
Formally Embedding Existing High Level

Synthesis Algorithms

Dirk Eisenbiegler and Ramayya Kumar

Forschungszentrum Informatik
�Prof� Dr��Ing� D� Schmid�

Haid�und�Neustra�e �	��
 ���� Karlsruhe� Germany
e�mail� eisen�fzi�de� kumar�fzi�de

Abstract� This paper introduces a general scheme for formally embed�
ding high level synthesis by formulating its basic steps as transforma�
tions within higher order logic� A functional representation of a data
�ow graph is successively re�ned by means of generic logical transforma�
tions� Algorithms that are based on logical transformations guarantee
�correctness by design�� They not only construct an implementation but
also derive the proof for its formal correctness� on the �y� An extra post�
synthesis�veri�cation step becomes obsolete� The logical transformations
presented in this paper form a framework for formally embedding exist�
ing high�level�synthesis procedures�

� Introduction

Guaranteeing functional correctness in hardware synthesis is an essential but
demanding task� This is due to the complexity of synthesis tools and the under�
lying synthesis algorithms� Hence various forms of formal veri�cation techniques
are employed to prove the correctness of the implementations� resulting from
the synthesis process �Melh��� ScKK��� Gupt�	
� However the applicability of
formal veri�cation tools within the synthesis context is limited� since the proof
of the goal �implementation � speci�cation� is very complex�

Post�synthesis veri�cation is an exacting goal� Full automation can only be
achieved for small sized circuits on lower levels of abstraction� For large sized
circuits� veri�cation algorithms either run into spacetime hurdles or the user
has to interact and perform some proofs by hand�

Conventional synthesis algorithms just determine the implementation � the
information on how the speci�cation was re�ned into an implementation gets
lost� The loss of this information is a major bottleneck for veri�cation� The veri�
�cation process gets just two logical formulae corresponding to the speci�cation
and the implementation� On the other hand� synthesis is split�up into a set of
well�de�ned steps� namely scheduling� allocation and binding� and furthermore
there exists a vast body of knowledge for solving these steps in an e�ective
manner �CaWo��� Paul��� RoKr��
� We therefore propose a technique for �for�
mal synthesis� which closely adheres to the steps of conventional synthesis and
additionally exploits the knowledge available�

The idea of formal synthesis is in itself not new� One of the early attempts
dealt with the conversion of regular expressions into hardware circuits �John��
�
Later� a number of techniques were proposed for interactively re�ning the spec�
i�cations into implementations �Lars��� HaLD��� JoWB��� AHL�	� MaFo���
FoMa��
� All these above�mentioned techniques have one common drawback�
namely they do not exploit the knowledge of the algorithms which abound in
synthesis� The novelty of our current approach is that no new synthesis algo�
rithms �either formal or informal� are proposed� but a general scheme for logi�
cally embedding various existing synthesis algorithms within a formal set�up is
presented�

The outline of this paper is as follows� we �rst brie�y examine the synthesis
problem and de�ne the notations and scope of our work� Then we describe the
formal techniques for scheduling� allocation and binding� respectively�

� Basics of the �Formal Synthesis� Scenario

Starting from an algorithmic description� which does not incorporate timing
explicitly� the overall aim of high level synthesis is to extract the data path and
the controller� The major steps in synthesis are�

�� scheduling under restrainedunrestrained resource constraints
	� allocation

�� binding
�� determination of the RT�level implementation

��� Our Starting Point

The approach given in this paper deals with synthesis based on data��ow graph
representations only� We represent the given data �ow graph by a typed func�
tion g� and proceed with the various steps of synthesis� The sequential circuit
corresponding to g will then repeatedly determine g�x�� for the various values
of x� Since we use typed functions� a single input x is su�cient to represent any
number of inputs corresponding to any type� since they can all be bundled to�
gether into a single x� The type de�nition uniquely determines the set of inputs
and outputs� We will clarify this notion shortly�

��� An Example for g

Throughout this paper we shall illustrate the various steps of synthesis via an
example named myg� myg maps a triple �a� b� c� onto the pair �x� y� as de�ned
by the pseudo�procedural description in �gure �� Assuming that all the variables
used are of the type natural numbers num� the overall type of the function is

num� num� num � num� num

As basic operations there are the binary operations �� � and � and the unary
operation inc� The operator inc maps some x to x � �� Since the intermediate
results are used within the succeeding expressions� they will be named explicitly�
In our example they are named p� q� r� s and t� The data �ow diagram which
corresponds to the procedural code is given in �gure 	�

Procedure myg�

inputs� a�b�c�num�

outputs� x�y�num�

begin

p � a � b�

q � inc�c��

r � p � q�

s � b 	 c�

t � p
 s�

x � r 	 t�

y � r � t�

end

Fig� �� Pseudo procedural code for the example g � myg

a

b

c

myg

�
p

�

s

inc

q

� r

� t
�

�

x

y

Fig� �� Data�ow Diagram for myg

��� Remarks about the Notation

We will use ��calculus expressions to denote functions �see �Davi��
 for an intro�
duction to the ��calculus�� let�terms will be used for representing ��redices� Let
x be a variable� v be an arbitrary term having the same type as x and w denote
an arbitrary term� where there may be free occurrences of x� In the expression

let x � v in w

the variable x is used as an abbreviation for v in the expression w� The expression
w�v�x
 is the expression� that can be obtained by substituting every occurrence
of x in w by v� w�v�x
 is equivalent to the let�term above�

��� Formal Representation of g

Using let�terms to express the auxiliary variables in �gure 	� g can be described
by means of ��abstraction over a tuple consisting of all inputs� In our example the
input is a triple �a� b� c�� there are � let�terms � one for each auxiliary variable
� and there is a pair of outputs �x� y� �see equation �����

� myg �
��a� b� c��
let p � a � b in

let q � inc�c� in
let r � p � q in

let s � b� c in

let t � p� s in

let x � r � t in

let y � r � t in

�x� y�

���

On comparing the pseudo�procedural code in �gure � with the de�nition in
equation ���� a direct one�to�one correspondence can be noticed� A little bit
of formal syntactic sugaring yields the de�nition� This is true� if the pseudo
procedural code consists of purely basic blocks�

��� The Formal Synthesis Scheme

Having de�ned the basics we will now proceed to give a gist of the overall formal
synthesis scheme�

�� Convert the initial data �ow graph into a functional representation�

	� Use an algorithm for scheduling� allocation or binding which performs the
respective task on the data �ow graph and gives us a schedule� allocation or
binding� respectively�

�� Apply the pre�proven generic transformations for each task on the data �ow
graph along with the results of the algorithm�

�� Obtain a transformed function which is equivalent �in the logical sense� to
the original description�

�� Derive the RT�level implementation from the transformed function�

Step � � the heart of the overall strategy� has been made possible by meticulous
proofs of the generic transformations� They take in a function and the results
of a speci�c synthesis step� and produce a new function which represents the
end product of that speci�c synthesis step� Thus we are able to exploit all the
optimizations that are o�ered by a particular algorithm and additionally� these
transformations are automated and also not time�consuming� In the following
sections� we shall show the transformed functions corresponding to the steps�
scheduling� allocation and binding� The entire synthesis scheme will be imple�
mented using the HOL theorem prover �GoMe��
�

� Scheduling

Scheduling determines the number of control steps �c�steps� for each calculation
period� and assigns each operation to one particular c�step � � � � n� Given a spe�
ci�c n� the basic idea of the �schedule transformation� is to break up the original
function g into a sequence of functions g�� g�� � � � gn� so that the composition of
these functions yields the original function� i�e� g � gn � gn�� � � � � � g��

In our example� there are � operations� whose outputs are the auxiliary vari�
ables p� q� r� s� t� x and y� We will also use the names of the auxiliary variables
to denote the operation that produces this variable� Operation s� for example�
is the �rst � operation and the auxiliary variable s is its output�

Let us assume� that it is intended� that only two circuits are used� one multi�
plier and one multi�purpose unit for adding �� subtracting � and incrementing
inc� Under this hardware constraint several schedules are possible� Any arbitrary
algorithm may determine the schedule�

In our example we will use the schedule sketched in �gure �� in c�step �� s is
processed� in c�step �� p and q are processed� in c�step 	� r and t are processed
and in c�step �� x and y are processed� In this schedule n becomes �� There are
also schedules for myg with n �� �� but under the given restrictions� n � � is the
minimum�

a

b

c

g� g� g� g�

�
p

�

s

inc

q

� r

� t
�

�

x

y

Fig� �� Split Data�ow Diagram

The scheduled function myg will be described by means of a composition
of four functions myg � g� � g� � g� � g�� where the functions g�� g�� g� and
g� perform the computations of c�step �� �� 	 and � respectively� The formal
representation of the transformed function �theorem �	�� is derived by means
of applications of the � operator de�nition� expansion of let�expressions and by
��reductions�

It is easy to visualize that this transformation does not depend upon the
scheduling algorithm itself� nor do we place any undue demands on the algorithm�
except that it returns a schedule that obeys the data dependencies�

� It is also possible� that the number of c�steps is already given in the speci�cation�
Then only the assignment of operations has to be performed�

� myg �
let

g� � ��a� b� c�� let s � b� c in �a� b� s� c� and

g� � ��a� b� s� c�� let p � a � b in let q � inc�c� in �p� s� q� and

g� � ��p� s� q�� let t � p� s in let r � p � q in �r� t� and

g� � ��r� t�� let x � r � t in let y � r � t in �x� y�
in

g� � g� � g� � g�

���

� Allocation of Registers

The register allocation determines the number of registers that is needed for the
implementation� Usually the scheduling algorithms already take the functional
resource constraints into account�

When functions g�� g�� � � � gn are composed in the mathematical world� the
output of a function gj is the input of the function gj��� given � � j � n� How�
ever� in the hardware context� registers are needed to store the values between
two control steps� The total number of registers always equals the maximum
number of outputs produced by any gj � � � j � n� This implies that when any
of the functions gj have lesser number of outputs� then some extra variables are
added to the outputs of gj and the inputs of gj��� so that the overall number is
m� These variables can carry any arbitrary values since they are never used��

In our example four variables have to be bu�ered after c�step �� three after
c�step � and two after c�step 	� Therefore� we add one auxiliary variable z� after
c�step � and two auxiliary variables z� and z� after c�step 	 �see �gure ��� The
formal representation is given in theorem ����

� Binding of Registers

During register binding� variables are tied onto speci�c registers� The register
binding is represented as the ordering of the variables within the tuples � i�e�
register binding will be formally expressed by giving the variables a speci�c
order�

In our example four registers are needed� They are named r�� r�� r� and
r�� After c�step � they are used for storing a� b� s and c� after c�step � they
are used for storing p� s� q and z� and after c�step 	 they are used for storing
r� t� z� and z�� The mapping between the variables and the registers has to
be optimized in order to avoid unnecessary variable transfers between registers�
Such optimizations can be done by conventional synthesis algorithms outside the
logic� and then be integrated within our formal synthesis environment�

The determination of register binding is performed again outside the logic�
The result of register binding is a table describing the mapping between variables

� In general� there may be auxiliary variables with di�erent types� Di�erent sizes of
registers will be needed to store them and optimization during register allocation
may become more complex�

a

b

c

g� g� g� g�

�
p

�

s

inc

q

� r

� t
�

�

x

y

�

�

�

�

�

�

�

z�
�

�

�

z�
�

z�
�

Fig� �� Allocation of Registers

� myg �
let

g� � ��a� b� c�� let s � b� c in �a� b� s� c� and

g� � ��a� b� s� c�� let p � a � b in let q � inc�c� in �p� s� q� z�� and

g� � ��p� s� q� z��� let t � p� s in let r � p � q in �r� t� z�� z�� and

g� � ��r� t� z�� z��� let x � r � t in let y � r � t in �x� y�
in

g� � g� � g� � g�

��

and registers and this table is the basis for our next logical transformation step�
Let us assume� that the register binding of table � is to be applied�

Registers after c�step 	 after c�step � after c�step �

r� a p r

r� b q t

r� s s z�

r� c z� z�

Table �� Register Binding

From now on� we will not use the auxiliary variable names p� q� r� � � � any
more but replace them by register names r�� r�� r�� � � �� In each of the functions
g�� g�� � � � the names r�� r�� r�� � � � are used to represent the register values before
the evaluation of the function and r�

�

� r�
�

� r�
�

� � � � are used to indicate the register
values after the evaluation of the function� Variable renaming is performed by ��
conversion �see �Davi��
�� The formal representation of the result of the register
binding in theorem ��� is achieved by expansion of the � operators and let�
expressions and ��reductions�

a

b

c

g� g� g� g�

�
p

�

s

inc

q

� r

� t
�

�

x

y

�

�

�

�

�

�

�

z�
�

�

�

z�
�

z�
�

Fig� �� Binding of Registers

� myg �
let

g� � ��a� b� c��

let r�
�

� a and r�
�

� b and r�
�

� b� c and r�
�

� c in

�r�
�

� r�
�

� r�
�

� r�
�

�
and

g� � ��r�� r�� r�� r���

let r�
�

� r� � r� and r�
�

� inc�r�� and r�
�

� r� and r�
�

� z� in

�r�
�

� r�
�

� r�
�

� r�
�

�
and

g� � ��r�� r�� r�� r���

let r�
�

� r� � r� and r�
�

� r� � r� and r�
�

� z� and r�
�

� z� in

�r�
�

� r�
�

� r�
�

� r�
�

�
and

g� � ��r�� r�� r�� r���
let x � r� � r� in let y � r� � r� in

�x� y�
in

g� � g� � g� � g�

�
�

� Allocation and Binding of Functional Units

In this step of the algorithm� we construct a compound functional unit FU pro�
viding the operators for implementing the operations of each c�step �allocation��
and we use the compound functional unit FU to implement the operations of
the data�ow graph �binding��

As already mentioned earlier� only two operation units are needed in our
example� one multiplier �named multiplier� and one multi�purpose unit �named
multipurpose� for adding� subtracting and incrementing� Their formal speci�ca�
tions are given as below� Such descriptions are assumed to be given in a library
which de�nes the abstract RT�level components� The correctness of such compo�

nents is beyond the scope of this paper and can be performed using conventional
veri�cation techniques�

	 multiplier�a� b� � a � b

	 multipurpose��d� e��Add� � d� e
multipurpose��d� e�� Sub� � d� e
multipurpose��d� e�� Inc� � d� �

The multi�purpose unit has ��d� e�� c� as input� d and e are data inputs and c is
a control input for selecting the function� c may have one of the values Add� Sub
and Inc and the corresponding output is d� e� d� e and d� �� respectively�

In theorem ��� the functional unit FU is provided� It consists of one multiplier
and one multi�purpose unit� It�s input ���a� b�� �d� e��� c� consists of two parts� a
data input ��a� b�� �d� e�� and a control input c� The result is a pair consisting of
the product of a and b and the result of applying d and e to the multi�purpose
unit� where the control of the multi�purpose unit is c�

In general there may be several operations of each type and optimizations in
the binding between operations and functional units may reduce communication
costs� In our small example the binding is unambiguous� since in each c�step
there is always no more than one operation of each type�

Remark� In c�step �� the multiplier unit remains unused� Arbitrary values z�

and z� are its input and the output �named z	� is not connected to the output
of g�� Since there is only one operand needed during the inc�operation in c�step
�� one of the data inputs becomes redundant� An arbitrary value z
 is assigned
to this input�

Theorem ��� is derived by applying the de�nitions of FU and the speci�cations
of the multiplier and the multipurpose component�

	 Derivation of the RT
Level Implementation

This section describes� how the preprocessed algorithmic description is converted
into a RT�level description� Before this step can be performed� we must describe
the temporal relationships between the algorithmic and RT�levels� i�e� we must
describe� how the circuit evaluating g interfaces with its environment� We will
call these relations as communication schemes�

��� Communication Schemes

The datapath oriented synthesis algorithm described until now is an adequate
basis for deriving implementations for di�erent kinds of simple communication
schemes� All hardware descriptions� that may be implemented by our approach
must have a �xed number of c�steps � � � � n for each evaluation cycle� In c�step ��
the circuit reads x from the input i� in the succeeding c�steps it calculates g�x�
and at c�step n it assigns g�x� to the output o�

We present two possible communication schemes describing the behavior of
the circuit in an entirely di�erent manner�

� myg �
let

FU � ����a� b�� �d� e��� c�� �multiplier�a� b�� multipurpose��d� e�� c��
in

let

g� � ��a� b� c��

let �z�� r�
�

� � FU���z�� z��� �b� c���Add� and

r�
�

� a and r�
�

� b and r�
�

� c in

�r�
�

� r�
�

� r�
�

� r�
�

�
and

g� � ��r�� r�� r�� r���

let �r�
�

� r�
�

� � FU���r�� r��� �r�� z���� Inc� and

r�
�

� r� and r�
�

� z� in

�r�
�

� r�
�

� r�
�

� r�
�

�
and

g� � ��r�� r�� r�� r���

let �r�
�

� r�
�

� � FU���r�� r��� �r�� r���� Sub� and

r�
�

� z� and r�
�

� z� in

�r�
�

� r�
�

� r�
�

� r�
�

�
and

g� � ��r�� r�� r�� r���
let �x� y� � FU���r�� r��� �r�� r����Add� in
�x� y�

in

g� � g� � g� � g�

���

Speci�cation A	 self
starting evaluation The circuit starts its �rst compu�
tation cycle at time �� It immediately restarts a new computation whenever
the old calculation cycle has �nished� Such a circuit will always be busy�
Formalization�

specA�g� n� i� o� ��

x� o��n� �� � �x� ��� �� � g�i��n� �� � x��

�

Remark� g s the function to be evaluated� n is the number of c�steps� i
is the input and o is the output� Given such a formalization� the overall
speci�cation can be written as�

�n� specA�g� n� i� o�
Speci�cation B	 event
driven evaluation At time �� the circuit starts in a

nonbusy state� The circuit begins a computation cycle whenever it is not
busy and gets a speci�c stimulus from an input signal start�
Requirements�
� the circuit is not busy at time �
� if at time t the circuit is not busy and there is no start signal at time t�
then the circuit will not be busy at time t� ��

� if at time t the circuit is not busy and there is a start signal at time t�
then the circuit will be busy during �t � �� t � n
� produce the required
output at time t� n and be ready for new input at time t� n� ��

Formalization�

specB�g� n� i� o� �
�n�
�
�busy���

�

�

t� �busy�t� �start�t�� �busy�t� ��

�

�

t� �busy�t� start�t��

m � t� � � m � t� n� busy�m�
o�t� n� � g�i�t��
�busy�t� n� ��

�

The overall speci�cation for such circuits is�
�n� specB�g� n� i� o�

��� Implementation Templates

For a given function g and a communication scheme such as specA�g� n� i� o� or
specB�g� n� i� o� an RT�level implementation is to be derived� It is assumed that
g has already been preprocessed according to the synthesis steps described in
sections � through � so that g has the form given in ����

It is not our intention to try and �nd an implementation and prove its cor�
rectness whenever we have successfully processed synthesis steps � through ��
Instead we use generic implementation descriptions for given communication
schemes and prove a theorem stating that the generic implementation descrip�
tions ful�lls the communication scheme� During synthesis� this theorem is just
instantiated and thereby the correct implementation is derived from the speci��
cation�

For lack of space� we cannot give a complete description on how the imple�
mentation is described within higher order logic and how the correctness proof
is performed� Figure � gives a sketch of how a general implementation of the
speci�cation specA�g� n� i� o� looks like� It is assumed that g has the shape as
in ���� The controller is a simple modulo�n�counter with n being the number
of c�steps� In the middle there is the functional unit as described in section ��
The MUX�circuits on the left and right of the functional unit determine the
data �ow between input� output� registers and functional unit according to the
c�step the circuit is in� Since there may also be multi�purpose units within the
functional unit� the operations to be performed may also depend on the c�step
and is therefore steered by the controller�

� Conclusion

We have described� how high level synthesis can be performed by a sequence of
logical transformations� Starting from the functional descriptions of data �ow
graphs� we have been able to successfully re�ne them into an RT�level hardware
description� The novelty of our approach lies in the exploitation of the existing
knowledge in synthesis in a logically correct manner�

Controller

i

MUX FU MUX

o

Registers

Fig� �� Abstract implementation for general type A speci�cations

This style of formal synthesis will be acceptable to most users since they
can proceed with their designs in a customary manner and yet have correct�
ness without getting into the hardship of logic� In the post�synthesis veri�cation
approach� however� the proof has to be �guessed� rather than constructed by
derivation�

We have shown� that formal synthesis is an appropriate approach in high level
synthesis and that it is possible to formally embed existing synthesis algorithms�
We believe� that also in other areas of hardware design� formal synthesis can be a
good alternative to the classical synthesispost�synthesis�veri�cation approach�
Still� our approach of formally embedding the synthesis process has only been
applied to particular synthesis algorithms in order to prove its applicability� It
is our intention to provide a formal synthesis toolbox containing formally based
synthesis procedures that cover the entire synthesis from the algorithmic level
down to the logical level� We still have a long way to go� but we believe� that we
have an interesting starting point�

References

�AHL��� AHL� Lambda Reference Manual� �����
�CaWo��� R� Camposano and W� Wolf� High�Level VLSI Synthesis� Kluwer� Boston�

�����
�Davi��� R� E� Davis� Truth� Deduction� and Computation� Logic and Semantics for

Computer Science� Computer Science Press� New York� � edition� �����
�Day��� Nancy Day� A comparison between statecharts and state transition assertions�

In Luc Claesen and Michael Gordon� editors� Higher Order Logic Theorem

Proving and Its Applications� pages �
������ Leuven� Belgium� November
����� North�Holland�

�FoMa�	� M�P� Fourman and E�M� Mayger� Formally Based System Design � Interac�
tive hardware scheduling� In G� Musgrave and U� Lauter� editors� Interna�
tional Conference on Very Large Scale Integration� pages �	������ Elsevier
Science Publishers �North�Holland�� ���	�

�GoMe�� M�J�C� Gordon and T�F� Melham� Introduction to HOL� A Theorem Proving

Environment for Higher Order Logic� Cambridge University Press� ����
�Gupt��� A� Gupta� Formal hardware veri�cation� Formal Methods in System Design�

������������� �����
�HaLD��� F�K� Hanna� M� Longley� and N� Daeche� Formal synthesis of digital sys�

tems� In IMEC�IFIP Workshop on Applied Formal Methods for Correct VLSI

Design� pages ����
�� Leuven�Belgium� ����� Elsevier Science Publishers
B�V�

�John�
� S� D� Johnson� Synthesis of Digital Designs from Recursion Equations� MIT
Press� ���
�

�JoWB��� S�D� Johnson� R�M� Wehrmeister� and Bhaskar Bose� On the interplay of
synthesis and veri�cation� In IMEC�IFIP Workshop on Applied Formal Meth�

ods for Correct VLSI Design� pages ���
	
� Leuven�Belgium� ����� Elsevier
Science Publishers B�V�

�Lars�
� M� Larsson� An engineering approach to formal system design� In Thomas F�
Melham and Juanito Camilleri� editors� Higher Order Logic Theorem Prov�

ing and Its Applications� pages 		���� Valetta� Malta� September ���
�
Springer�

�Loew��� Paul Loewenstein� A formal theory of simulations between in�nite automata�
In Luc Claesen and Michael Gordon� editors� Higher Order Logic Theorem

Proving and Its Applications� pages �����
�� Leuven� Belgium� November
����� North�Holland�

�MaFo��� E�M� Mayger and M�P� Fourman� Integration of formal methods with system
design� In A� Halaas and P�B� Denyer� editors� International Conference on

Very Large Scale Integration� pages ����	� Edinburgh� Scotland� August �����
IFIP Transactions� North�Holland�

�Melh�� T� Melham� Higher Order Logic and Hardware Veri�cation� Cambridge Uni�
versity Press� ����

�Paul��� P� G� Paulin� Global Scheduling and Allocation Algorithms in the HAL Sys�
tem� In R� Camposano and W� Wolf� editors� High�Level VLSI Synthesis�
pages �������� Kluwer Academic Publishers� �����

�RoKr��� W� Rosenstiel and H� Kr�amer� Scheduling and Assignment in High Level
Synthesis� In R� Camposano and W� Wolf� editors� High�Level VLSI Synthe�
sis� pages ������ Kluwer Academic Publishers� �����

�ScKK�� K� Schneider� R� Kumar� and Thomas Kropf� Alternative proof procedures
for �nite�state machines in higher�order logic� In Je�rey J� Joyce and Carl�
Johan H� Seger� editors� Higher Order Logic Theorem Proving and Its Appli�

cations� pages ������� Vancouver� B�C�� Canada� August ���� Springer�

This article was processed using the LATEX macro package with LLNCS style

