
Knowledge Acquisition for Knowledge-Based Systems, Proceedings of the 7th European Workshop
EKAW´93, Toulouse, France, September 6-10, Lecture Notes in AI, no 723, Springer-Verlag, Berlin,
1993.

[Neu94] S. Neubert:Modellkonstruktion in MIKE (Modellbasiertes und Inkrementelles Knowledge
Engineering) - Methoden und Werkzeuge, PhD thesis, University of Karlsruhe, 1994.

[New82] A. Newell: The Knowledge Level,Artificial Intelligence, vol 18, 1982.

[NOS+92] T. Németh, A. Oberweis, F. Schönthaler, and W. Stucky: INCOME:Arbeitsplatz für den
Programmentwurf interaktiver betrieblicher Informationssysteme. Research report, no 251, Institut
AIFB, University of Karlsruhe, 1992.

[PFL+94] K. Poeck, D. Fensel, D. Landes, and J. Angele: Combining KARL and Configurable Role Limiting
Methods for Configuring Elevator Systems. InProceedings of the 8th Banff Knowledge Acquisition
for Knowledge-Based System Workshop (KAW´94), vol III, Banff, Canada, Januay 30 - February 4,
1994.

[PoB88] C. Potts and G. Bruns: Recording the Reasons for Design Decisions. InProceedings of the 10th
International Conference on Software Engineering, Singapore, April 11-15, 1988, 418-427.

[Sch93] G. Schreiber: Operationalizing Models of Expertise. In [SWB93], 119-149.

[Ste93] L. Steels: The Componential Framework and its Role in Reusability. In [DKS93], 273-298.

[SWB93] G. Schreiber, B. Wielinga, and J. Breuker (eds.):KADS - A Principled Approach to Knowledge-Based
System Development, Academic Press, London, 1993.

[TEG+94] S.W. Tu, H. Eriksson, J. Gennari, Y. Shahar, and M.A. Musen: Ontology-Based Configuration of
Problem Solving Methods and Generation of Knowledge-Acquisition Tools: Application of
PROTEGE-II to Protocol-Based Decision Support. To appear inArtificial Intelligence in Medicine,
1994.

[Ull88] J. D. Ullman:Principles of Database and Knowledge-Base Systems, vol I, Computer Sciences Press,
Rockville, Maryland, 1988.

[WSB92] B. Wielinga, A. Schreiber, and J. Breuker: KADS: A Modelling Approach to Knowledge Engineering.
In: Knowledge Acquisition 4 (1), 1992, 5-53.

[WVS+93] B. Wielinga, W. Van de Velde, G. Schreiber, and H. Akkermans: Towards a Unification of Knowledge
Modeling Approaches. In [DKS93], 299-335.

[You89] E. Yourdon:Modern Structured Analysis, Prentice-Hall, Englewood Cliffs, 1989.

[Zav91] P. Zave: An Insider´s Evaluation of PAISLey. InIEEE Transactions on Software Engineering, vol
17, no 3, 1991.

[DKS93] J.-M. David, J.-P. Krivine, and R. Simmons (eds.):Second Generation Expert Systems. Springer-
Verlag, Berlin, 1993.

[FAL91] D. Fensel, J. Angele, and D. Landes: KARL: A Knowledge Acquisition and Representation Language.
In Proceedings of Expert Systems and their Applications, 11th International Workshop, Conference
"Tools, Techniques & Methods", May 27-31, Avignon, 1991, 513-528.

[FAL+93] D. Fensel, J. Angele, D. Landes, and R. Studer: Giving Structured Analysis Techniques a Formal and
Operational Semantics with KARL. InProceedings of Requirements Engineering ´93 - Prototyping -,
Bonn, April 25 - 27, 1993, Teubner Verlag, Stuttgart, 1993.

[FAS94] D. Fensel, J. Angele, and R. Studer: The Specification Language KARL and its Declarative Semantics.
Research report, no 307, Institut AIFB, University of Karlsruhe, 1994.

[FBA+93] K. M. Ford, J. M. Bradshaw, J. R. Adams-Webber, and N. M. Agnew: Knowledge Acquisition as a
Constructive Modeling Activity. InInternational Journal of Intelligent Systems, Special Issue
Knowledge Acqisition as Modeling, part I, no 1, vol 8, 1993.

[FeH94] D. Fensel and F. van Harmelen: A Comparison of Languages which Operationalize and Formalize
KADS Models of Expertise. InThe Knowledge Engineering Review, vol 9, no 2, June 1994.

[Fen93] D. Fensel:The Knowledge Acquisition and Representation Language KARL, Ph.D. thesis, University
of Karlsruhe, 1993. Tp appear Kluwer Academic Publisher, Boston, 1995.

[Fen94] D. Fensel: Graphical and Formal Knowledge Specification with KARL. InProceedings of the
International Conference on Expert Systems for Development, Bangkok, Thailand, March 29-31,
1994.

[HoN92] U. Hoppe and S. Neubert: Using Hypermedia for Integrating Mediating Representations in the Model-
based Knowledge Engineering. In Proceedings of the AAAI’92 Workshop Knowledge Representation
Aspects of Knowledge Acquisition, San José, California, July, 1992, 55-62.

[KLW93] M. Kifer, G. Lausen, and J. Wu: Logical Foundations of Object-Oriented and Frame-Based
Languages, technical report 93/06, Department of Computer Science, SUNY at Stony Brook, NY,
April 1993. To appear inJournal of the ACM.

[Koz90] D. Kozen: Logics of Programs. In J. v. Leeuwen (ed.),Handbook of Theoretical Computer Science,
Elsevier, Amsterdam, 1990.

[Lan94a] D. Landes: DesignKARL - A Language for the Design of Knowledge-Based Systems. InProceedings
of the 6th International Conference on Software Engineering and Knowledge Engineering SEKE’94,
Jurmala, Latvia, June 20-23, 1994.

[Lan94b] D. Landes: Addressing Non-Functional Requirements in the Development of Knowledge-Based
Systems. InProceedings of the 1st International Workshop on Requirements Engineering: Foundation
of Software Quality REFSQ’94, Utrecht, The Netherlands, June 6-7, 1994.

[LaS94a] D. Landes and R. Studer: The Design Process in MIKE. InProceedings of the 8th Knowledge
Acquisition for Knowledge-Based Systems Workshop KAW´94, Banff, Canada, January 30 - February
5, 1994.

[LaS94b] D. Landes and R. Studer: Mechanisms for Structuring Knowledge-Based Systems. InProceedings of
the 5th International Conference on Database and Expert Systems Applications DEXA’94, Athens,
Greece, September 7-9, 1994.

[LFA93] D. Landes, D. Fensel, and J. Angele: Formalizing and Operationalizing a Design Task with KARL. In
J. Treur and T. Wetter (eds.),Formal Specification of Complex Reasoning Systems, Ellis Horwood,
New York, 1993.

[Lin92] M. Linster (ed.):Sisyphus ´92: Models of Problem Solving, Arbeitspapiere der GMD, no 663, July
1992.

[Llo87] J.W. Lloyd:Foundations of Logic Programming, 2nd Editon, Springer-Verlag, Berlin, 1987.

[LNO+89] G. Lausen, T. Németh, A. Oberweis, F. Schönthaler, and W. Stucky: The INCOME Approach for
Conceptual Modelling and Prototyping of Information Systems. InProceedings of the 1st Nordic
Conference on Advanced Systems Engineering CASE’89, Stockholm, Sweden, May, 1989.

[NeM93] S. Neubert and F. Maurer: A Tool for Model Based Knowledge Engineering.In Proceedings of the
13th International Conference AI, Expert Systems, Natural Language (Avignon´93), May 24-28,
Avignon, 1993.

[NeO92] S. Neubert and A. Oberweis: Einsatzmöglichkeiten von Hypertext beim Software Engineering und
Knowledge Engineering. InProceedings Hypertext & Hypermedia ‘92, München, September 1992.

[Neu93] S. Neubert: Model Construction in MIKE (Model Based and Incremental Knowledge Engineering). In

concepts resulting in a conceptual schema description. When compared to the different models
of MIKE, an object flow diagram corresponds to the structure model, a conceptual schema to
the KARL model of expertise. However, a major difference between both approaches is the
notion of generic layers as well as the clear separation of data and control flow aspects in the
KARL model of expertise. A detailed comparison of MIKE with work done in information
system development and software engineering can be found in [AFL92a] and [FAL+93].

8 Conclusion

MIKE integrates semiformal and formal techniques and formalisms in an incremental develop-
ment process. The semiformal specification is not only used to facilitate the formalization
process but is also seen as an important result itself. It structures the complex problem solving
process and its informal description of knowledge can be used for documentation. The formal
specification describes the functionality of the system precisely, yet abstracting from imple-
mentation details. Since the formal specification is operational, it is used as a prototype of the
system in order to evaluate the model of expertise. During design, the formal specification is
extended with respect to aspects related to the realization of the system, taking non-functional
requirements into particular account.
Due to the common underlying conceptual model, the different representations can easily be
linked to each other and there is a smooth transition from one representation to the other. By
linking the models, we gain the advantage of using, e.g., the semiformal model as an additional
documentation of the formal specification. Furthermore, requirements traceability is supported
by interrelating our models.
For developing our models and the relationships between models during the specification
phase, a tool environment provides different graphical editors and debugging tool which com-
prises the interpreter for the formal specification language KARL. Current work addresses the
enhancement of the tool environment for supporting the design phase, e.g., by offering means
to execute the design model as a hybrid prototype for evaluating the effects of design deci-
sions.

Acknowledgements
We thank Jürgen Angele who provided valuable contributions to many of the ideas addressed
in this paper.

References
[AFL92a] J. Angele, D. Fensel, and D. Landes: Two Languages to Do the Same? In R. Studer (ed.),Proceedings

of the 2nd Workshop Informationssysteme und Künstliche Intelligenz, February 24-26, 1992, Ulm,
Informatik- Fachberichte 303, Springer-Verlag, 1992.

[AFL92b] J. Angele, D. Fensel und D. Landes: An Executable Model at the Knowledge Level for the Office-
Assignment Task. In [Lin92].

[AFL+93] J. Angele, D. Fensel, D. Landes, S. Neubert, and R. Studer: Model-Based and Incremental Knowledge
Engineering: The MIKE Approach. In J. Cuena (ed.),Knowledge Oriented Software Design, IFIP
Transactions A-27, North Holland, Amsterdam, 1993.

[AFS94] J. Angele, D. Fensel, and R. Studer: The Model of Expertise in KARL. InProceedings of the 2nd World
Congress on Expert Systems, Lisbon/Estoril, Portugal, January 10-14, 1994.

[Ang93] J. Angele:Operationalisierung des Modells der Expertise mit KARL, Infix, St. Augustin, 1993.

[BHL90] D. Bjørner, C. A. R. Hoare, and H. Langmaack (eds.):VDM´90. VDM and Z - Formal Methods in
Software Development, Lecture Notes in Computer Science, no 428, Springer-Verlag, Berlin, 1990.

[Boe88] B.W. Boehm: A Spiral Model of Software Development and Enhancement. InIEEE Computer,May
1988, pp. 61-72.

[CoY91] P. Coad and E. Yourdon:Object-Oriented Analysis, 2nd ed., Yourdon Press, Englewood Cliffs, 1991.

executed using the the KARL interpreter while other parts are already operational in the C++
target environment.

7 Related Work

Since the MIKE approach took KADS-I [WSB92] as a starting point it is not surprising that
both approaches have a lot of common features. This holds especially for the structure of the
model of expertise. A major difference between the two approaches is the emphasis we put in
MIKE on the formalization of the model of expertise and the inherent integration of prototy-
ping into a life cycle oriented approach. From the requirement of providing a formally speci-
fied model of expertise the idea of introducing a mediating representation evolved rather
naturally - a concept which is not that stressed in CommonKADS [WVS+93] although there
exist some similarities between the structure model and several CommonKADS models as e.g.
the task model. Most of the CommonKADS models, however, are oriented towards capturing a
specific aspect like task modelling or agent modelling, whereas in MIKE the main emphasis is
put on describing the same type of knowledge, i.e. expertise knowledge, on different formali-
zation levels.
The Components of Expertise approach (CoE) as well as the corresponding COMMET tool
[Ste93] are mainly oriented towards the configuration of an executable application system by
analysing it from three perspectives: tasks, information sources, and methods. Task structures,
model dependency diagrams, and control diagrams which are used to represent these perspec-
tives provide similar structuring primitives as the structure model in MIKE. A distinctive fea-
ture of MIKE when compared to CoE is the formalization aspect since in MIKE the model of
expertise provides a completely formal description of the domain and problem solving specific
knowledge, whereas in CoE this knowledge is described only on a semi-formal and program
code level, respectively. That is, CoE does not provide a description of the expertise on differ-
ent levels which are related to each other by precisely defined and partially automatically gen-
erated links.
A basic distinction between MIKE and PROTEGE [TEG+94] is the fact that PROTEGE puts
strong emphasis on the generation of domain specific knowledge acquisition tools from corre-
sponding ontologies - an aspect which is not at all addressed in MIKE. Otherwise the PROTE-
GE notions of method ontology and mapping relations resemble the MIKE notions of a
problem solving method specific terminology as well as of domain views. That is, although the
PROTEGE approach does not use the concept of a model of expertise, similar types of knowl-
edge are captured by the various ontologies and the corresponding mappings. PROTEGE does
not include the notion of different description levels, e.g. there is no equivalent to the elicita-
tion model or the structure model of MIKE. All the knowledge is either described using the
frame language MODEL or the implementation language CLIPS.
Despite of all these differences among the various approaches there is also a strong agreement
on some basic concepts like the distinction between knowledge and symbol level descriptions,
the separation of domain-specific knowledge and problem solving methods, or the reuse of
(generic) building blocks for constructing the different models.
Various approaches in software engineering and information systems engineering also provide
means for describing application systems on different formalization levels. For example, the
INCOME approach ([LNO+89], [NOS+92]) for developing information systems uses glossa-
ries and object flow diagrams for the semi-formal description of static and dynamic aspects of
an information system application. During the conceptual modelling phase this semi-formal
description is formalized using an integration of high-level Petri nets and semantic data model

functional requirements. Traceability with respect to non-functional requirements is estab-
lished by links between requirements and the design decisions taken on their behalf during
model construction.

5.2 The Modelling Result

The result of the different phases described in section 5.1 is a complex model environment in-
cluding several interrelated models. Figure 2 shows a small sections of the model environment
developed for the Sisyphus example during knowledge acquisition. Links relating the elicita-
tion model with the structure model and the structure model with the model of expertise are
shown. Concept nodes (e.g.pairs) and activity nodes (e.g.check pairs) are related with proto-
col nodes, in which they have been described by the expert, by so-called elicitation links. Be-
tween formally described knowledge elements (nodes of the model of expertise) and nodes of
the structure model so-called formalization links are set. For example the knowledge element
employee of the domain layer, which includes a formal specification in KARL, is related with
the knowledge elementempl of the concept context, where an informal explanation is given. In
the same sense inference steps are related with activity nodes of the structure model. Design
decisions may, e.g., focus on collecting inference knowledge and the corresponding control
knowledge in a processing module or related domain items in a domain module. Furthermore,
roles may be associated with appropriate data structures. Introducing data structures may im-
ply an adaptation of the inference steps using the data structures. Inference steps can also be
refined into algorithms by introducing additional control knowledge which is not required
from a conceptual point of view.

6 Tool Support

MeMo-Kit4 (Mediating Model Construction Kit) (cf. [NeM93] and [Neu94]) supports the
graphical construction of the elicitation model, the structure model and the formal model of
expertise by different editors. Furthermore, an editor for developing a library of predefined
problem-solving methods (PSMs) (not described here) exists. One component helps selecting
and adapting these PSMs. After the elicitation (which is not supported by MeMo-Kit), the
knowledge engineer enters the knowledge protocols into the elicitation model using the elicita-
tion model editor. Since MeMo-Kit is a hypermedia based tool, it is also possible to store
tapes, graphics, etc. The protocol nodes are the basis for constructing the structure model using
the structure model editor. Formalization, i.e. constructing the model of expertise, is done in
the KARL editor. The editors cooperate with each other and links between models are con-
structed partly automatically by the editors.
For executing the operational specification, the model of expertise, an interpreter5 for KARL
exists [Ang93]. With the help of a graphical debugger the results and intermediate results can
be evaluated in a comfortable environment.
Currently, work is in progress to support design activities. First, this includes additional editors
for constructing the design model, e.g., by refining parts of the model of expertise, as well as
tools that allow to link design decisions to the requirements that motivate them. Second, the
operationalization of the design model is supported by mapping parts of the design model to
code of a specific software target environment (C++), which also establishes the basis for eval-
uating the design model by running it as a hybrid prototype which consists of parts that are still

4. MeMo-Kit is a variant of CoMo-Kit which has been implemented in cooperation with Frank Maurer (cf. [NeM93])
in Smalltalk-80.

5. The interpreter of KARL is implemented in C.

models. The steps which are of particular interest in the context of this paper are printed inital-
ics in Figure 3.
After the task analysis which will not be treated here, the knowledge acquisition process starts
with elicitation, i.e. trying to get hold of the experts’ knowledge. During the interview, the
knowledge engineer may use a suitable predefined problem-solving method from the library as
a guideline3. The resulting knowledge protocols are stored in protocol nodes of the elicitation
model.
Structures described in the knowledge protocols are modelled by contexts of the structure
model. The semiformal structure model is a first result ofinterpretation which clarifies com-
plex knowledge structures.
Moreover, the structure model is the foundation for theformalization/operationalization proc-
ess which results in the model of expertise described in KARL.
During model connection,the models are related by special links. First, the elicitation model is
related with the structure model. More precisely: the activity and concept nodes are related
with the protocol nodes in which they have been described during elicitation. So, a connection
to the information which originally was provided by the expert is established. A so-calledelic-
itation link exists to describe these interrelation. During structuring, these links can be easily
introduced. Second, the structure model is related with the model of expertise (see section 3.1).
So-calledformalization links relate a formally described node of the model of expertise with
an informally described node of the structure model. Corresponding nodes, including an infor-
mal description on the one hand and a formalization on the other hand, are linked. It should be
clear that most of these links can be automatically generated during the model construction
process.
Model evaluation is concerned with evaluating the operational model of expertise with respect
to functional requirements by means of test cases.
Thedesign phase [LaS94a] is performed on the basis of the model of expertise after it has been
evaluated with respect to the required functionality. Design decisions that are made in the
model construction step are primarily motivated by non-functional requirements and the con-
straints imposed by potential software and hardware target environments. Instead of describing
only the results of design decisions, model construction in the design phase also comprises es-
tablishing a link between the model states before and after the application of design decisions.
Thus, parts of the model of expertise are (transitively) linked to corresponding sections of the
design model, which in turn may be linked to corresponding parts of the final implementation.
In combination with the goal to preserve the structure of the model of expertise during design,
the links between model of expertise, design model and implementation ensure traceability of

3. This principle is not described here.

Knowledge Acquisition

Task Model EvaluationModel ConstructionAnalysis

Elicitation Interpretation Formalization/ Model Connection
Operationalization

Knowledge Engineering

Design Implementation Evaluation

Model Connection

Model ModelRequirement
Analysis Construction Evaluation

Figure 3 Phases in the MIKE life-cycle.

cated data structures. KARL supplies only a very restricted collection of data types (namely,
object classes and individual objects, predicates, sets and basic value types such as integer
numbers, strings etc.), whereas DesignKARL provides data types which allow to exploit inher-
ent relationships between data items (by means of data types such as, e.g., sequences, stacks,
queues, trees) as well as to efficiently retrieve data from large data sets (by means of, e.g., in-
dex structures and hash tables). Each of these additional data types is associated with a prede-
fined collection of operations which may be performed for the manipulation of data items of
the respective type. Furthermore, DesignKARL allows to associate user-defined operations to
object classes and predicates.
DesignKARL allows to refer to such data structures in enriched inference actions and algo-
rithms to refine inference actions given in the model of expertise. Algorithms often express ad-
ditional control knowledge which is irrelevant for a single inference step from a conceptual
point of view, but which is important for its efficient realization.
During design, the system will usually be decomposed into smaller and largely autonomous
units in order to reduce the overall complexity. To that end, DesignKARL supplies two addi-
tional structuring primitives, namelydomain modules andprocessing modules [LaS94b]. Do-
main modules allow to collect related domain knowledge in a single place, while processing
modules correspond to composed inference actions and their corresponding control specifica-
tions. Both types of modules communicate via interfaces which allow to hide irrelevant details
to the outside.
In addition to these language primitives which aim to express the results of design decisions,
DesignKARL also encompasses several language primitives for describing what thedesign de-
cisions actually are, e.g. which data structures were introduced in a particular development
step, and why these decisions were made. With these language primitives, sections in the de-
sign model can be linked to parts of the model of expertise from which they are derived
through design decisions. Furthermore, design decisions are linked to those requirements that
constitute the motivation for them being applied, thus providing valuable support for the trace-
ability of requirements.
A more detailed account of DesignKARL can be found in [Lan94a].

5 Model Development and Connection

One central point of our approach is the connection of models developed during the knowledge
engineering process. This model connection conveys various benefits: first, the informal infor-
mation integrated in the elicitation or structure model serves as a documentation of a formal
description. Moreover, large parts of documentation can be directly done during knowledge
acquisition. The explanation facility can use the informal models during the usage of the sys-
tem. These models are also helpful for the maintenance of the system.
In this section we will describe the knowledge engineeringprocess in which the models of
MIKE in the different formalisms are developed and related (section 5.1). Moreover, we will
describe theproduct of knowledge engineering, the entire model environment (section 5.2).

5.1 The Process of Model Development and Connection

The phases and subphases of KBS development according to the MIKE approach are shown in
Figure 3. These steps are performed in a cyclic fashion [AFL+93] guided by aspiral model
[Boe88] as process model. It is possible to switch between different activities like interpreta-
tion or model connection and there is no kind of sequence enforced as in traditional waterfall

KARL as a Graphical Modelling Language

KARL provides graphical representations of most modelling primitives to improve their intel-
ligibility: A variant of Enhanced-Entity-Relationship (EER) diagrams describes the domain
layer, a variant oflevelled dataflow diagrams is provided for the inference layer, and a variant
of program flow diagrams describes the task layer. All three graphical representations include
hierarchical refinement to allow to represent the system on different levels of refinement. Fig-
ure 2 shows the graphical representation a model of expertise of a solution of the so-called
Sisyphus problem.

4 The Design Model

4.1 The Scope of the Design Model

The structure model and the model of expertise aim at a description of the knowledge-based
system at a conceptual level. Consequently, they specify what functionality the KBS must pro-
vide to solve the given problem, but do not address issues which are related to the realization
of this functionality. Thus, the gap between the model of expertise and the final implementa-
tion of the KBS is still fairly wide. In order to bridge this gap, a distinct design phase is re-
quired to facilitate the transition from knowledge acquisition to implementation. The design
phase results in an additional model, thedesign model, which is concerned with mapping of
the knowledge contained in the model of expertise into potential target environments, but
which is still at a level of abstraction above the actual implementation.
During the design phase, particular emphasis has to be put on non-functional requirements
such as, e.g., (symbol-level) efficiency, maintainability, understandability, reliability etc. as
well as the constraints imposed by the intended software and hardware environment for the fi-
nal implementation of the KBS [Lan94b]. Since the model of expertise already constitutes a
functional specification of the required behaviour, only limited attention has to be devoted to
functional requirements in the design phase. The goal of the design phase thus consists in en-
riching the knowledge which is already contained in the model of expertise by additional infor-
mation which indicates how the realization of the KBS should be accomplished. The design
model finally comprises the specification of how both, functional and non-functional, require-
ments can be met.
Two aspects are particularly important for the satisfaction of non-functional requirements. On
the one hand, suitable data structures and algorithms have to be introduced in the design phase
in order to realize knowledge and inference steps using that knowledge in an appropriate fash-
ion. On the other hand, the structure of the system must be defined properly, e.g., by decom-
posing the system into a collection of smaller units such as modules which interact during
problem-solving.
Design decisions which refine parts of the model of expertise with respect to these two aspects
are constrained by the goal to preserve the structure of the model of expertise during design
[Sch93]. Besides facilitating the transition between the formalisms used during knowledge ac-
quisition and design, this conveys various benefits with respect to maintainability and explain-
ability. In particular, structure-preserving design supports the traceability of both functional
and non-functional requirements.

4.2 DesignKARL

In order to be able to describe those issues which are particularly addressed in the design
phase, KARL as the description formalism for the model of expertise has to be extended by ad-
ditional language primitives. This extension,DesignKARL, firstly allows to use more sophisti-

theoretical semantics. In this way, ideas of semantical and object-oriented data models are inte-
grated into a logical framework enabling the declarative description of terminological as well
as assertional knowledge. L-KARL distinguishes classes, objects, and values. It provides
classes and an is-a hierarchy with multiple attribute inheritance to describe terminological
knowledge. Intentional and factual knowledge is described by logical relationships between
classes, objects, and values.
A classor concept definition, which corresponds to a frame, describes class attributes which
refer to the class as such and attributes for the objects which are elements of the class. The at-
tributes are described by their name, their domain, and their range. Classes are arranged in a
specialization/generalization hierarchy with multiple attribute inheritance. Attributes can be
single-valued or set-valued. Attributes can be used to describe objects as well as classes. They
have defined domain and range types.
The literals of logical expressions in L-KARL areis-element-of literals which describe that ob-
jects are elements of classes;is-a literals which describe subset relationships between classes;
equality literalswhich describe equality of objects, classes, and values; and finallydata liter-
als which define attribute values for objects and classes. Logical formulae are built from these
literals using logical connectors∧, ∨, ¬, ← and variable quantification. The logical language
to describe relationships between classes, objects, and values is Horn logic with equality and
function symbols extended by stratified negation [Ull88].

Procedural-KARL (P-KARL)

In KARL knowledge about controlflow is explicitly described by the logical language P-
KARL. The control flow is specified similar to procedural programming languages. For a P-
KARL program, a number of functionsF = {f1, f2,..., fr} and a number of variables{X1,..., Xn}
are available. The function symbols correspond to names of inference actions. The variables
address their roles. The actual parameters of a function are the input stores of the correspond-
ing inference action and the results of the function are mapped to its output stores. A primitive
program is an assignment

(Xk1,..., Xkh) := fi(Xj1,..., Xjl).
fi corresponds to an inference action and theXks denote its output stores and theXjs its input
stores. A composed program is defined assequence, loop, or alternativeof programs.

KARL as a Formal And Executable Specification Language

The KARL model of expertise contains the description of domain knowledge, inference
knowledge, and task knowledge (i.e., procedural control knowledge). The gist of the matter of
theformal semantics of KARL is therefore the requirement to include the specification of stat-
ic and procedural knowledge. For this purpose, two different types of logic have been integrat-
ed. The sublanguage L-KARL, which is based on object-oriented logics, combines frames and
logic to define terminological as well as assertional knowledge. The sublanguage P-KARL,
which is a variant of dynamic logic, is used to express knowledge about the control flow of a
problem-solving method in a procedural manner. The representation of the interaction of both
types of knowledge is reached by combining both types of languages. For more details see
[Fen93]. Based on this semantics, an operationalization and an optimised evaluation strategy
were developed which establish the foundation of an interpreter and debugger for KARL
[Ang93]. Theoperationalisation consists of two parts. The logical description of an inference
action together with the domain layer and view definitions using L-KARL define a relation-
ship. For given input, this logical descriptions are evaluated by a fixpoint operator which com-
putes based on the perfect Herbrand model semantics the valid output. A sequence operator is
used to interpret the control flow between inference action as it is defined in P-KARL. By this
it becomes possible to evaluate a formal specification by executing it.

tion of aconceptual description of a knowledge-based system together with itsformal defini-
tions and its evaluation byexecuting the specification.)

Logical-KARL (L-KARL

L-KARL is a customization of Frame-logic (F-logic) [KLW93]. F-logic and L-KARL extend
the modelling primitives of first-order logic by syntactic modifications but preserve its model-

create
pairs

task layer

inference layer

domain layer

smoke

employee
placement

place

CheckStates Solution

Comp SlotsCreate

Prune

Create

Prune

Check

∅(Solution)

yes

no

ordering

structure

concept

empl
place

checkpairs

sitting

empl placecreate

prune

context

context

pairs

pairs

pairs

check
pairs

prune
pairs

create
pairs

sitting

pairs

context

check
pairs

prune
pairs

activity
context

sisy-
phus

structure model model of expertise

elicitation model

An assigment of
employees to places
is done by

The pruning of pairs
is done by ...

left right

ordering

connection of models

dataflow
refinement

is_a
part_of

activity
concept

inference step
store
view
terminator

controlflow
inference
domain view
relationship

elicitation formalization

protocol

Figure 2 Parts of an elicitation model and a structure model at the left (nodes have informal content) and of a
model of expertise at the right (nodes with formal content).

3 The Formal Model of a Knowledge-Based System

3.1 The KARL Model of Expertise

The conceptual model underlying KARL is derived from the KADSmodel of expertise
[SWB93] and distinguishes four types of knowledge. Three of them define static knowledge,
whereas the task layer is used to define the dynamics of the problem-solving process.
Domain knowledgeconsists of static knowledge about the application domain of the system.
The domain knowledge should define a conceptualisation of the domain as well as a declara-
tive theory providing all the knowledge required to solve the given tasks. KARL integrates
frames and logic for the domain layer by providing the sublanguageLogical-KARL (L-KARL)
for this purpose. Terminological knowledge can be described by a taxonomy of concepts. For
each concept, attributes can be defined and are inherited according to the taxonomy. Further
knowledge can be described with logical formulae.
Inference knowledge specifies the inferences that can be made using the domain knowledge,
and theknowledge roles, which model input and output of the inferences. KARL distinguishes
three types of knowledge roles. Roles which supply domain knowledge to an inference action
are calledviews, roles which model the data flow dependencies between inference actions are
calledstores, and roles which are used to write final results back onto the domain layer are
calledterminators. The inferences and roles together with their dataflow dependencies consti-
tute a description of the problem-solving method applied. In addition to its use at the domain
layer, L-KARL is used to specify the logical relationship defined by an inference action at the
inference layer and to specify aproblem-solving-method-specific terminology independently
from the domain-specific terminology by means of concept definitions in roles.
A Domain view specifies the relationship between the generic terms used at the inference layer
and the domain-specific knowledge. Again, L-KARL is used to specify the mapping between
domain and inference knowledge.
Dynamic control knowledge: The purpose of the task layer is to specifycontrol over the execu-
tion of the inferences of the inference layer. The sublanguageProcedural-KARL (P-KARL) is
used to specify this dynamic knowledge via sequences, branches, loops, and procedure calls.
Conditions for the control flow can be specified via logical statements about the contents of
stores.
Inference and control knowledge are domain independent, i.e. they describe the problem solv-
ing process in a generic way. Thus, such a so-calledproblem-solving methodcan be reused for
different application problems. MIKE provides a library, where these generic problem solving
methods are stored which are described formally and informally.
Figure 2 shows a model of expertise of a solution of theSisyphus problem. The domain termi-
nology and the domain knowledge required by the problem solving method is defined at the
domain layer. The inference layer contains the elementary inference steps and knowledge
roles. Components (employees) and slots (places) are combined by the inference actionCre-
ate. Prune eliminates illegal states, andCheck searches for valid solutions. The control flow
between these inferences is defined at the task layer.

3.2 The Knowledge Acquisition and Representation Language (KARL)

A complete description of KARL can be found in [Fen93]. A short description of the model-
ling primitives of KARL is given in [AFS94] and [FAS94]. Details on some of the applications
of KARL can be found in [AFL92b], [LFA93], and [PFL+94]. A comparison of KARL with
other languages can be found in [FeH94]. The main characteristics of KARL is the combina-

• Theconcept contextencompasses all concept nodes which serve as descriptions of the static
objects. Moreover, all links between two concept nodes, so-calledis_a links and self-de-
fined relationship links, are included. Relationship links can be added by the user to de-
scribe an arbitrary relationship between two concepts. In figure 1, one is-a link and two
part_of links are shown, that is, it is modelled that anempl and aplace are part of apair.

• A structure contextis also a view onone hierarchy level ofactivity nodes. Here, activity
nodes are related with concept nodes by so-calleddataflow links. A structure context gives
the flow of data produced during the problem solving process. Figure 1 shows in the struc-
ture context section thatempl andplace are input for the activitycreate pairs.

The structure model together with its nodes and links is produced on the basis of the node con-
tents of the elicitation model. The structuring process can be mainly done by the expert itself,
supported by the knowledge engineer. Then, the structure model is an adequate basis for the
development of the formal models done by the knowledge engineer. These are described in the
next section.

ordering

structure

concept empl

place

checkpairs

sitting

empl placecreate

prune

context

context

pairs

pairs

pairs

check
pairs

prune
pairs

create
pairs

sitting

pairscontext

check
pairs

prune
pairs

create
pairs

activity
context

sisy-
phus

activity node
concept node

empl

An employee is a
person who works
for a company.

place

A place means a
working place in
an office.

check pairs

check pairs describes the
activity that a defined
pair of an employee
and a place is evaluated
against the given
requirements for example
whether his/her room
partner are in the
same project etc.

ordering link
dataflow link
refinement link

is_a link
part_of link

Figure 1 Example of a partial structure model

2 The Semiformal Models of a Knowledge-Based System

Developing a formal specification directly from informal knowledge protocols is rather diffi-
cult. Therefore, mediating representations are constructed in MIKE before starting the formal-
ization process ([HoN92], [Neu93]). Our mediating representations enable to describe
protocols, concepts and activities, data flow and control flow of activities etc. with multimedia
facilities.
The development of mediating representations provides different advantages:Semiformal rep-
resentations can be used as a communication level between the knowledge engineer and the
expert. The expert can be integrated in the knowledge engineering process of structuring the
complex knowledge such that the knowledge engineer is able to interpret and formalize it more
easily. Thus, the cooperation between expert and knowledge engineer is improved and the for-
malization process is simplified. An early evaluation process is possible in which the expert
himself is integrated. In addition, a mediating representation is a basis for documentation and
explanation. The maintenance of the system is also simplified.
For our mediating representations we propose a semiformal, hypermedia-based formalism
calledMEMO (MEdiating Model Organization) [Neu93], [NeO92]. This formalism enables to
describe two semiformal models (theelicitation model and thestructure model) which are de-
fined as sets of special node and link types grouped into so-called contexts. Anode is a hyper-
media document with a content using text, graphics, audio or video to describe the meaning of
the node. Alink describes a relationship between two nodes. A link is directed. Links are de-
fined by a source node, a destination node, a link name, a link type, and an explanation field.
Contextsestablish a specific view on a set of nodes and links. Amodel is defined as a set of
nodes, links, and contexts.
The first model, theelicitation model, documents the elicitation process. Thus, it includes
knowledge protocols which are stored in so-calledprotocol nodes. Additionally,date links be-
tween protocol nodes are included to describe the elicitation ordering. In Figure 2 at the top a
short example of two related protocol nodes is sketched for theSisyphus office assignment
problem2, which is concerned with assigning employees to office places in such a way that
several requirements will be met (see [Lin92]).
Thestructure model, which is developed based on the elicitation model gives a more struc-
tured description of the knowledge. It contains the following description elements (an example
is described in Figure 1):
• Theactivity contextincludes allactivity nodes each describing a step of the problem-solv-

ing process. Additionally,refinement links are integrated. This context enables a view on the
complete activity hierarchy. Every activity node has to be a refinement of another activity
node except for the global activity node which characterizes the whole problem-solving
process. Looking at the example of figure 1, the global Sisyphus activity node is divided
into three subactivities, tocreate pairs of employees and places, toprune faulty pairs and to
check whether a solution has been found (i.e., whether a placement is complete and cor-
rect). Each activity node is informally described in the node content.

• An ordering context provides a view onactivity nodes which are related byordering links.
These activity nodes lie onone hierarchy level (i.e. include activity nodes with the same
mother node). One activity node can be the source-node or the destination-node of different
ordering links. This means that different activity nodes are alternative options to solve the
problem. In figure 1 the ordering context describes a cycle of the three activities.

2. The Sisyphus problem was used to compare different knowledge engineering approaches.

state-transition diagrams. This type of specification is easy to understand and very useful as
a mediating representation for the communication between user and system developer.

• Formal specification techniques like Z or VDM ([BHL90]) allow a unique and detailed
specification of the functionality of a system.

• Executable specification techniques like PAISLey [Zav91] add the flavour of prototyping to
the specification process. The results can be evaluated by a running prototype. Often, this is
nearly the only way to arrive at realistic descriptions of the desired functionality of the sys-
tems.

Several authors argue to combine these description techniques in order to overcome their indi-
vidual shortcomings when used stand-alone. Informal specifications are prone to ambiguity
and contradictions and lack precision. Conversely, formal descriptions and their formal seman-
tics are hard to understand and it is very difficult to extract an intuitive understanding of the
functionality the system must provide, given only the huge amount of details of a formal spec-
ification. The need for combination is obvious if one considers the two different purposes of
specifications [FBA+93]:
• A specification should serve as amediating representation supporting the communication

between the user and the system developers. In the case of KBS, it should mediate the com-
munication between user and expert on the one hand and the knowledge engineer on the
other hand.

• A specification should serve as an intermediate representation closing the gap between an
intuition about the functionality of a system and its actual design and implementation.

Additionally, intermediate representations document modelling decisions made during the var-
ious phases of the life-cycle [PoB88]. Thus, they are helpful with respect to requirements
traceability, i.e. the problem of making sure that requirements that are posed are actually im-
plemented in the final system as well as clarifying which parts of the implementation are re-
sponsible for a particular requirement.
The integrated development on the basis of semiformal and formal techniques as discussed in
this paper is part of theMIKE approach (Model-based and Incremental Knowledge Enginee-
ring) [AFL+93], which aims at a development method for KBS covering all steps from initial
specification (knowledge acquisition) to design and implementation. MIKE proposes the inte-
gration oflife cycle models, prototyping, semiformal, andformal specification techniques into
a coherent framework.1

This paper presents the formalisms used in MIKE, namely the semiformal hypermedia-based
formalismMEMO [Neu93], the formal and executableKnowledge Acquisition and Represen-
tation Language KARL ([FAL91], [AFS94]) and its extension,DesignKARL [Lan94a], which
serves as the formalism to express the system design. Moreover, we describe how the models
that are described with these languages are interrelated, which is important for documentation
and maintenance purposes.
The paper is organized as follows. In section two, the formalism to represent the semiformal
models is described. Then, the formal specification language KARL and the model of expertise
are discussed in section three. Section four focuses on the design model and DesignKARL as
the formalism for its description. Section five addresses the linkage of the various models that
are developed during knowledge acquisition and design. Section six gives a short overview of
some of the tools that support the knowledge acquisition process in MIKE. Finally, related
work is described and a conclusion is given.

1. One of the anonymous reviewers of our paper argued that our paper could also submitted to a software engineering
conference. This is true and we are happy about this!

Integrating Semiformal and Formal Methods in
Knowledge-Based Systems Development

Dieter Fensel, Dieter Landes, Susanne Neubert and Rudi Studer

Institut AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany
e-mail: {fensel landes neubert studer}@aifb.uni-karlsruhe.de

Abstract

The paper describes a development approach for knowledge-based systems (KBS) combining
semiformal and formal techniques for specification and design. For the semiformal representa-
tion we use a hypermedia-based formalism which serves as a communication basis between
expert and knowledge engineer during knowledge acquisition. The semiformal knowledge rep-
resentation is also the basis for formalization, resulting in a formal and executable model of
expertise specified in the Knowledge Acquisition and Representation Language (KARL). In
the design phase, this representation is enriched by focussing on issues of realization and facil-
itating the mapping of the model of expertise to the implementation environment. A smooth
transition from a semiformal to a formal specification and further on to design is achieved as
all the description techniques rely on the same conceptual model to describe the system. Thus,
the system is thoroughly documented at different description levels, each of which focuses on
a distinct aspect of the entire development effort. Traceability of requirements is supported by
linking the different models to each other.

1 Introduction

Originally, expert systems or knowledge-based systems (KBS) were developed using the rapid
prototyping approach. The acquired knowledge was immediately implemented and the running
prototype was used to guide the further knowledge acquisition process. The distinction of sym-
bol level and knowledge level [New82] created the conceptual framework for a different kind
of process models for KBS development. A knowledge level description of thetask solved by
the system and theknowledge, which is required to solve the task, is constructed by means of a
modelling activity. This knowledge level description is built independently of the design and
implementation activity. The separation of analysis and design/implementation is an analogue
to experiences in software engineering. In response to the so-called software crisis in the late
sixties, methodologies, process models, methods, and tools have been developed to maintain
the software development process and its results. A significant result was the separation of the
description what a system should do from how this can be achieved by a specific implementa-
tion, i.e. the separation of analysis or requirement engineering on the one hand and design and
implementation on the other hand. As a result, several description techniques have been devel-
oped to describe the specification as it emerges from the analysis step. Mainly, these specifica-
tion techniques follow three lines:
• Informal specification techniques like structured analysis [You89] or object-oriented analy-

sis [CoY91] allow a high and informal level of description. These approaches broadly use
graphical means like entity-relationship diagrams, dataflow diagrams, flow charts, and

