of KARL, the inference layer
is similar to a dataflow diagram [You89], a similar
kind of formalism is used for it. In difference to
KADS, KARL distinguish three types of roles:
• Views ( ) which can be used to read

knowledge from the domain layer.
• Terminators ( ) which can be used to write

results of a problem-solving method at the domain
layer.

• Stores ( ) which model the dataflow between
inference actions.

Similarly to dataflow diagrams and in extension of
the original proposal of KADS, the inference layer is
extended by hierarchical refinement. The rules that
apply for a consistent refinement are comparable to
those applied to dataflow diagrams or Petri nets (see
[Fen93] for more details). Additional properties of
inference actions which can be represented
graphically concern the following issues:
• If an inference action has several input roles, does it

work if at least one input roles is not empty, i.e. not
filled with {

 

∅

 

}, or does it work only if all input
roles are not empty?

• If an inference action has several output roles does
it always fill all of them or only some?

An inference action 

 

merge

 

 which should compute
tuples of elements of two roles, only works if each of
the two roles contains at least one element. An
inference action like 

 

join

 

, however, which should join

all elements of two roles into one set could also work

 

class: boss 

 

≤

 

 {employee}

 

Object-ID smoker project

wl FALSE EULISP, RESPECT
... ... ...

the inference action works 

the inference action needs only

the inference action works with 
exactly one of the two inputs

one input but it also works with 

with both inputs in parallel

both in parallel

Fig. 3. Interface modelling of inference actions.



 

if only one role contains some elements. [Kun89]
introduced modelling primitives answering these
questions in the domain of dataflow diagrams. These
modelling primitives permit to express whether the
inputs of an inference action are connected by 

 

and

 

, 

 

or

 

,
or 

 

exclusive or

 

 (see figuer 3). The same can be
expressed for the outputs. This notation can be nested
to connect several inputs or outputs.

 

4.4 The Task Layer

 

There are several alternatives for the graphical
representation of the procedural knowledge at the task
layer. Two well-known means are Nassi-
Shneiderman diagrams [NaS73] and Program-flow
diagrams [Din66001]. Nassi-Shneiderman diagrams
enforce structured programming and are well-suited
for hierarchical refinement. A graphical knowledge
acquisition tool for them, however, is quite
complicated to realize, and the revision of modelled
knowledge is quite difficult for the knowledge
engineer. Therefore, because of the cyclic manner of
knowledge acquisition and the high amount of
revision, a variant of program flow diagrams for the
task layer is used here (see figure 1).

 

5 Related Work

 

The development of formal and informal
specification techniques has a long tradition in
software engineering. 

 

Structured analysis

 

 [You89] is
a method which contains several informal
instruments for software specifications like data
dictionary, dataflow diagrams, and state-transition
diagrams. The description techniques of structured
analysis define powerful means to describe a system
at a high conceptual level in an easily understandable
way. There exist several approaches to formalize or
operationalize these informal descriptions.
Teamwork/ES [BlH88] is a prototype system that
executes a real-time structured-analysis specification
in an interactive and graphical manner. Other
approaches recommend a combination with algebraic
specification techniques [FrD89] or with functional
programming languages [EMS89]. The Prototyping
System Description Language PSDL [KrR89] is used
together with modified dataflow diagrams as a
graphical tool for rapid prototyping of system
specifications. For a comparison of structured
analysis techniques and KARL see [FAL93]. It is
shown how KARL can be used to formalize and
operationalize the informal techniques of structured
analysis.

 

Petri nets

 

 are broadly used as a graphical and formal
specification techniques for information system
development [Mar93]. INCOME [LNO89] is a
method for the development of information systems
providing an executable specification language based
on semantical data models similar to SHM and high-
level Petri nets (i.e., predicate-transition nets). This
proposal is similar in spirit to [Stu87] and [Kun89].
Petri nets are also used in software engineering to
specify distributed systems. SEGRAS [Kra87] is a
formal and semigraphical language combining Petri

 

nets and abstract data types. SPECS [DGG87] uses
high-level Petri nets combined with object-oriented
extensions. For a comparison of INCOME and KARL
see [AFL92]. The main difference between INCOME
and KARL is the clear separation of dataflow and
controlflow and the domain independent description
of these two components in KARL.
The model of expertise of KADS defines an informal
description of a kbs at a high conceptual level. Several
language developers have used this or similar models
as a starting point for defining a formal or executable
specification language for kbs. Examples are
DESIRE, FORKADS, K

 

BS

 

SF, (ML)

 

2

 

, Model,
MODEL-K, MoMo, OMOS, and QIL. A comparison
of KARL with most of these languages can be found
in [FeH93] and [FeS92]. The main features of KARL
compared with these languages are:
• KARL is the only language which has a complete

declarative and operational semantics, i.e. aims
successfully at formalization and operationalization
of a specification.

• KARL tries to integrate results of software
engineering and information system development
into the knowledge engineering process. Therefore,
KARL has very powerful means to model static
knowledge and integrates prototyping as a means
for the evaluation of specifications.

Meanwhile, KARL has been applied in a dozen of
case studies and several tools supporting the
specification process with KARL have been
developed (see [Fen93]).
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