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Abstract. This paper introduces a general scheme for formally embed-
ding high level synthesis by formulating its basic steps as transforma-
tions within higher order logic. A functional representation of a data
flow graph is successively refined by means of generic logical transforma-
tions. Algorithms that are based on logical transformations guarantee
“correctness by design”. They not only construct an implementation but
also derive the proof for its formal correctness, on the fly. An extra post-
synthesis-verification step becomes obsolete. The logical transformations
presented in this paper form a framework for formally embedding exist-
ing high-level-synthesis procedures.

1 Introduction

Guaranteeing functional correctness in hardware synthesis is an essential but
demanding task. This is due to the complexity of synthesis tools and the under-
lying synthesis algorithms. Hence various forms of formal verification techniques
are employed to prove the correctness of the implementations, resulting from
the synthesis process [Melh93, ScKK93, Gupt92]. However the applicability of
formal verification tools within the synthesis context is limited, since the proof
of the goal “implementation = specification” is very complex.

Post-synthesis verification is an exacting goal. Full automation can only be
achieved for small sized circuits on lower levels of abstraction. For large sized
circuits, verification algorithms either run into space/time hurdles or the user
has to interact and perform some proofs by hand.

Conventional synthesis algorithms just determine the implementation — the
information on how the specification was refined into an implementation gets
lost. The loss of this information is a major bottleneck for verification. The veri-
fication process gets just two logical formulae corresponding to the specification
and the implementation. On the other hand, synthesis is split-up into a set of
well-defined steps, namely scheduling, allocation and binding, and furthermore
there exists a vast body of knowledge for solving these steps in an effective
manner [CaWo91, Paul91, RoKr91]. We therefore propose a technique for “for-
mal synthesis” which closely adheres to the steps of conventional synthesis and
additionally exploits the knowledge available.



The idea of formal synthesis is in itself not new. One of the early attempts
dealt with the conversion of regular expressions into hardware circuits [John84].
Later, a number of techniques were proposed for interactively refining the spec-
ifications into implementations [Lars94, HaLD89, JoWB&89, AHL92, MaFo91,
FoMa90]. All these above-mentioned techniques have one common drawback,
namely they do not exploit the knowledge of the algorithms which abound in
synthesis. The novelty of our current approach is that no new synthesis algo-
rithms (either formal or informal) are proposed, but a general scheme for logi-
cally embedding various existing synthesis algorithms within a formal set-up is
presented.

The outline of this paper is as follows: we first briefly examine the synthesis
problem and define the notations and scope of our work. Then we describe the
formal techniques for scheduling, allocation and binding, respectively.

2 Basics of the “Formal Synthesis” Scenario

Starting from an algorithmic description, which does not incorporate timing
explicitly, the overall aim of high level synthesis is to extract the data path and
the controller. The major steps in synthesis are:

scheduling under restrained /unrestrained resource constraints
allocation

binding

determination of the RT-level implementation
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2.1 Our Starting Point

The approach given in this paper deals with synthesis based on data-flow graph
representations only. We represent the given data flow graph by a typed func-
tion g, and proceed with the various steps of synthesis. The sequential circuit
corresponding to ¢ will then repeatedly determine g(z), for the various values
of x. Since we use typed functions, a single input x is sufficient to represent any
number of inputs corresponding to any type, since they can all be bundled to-
gether into a single . The type definition uniquely determines the set of inputs
and outputs. We will clarify this notion shortly.

2.2 An Example for g

Throughout this paper we shall illustrate the various steps of synthesis via an
example named myg. myg maps a triple (a,b,c) onto the pair (z,y) as defined
by the pseudo-procedural description in figure 1. Assuming that all the variables
used are of the type natural numbers num, the overall type of the function is

num X num X num — num X num



As basic operations there are the binary operations +, — and * and the unary
operation inc. The operator inc maps some x to x + 1. Since the intermediate
results are used within the succeeding expressions, they will be named explicitly.
In our example they are named p, ¢, 7, s and ¢t. The data flow diagram which
corresponds to the procedural code is given in figure 2.

Procedure myg/(
inputs: a,b,c:num;
outputs: x,y:num)

begin
P = a * b;
q = inc(c);
r=p*q;
s =b + c;
t=p- s;
X =1r + t;
y=r1r % t;

end

Fig. 1. Pseudo procedural code for the example g = myg
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Fig. 2. Dataflow Diagram for myg

2.3 Remarks about the Notation

We will use A-calculus expressions to denote functions (see [Davig9] for an intro-
duction to the A-calculus). let-terms will be used for representing S-redices. Let
x be a variable, v be an arbitrary term having the same type as x and w denote
an arbitrary term, where there may be free occurrences of z. In the expression

letx =vinw
the variable x is used as an abbreviation for v in the expression w. The expression

w[v/x] is the expression, that can be obtained by substituting every occurrence
of z in w by v. w[v/x] is equivalent to the let-term above.



2.4 Formal Representation of g

Using let-terms to express the auxiliary variables in figure 2, g can be described
by means of A-abstraction over a tuple consisting of all inputs. In our example the
input is a triple (a, b, c), there are 7 let-terms — one for each auxiliary variable
— and there is a pair of outputs (z,y) (see equation (1)).

F myg =
Aa, b, c).
letp=axb in
let ¢ = inc(c) in
letr = pxq in

let s=b+cin (1)
lett =p—sin
letz=r+tin
lety = r=t in
(2, y)

On comparing the pseudo-procedural code in figure 1 with the definition in
equation (1), a direct one-to-one correspondence can be noticed. A little bit
of formal syntactic sugaring yields the definition. This is true, if the pseudo
procedural code consists of purely basic blocks.

2.5 The Formal Synthesis Scheme

Having defined the basics we will now proceed to give a gist of the overall formal
synthesis scheme:

1. Convert the initial data flow graph into a functional representation.

2. Use an algorithm for scheduling, allocation or binding which performs the
respective task on the data flow graph and gives us a schedule, allocation or
binding, respectively.

3. Apply the pre-proven generic transformations for each task on the data flow
graph along with the results of the algorithm.

4. Obtain a transformed function which is equivalent (in the logical sense) to
the original description.

5. Derive the RT-level implementation from the transformed function.

Step 3 - the heart of the overall strategy, has been made possible by meticulous
proofs of the generic transformations. They take in a function and the results
of a specific synthesis step, and produce a new function which represents the
end product of that specific synthesis step. Thus we are able to exploit all the
optimizations that are offered by a particular algorithm and additionally, these
transformations are automated and also not time-consuming. In the following
sections, we shall show the transformed functions corresponding to the steps:
scheduling, allocation and binding. The entire synthesis scheme will be imple-
mented using the HOL theorem prover [GoMe93].



3 Scheduling

Scheduling determines the number of control steps (c-steps) for each calculation
period! and assigns each operation to one particular c-step 0...n. Given a spe-
cific n, the basic idea of the “schedule transformation” is to break up the original
function g into a sequence of functions ¢°,¢',...g", so that the composition of
these functions yields the original function, i.e. g = g o g" 1 o...0g°.

In our example, there are 7 operations, whose outputs are the auxiliary vari-
ables p, ¢, r, s, t, x and y. We will also use the names of the auxiliary variables
to denote the operation that produces this variable. Operation s, for example,
is the first 4+ operation and the auxiliary variable s is its output.

Let us assume, that it is intended, that only two circuits are used: one multi-
plier and one multi-purpose unit for adding +, subtracting — and incrementing
inc. Under this hardware constraint several schedules are possible. Any arbitrary
algorithm may determine the schedule.

In our example we will use the schedule sketched in figure 3: in c-step 0, s is
processed, in c-step 1, p and ¢ are processed, in c-step 2, r and ¢ are processed
and in c-step 3, z and y are processed. In this schedule n becomes 3. There are
also schedules for myg with n # 3, but under the given restrictions, n = 3 is the
minimum.
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Fig. 3. Split Dataflow Diagram

The scheduled function myg will be described by means of a composition
of four functions myg = ¢° o g% o g' o ¢°, where the functions ¢°, ¢', g% and
g perform the computations of c-step 0, 1, 2 and 3 respectively. The formal
representation of the transformed function (theorem (2)) is derived by means
of applications of the o operator definition, expansion of let-expressions and by
[B-reductions.

It is easy to visualize that this transformation does not depend upon the
scheduling algorithm itself, nor do we place any undue demands on the algorithm,
except that it returns a schedule that obeys the data dependencies.

! Tt is also possible, that the number of c-steps is already given in the specification.
Then only the assignment of operations has to be performed.



let
d° =Xa,b,c).let s=b+cin (a,b,s,c) and
g* = Xa,b,s,c).let p=axbinletq=inc(c)in (p,s,q) and
5 _ o _ - (2)
g =Xp,s,q).lett =p—sinletr =px*qin (rt) and
=X\ t).letz=r+tinlety=r*tin(z,y)

4 Allocation of Registers

The register allocation determines the number of registers that is needed for the
implementation. Usually the scheduling algorithms already take the functional
resource constraints into account.

When functions ¢°, ¢',...g¢" are composed in the mathematical world, the
output of a function ¢’ is the input of the function ¢’+!, given 0 < j < n. How-
ever, in the hardware context, registers are needed to store the values between
two control steps. The total number of registers always equals the maximum
number of outputs produced by any g7, 0 < j < n. This implies that when any
of the functions ¢’ have lesser number of outputs, then some extra variables are
added to the outputs of ¢/ and the inputs of ¢’+!, so that the overall number is
m. These variables can carry any arbitrary values since they are never used.?

In our example four variables have to be buffered after c-step 0, three after
c-step 1 and two after c-step 2. Therefore, we add one auxiliary variable 2! after
c-step 1 and two auxiliary variables 22 and 23 after c-step 2 (see figure 4). The
formal representation is given in theorem (3).

5 Binding of Registers

During register binding, variables are tied onto specific registers. The register
binding is represented as the ordering of the variables within the tuples — i.e.
register binding will be formally expressed by giving the variables a specific
order.

In our example four registers are needed. They are named »!, r2, r® and
r*. After c-step 0 they are used for storing a, b, s and c, after c-step 1 they
are used for storing p, s, ¢ and z' and after c-step 2 they are used for storing
r, t, 22 and z3. The mapping between the variables and the registers has to
be optimized in order to avoid unnecessary variable transfers between registers.
Such optimizations can be done by conventional synthesis algorithms outside the
logic, and then be integrated within our formal synthesis environment.

The determination of register binding is performed again outside the logic.
The result of register binding is a table describing the mapping between variables

2

2 In general, there may be auxiliary variables with different types. Different sizes of
registers will be needed to store them and optimization during register allocation
may become more complex.
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Fig. 4. Allocation of Registers

F myg =

let

g% =X(a,b,c).let s =b+cin (a,b,s,c) and

g =Xa,b, s c) let p=a*binlet g =inc(c)in (p,s,q,2") and

g% = /\(psq7 ).Iett=p—sinIetr:p*qin(r,t,zQ,z?’) and (3)
g =A(rt,2%, 2% . letz =r +tinlety =r*tin (z,y)

in

g*0g®oglog®

and registers and this table is the basis for our next logical transformation step.
Let us assume, that the register binding of table 1 is to be applied.

Registers|after c-step O|after c-step 1|after c-step 2

Tl a 4 T

r? b q t

7’3 S S 22

T4 C Zl Z3

Table 1. Register Binding

From now on, we will not use the auxiliary variable names p,q,r,... any
more but replace them by register names r',r2,73,.... In each of the functions
¢°,g*, ... the names r!,r2, 73, ... are used to represent the register values before
the evaluation of the function and r'’, 72", r3’, ... are used to indicate the register

values after the evaluation of the function. Variable renaming is performed by a-
conversion (see [Davi89]). The formal representation of the result of the register
binding in theorem (4) is achieved by expansion of the o operators and let-
expressions and S-reductions.



9° g s 9°

_“*®4’T® 5
b @/ﬂ,ﬂ/’
c—kn\@q @—»y

B
e

Fig. 5. Binding of Registers

F myg =
Iet
/\(a,b,c).
DY ! ! .
Ietr1 =agandr? =bandr® =b+candr* =cin
11 of 3l 4l
(T 7T 7T 7T )
and
1_ 1.2 3 .4
g _)\(T 7r 77’ 7’]" )'
, . o7 . ’ ’ .
let »!" = r! % r? and r? :lnc(r4)and r¥ =r®andr? =2zlin
17 2l 3l 4l
(T 7T 7T 7T )
and (4)
2 _ 1.2 3 .4
g _)\(T 7r 77’ 7’]" )'
! ! ! i .
let v =rtxr?2andr? =r' —r2and r® =22 and r* =23 in
17 27 37 41
(T ,’]" 7r 7r )
and
3 _ 1.2 3 .4
g _/\(T ST, T, T )
let z =r'+r2inlety =rl*rin
(z,y)
in
3 2 1_ 90
g 0g o0g og

6 Allocation and Binding of Functional Units

In this step of the algorithm, we construct a compound functional unit FU pro-
viding the operators for implementing the operations of each c-step (allocation),
and we use the compound functional unit FU to implement the operations of
the dataflow graph (binding).

As already mentioned earlier, only two operation units are needed in our
example: one multiplier (named multiplier) and one multi-purpose unit (named
multipurpose) for adding, subtracting and incrementing. Their formal specifica-
tions are given as below. Such descriptions are assumed to be given in a library
which defines the abstract RT-level components. The correctness of such compo-



nents is beyond the scope of this paper and can be performed using conventional
verification techniques.

F multiplier(a,b) =a x b

F multipurpose((d,e),Add) =d +e
multipurpose((d, e),Sub) = d — e
multipurpose((d, e),Inc) =d + 1

The multi-purpose unit has ((d,e), c) as input. d and e are data inputs and ¢ is
a control input for selecting the function. ¢ may have one of the values Add, Sub
and Inc and the corresponding output is d + e, d — e and d + 1, respectively.

In theorem (5) the functional unit FU is provided. It consists of one multiplier
and one multi-purpose unit. It’s input (((a, b), (d,e)), ¢) consists of two parts: a
data input ((a,b), (d,e)) and a control input c. The result is a pair consisting of
the product of a and b and the result of applying d and e to the multi-purpose
unit, where the control of the multi-purpose unit is c.

In general there may be several operations of each type and optimizations in
the binding between operations and functional units may reduce communication
costs. In our small example the binding is unambiguous, since in each c-step
there is always no more than one operation of each type.

Remark: In c-step 0, the multiplier unit remains unused. Arbitrary values z
and z® are its input and the output (named z7) is not connected to the output
of ¢°. Since there is only one operand needed during the inc-operation in c-step
1, one of the data inputs becomes redundant. An arbitrary value z® is assigned
to this input.

Theorem (5) is derived by applying the definitions of FU and the specifications
of the multiplier and the multipurpose component.

5

7 Derivation of the RT-Level Implementation

This section describes, how the preprocessed algorithmic description is converted
into a RT-level description. Before this step can be performed, we must describe
the temporal relationships between the algorithmic and RT-levels, i.e. we must
describe, how the circuit evaluating ¢ interfaces with its environment. We will
call these relations as communication schemes.

7.1 Communication Schemes

The datapath oriented synthesis algorithm described until now is an adequate
basis for deriving implementations for different kinds of simple communication
schemes. All hardware descriptions, that may be implemented by our approach
must have a fixed number of c-steps 0...n for each evaluation cycle. In c-step 0,
the circuit reads z from the input 7, in the succeeding c-steps it calculates g(z)
and at c-step n it assigns ¢g(z) to the output o.

We present, two possible communication schemes describing the behavior of
the circuit in an entirely different manner.



F myg =
let
FU = X(((a,b), (d,e)),c). (multiplier(a, b), multipurpose((d, €), c))

in

let
g° = /\(a,b, c).
let (2°,7%") = FU(((z%, %), (b, ¢)), Add) and
Pt —aandr =bandr? =cin
( 17 2/ 3/ 7”4,)
and

gl = /\(T 7‘2,7‘3,7“4).

let (r'', 2’) = FU(((r',r?), (r, 2*)), Inc) and
r3, =r®andr* =z in (5)
(7’1, 7’2, 7’3, 7’4,)

and
g2 = (rt, 2 3 ).

let (r'',7?") =FU(((r1,r ), (r*,7%)),Sub) and

and

9> = A"
let (= ,y)
(z,y)

n

g*og°og'og’

II%

Specification A: self-starting evaluation The circuit starts its first compu-
tation cycle at time 0. It immediately restarts a new computation whenever
the old calculation cycle has finished. Such a circuit will always be busy.
Formalization:

specA(g,n,i,0) =
(Vz. o((n+1)x(z+1)—1) =g(i((n+ 1) xx)))
Remark: g s the function to be evaluated, n is the number of c-steps, @
is the input and o is the output. Given such a formalization, the overall
specification can be written as:
In. specA(g,n,i,0)

Specification B: event-driven evaluation At time 0, the circuit starts in a
nonbusy state. The circuit begins a computation cycle whenever it is not
busy and gets a specific stimulus from an input signal start.

Requirements:

— the circuit is not busy at time 0

— if at time ¢ the circuit is not busy and there is no start signal at time ¢,
then the circuit will not be busy at time ¢ + 1.

— if at time ¢ the circuit is not busy and there is a start signal at time ¢,
then the circuit will be busy during [t + 1,t 4+ n], produce the required
output at time ¢ + n and be ready for new input at time ¢ +n + 1.

Formalization:



specB(g,n,i,0) =
dn.

(—busy(0) ) A
(Vt. =busy(t) A —start(t) = —busy(t + 1)) A

(Vt. =busy(t) A start(t) =
Vm:t+1<m <t+n.busy(m) A
oft +n) = g(i(t)) A
—busy(t + n+1))
The overall specification for such circuits is:
In. specB(g,n,i,0)

7.2 Implementation Templates

For a given function ¢ and a communication scheme such as specA(g,n,,0) or
specB(g,n,i,0) an RT-level implementation is to be derived. It is assumed that
g has already been preprocessed according to the synthesis steps described in
sections 3 through 6 so that g has the form given in (5).

It is not our intention to try and find an implementation and prove its cor-
rectness whenever we have successfully processed synthesis steps 3 through 6.
Instead we use generic implementation descriptions for given communication
schemes and prove a theorem stating that the generic implementation descrip-
tions fulfills the communication scheme. During synthesis, this theorem is just
instantiated and thereby the correct implementation is derived from the specifi-
cation.

For lack of space, we cannot give a complete description on how the imple-
mentation is described within higher order logic and how the correctness proof
is performed. Figure 6 gives a sketch of how a general implementation of the
specification specA(g,n,i,0) looks like. It is assumed that ¢ has the shape as
in (5). The controller is a simple modulo-n-counter with n being the number
of c-steps. In the middle there is the functional unit as described in section 6.
The MUX-circuits on the left and right of the functional unit determine the
data flow between input, output, registers and functional unit according to the
c-step the circuit is in. Since there may also be multi-purpose units within the
functional unit, the operations to be performed may also depend on the c-step
and is therefore steered by the controller.

8 Conclusion

We have described, how high level synthesis can be performed by a sequence of
logical transformations. Starting from the functional descriptions of data flow
graphs, we have been able to successfully refine them into an RT-level hardware
description. The novelty of our approach lies in the exploitation of the existing
knowledge in synthesis in a logically correct manner.
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Fig. 6. Abstract implementation for general type A specifications

This style of formal synthesis will be acceptable to most users since they
can proceed with their designs in a customary manner and yet have correct-
ness without getting into the hardship of logic. In the post-synthesis verification
approach, however, the proof has to be “guessed” rather than constructed by
derivation.

We have shown, that formal synthesis is an appropriate approach in high level
synthesis and that it is possible to formally embed existing synthesis algorithms.
We believe, that also in other areas of hardware design, formal synthesis can be a
good alternative to the classical synthesis/post-synthesis-verification approach.
Still, our approach of formally embedding the synthesis process has only been
applied to particular synthesis algorithms in order to prove its applicability. It
is our intention to provide a formal synthesis toolbox containing formally based
synthesis procedures that cover the entire synthesis from the algorithmic level
down to the logical level. We still have a long way to go, but we believe, that we
have an interesting starting point.
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