
In Science of Computer Programming 20, 1993, 3-50.
[10] L. Chung: Representation and utilization of non-functional requirements for information

system design. InAdvanced Information Systems Engineering, R. Andersen et al., eds.
LNCS 498, Springer, Berlin, 1991, 5-30.

[11] J. Mylopoulos, L. Chung, and B. Nixon: Representing and using non-functional require-
ments: a process-oriented approach. InIEEE Transactions on Software Engineering 18(6),
1992, 483-497.

[12] L. Chung, P. Katalagarianos, M. Marakakis, M. Mertikas, J. Mylopoulos, and Y. Vassiliou:
Mapping information systems requirements to designs. InDatabase Applications Engi-
neering with DAIDA, M. Jarke, ed. Research Reports ESPRIT Project 892 DAIDA Vol. 1,
Springer, Berlin, 1993, 243-280.

[13] A. Shaw: Reasoning about time in higher level language software. InIEEE Transactions
on Software Engineering 15(7), 1989, 875-889.

[14] C.U. Smith and L.G. Williams: Software performance engineering: a case study including
performance comparison with design alternatives. InIEEE Transactions on Software En-
gineering 19(7), 1993, 720-741.

[15] D.N. Card with R.L. Glass:Measuring Software Design Quality. Prentice Hall, Englewood
Cliffs, 1990.

[16] C. Potts and G. Bruns: Recording the reasons for design decisions. InProceedings of the
10th International Conference on Software Engineering (Singapore, April 11-15), 1988,
418-427.

[17] J. Lee: Extending the Potts and Bruns model for recording design rationale. InProceedings
of the 13th International Conference on Software Engineering (Austin, Texas, May 13-17),
1991, 114-125.

[18] K. Poeck, D. Fensel, D. Landes, and J. Angele: Combining KARL and configurable role
limiting methods for configuring elevator systems. InProceedings of the 8th Knowledge
Acquisition for Knowledge-Based Systems Workshop KAW’94 (Banff, Canada, January
30 - February 4), 1994.



evaluation of factors contributing to the satisfaction of non-functional requirements,
while, e.g., [11] focus on qualitative aspects which, in our opinion, are more prone to
subjective bias. The problem with quantitative measures lies in the difficulty to identify
or develop reliable metrics, i.e. metrics which actually allow to predict the effect on the
associated requirement. Furthermore, in the MIKE framework, metrics are required
which allow to rate requirements on the basis of the design in contrast to metrics which
estimate the final code. The importance of such measures is substantiated by the insight
that “the greatest potential leverage for software measurement lies in design, not code,
analysis” ([15], p. 3).

The model adopted in MIKE for describing design rationale is based on earlier work by
[16] and [17] which promote an issue-based style, basically consisting of setting up
questions and providing potential answers. In MIKE, a more result-oriented stance is
taken and design decisions are linked to requirements more directly. It is not attempted
to capture the discourse leading to the preference of one possible solution over others
in order to avoid putting too much additional overhead for documentation on the design-
er.

Currently, work is in progress which aims at gaining more experience with the design
framework in MIKE and, particularly, its treatment of non-functional requirements by
applying it to complex problems such as, e.g., the configuration of elevator systems
[18].

6 References
[1] D. Landes and R. Studer: The design process in MIKE. InProceedings of the 8th Knowl-

edge Acquisition for Knowledge-Based Systems Workshop KAW’94 (Banff, Canada, Janu-
ary 30 - February 4), 1994.

[2] D. Landes: Development of knowledge-based systems on the basis of an executable spec-
ification. In Expertensysteme ‘93, F. Puppe and A. Günter, eds. Springer, Berlin, 1993,
139-152 (in german).

[3] J. Angele, D. Fensel, D. Landes, S. Neubert, and  R. Studer: Model-Based and Incremental
Knowledge Engineering: The MIKE Approach. InKnowledge Oriented Software Design,
J. Cuena, ed. IFIP Transactions A-27, Elsevier, Amsterdam, 1993, 139-168.

[4] D.O. Williams, C. Tomlinson, C.K. Bright, and T. Rajan: The CommonKADS quality
viewpoint. Technical report KADSII/T2.2/TR/LR/0040/1.0, Lloyd’s Register, London,
1992.

[5] S.E. Keller, L.G. Kahn, and R.B. Panara: Specifying software quality requirements with
metrics. InSystem and Software Requirements Engineering, R.H. Thayer and M. Dorfman,
eds. IEEE Computer Society Press, Los Alamitos, 1990, 145-163.

[6] G. Guida and G. Mauri: Evaluating performance and quality of knowledge-based systems:
foundation and methodology. InIEEE Transactions on Knowledge and Data Engineering
5(2), 1993, 204-224.

[7] B.W. Boehm: A spiral model of software development and enhancement. InIEEE Compu-
ter 21, 1988, 61-72.

[8] D. Landes: DesignKARL - A language for the design of knowledge-based systems. InPro-
ceedings of the 6th International Conference on Software Engineering and Knowledge En-
gineering SEKE’94 (Jurmala, Latvia, June 20-23), 1994.

[9] A. Dardenne, A. van Lamsweerde, and S. Fickas: Goal-directed requirements acquisition.



product which are affected by the design decision to be evaluated.

The question whether an analytical evaluation of design decisions or an evaluation by
prototyping should be preferred in a particular context depends on the nature of the in-
volved requirements: some of the requirements are amenable to quantitative measure-
ment while others can be evaluated more easily by means of prototyping. Among the
non-functional requirements that are particularly addressed in MIKE, maintainability
and portability are members of the first category, while understandability, reliability
and environmental requirements belong to the second. Both approaches are possible to
evaluate efficiency aspects. Clearly, the decision whether the selection of a design al-
ternative should be based on the evaluation of a prototype or on a quantitative evalua-
tion also depends on factors, such as, e.g., the availability of useful measures, the
required effort for the computation of measures vs. the required effort for constructing
a prototype, etc. If neither type of evaluation can be used, the selection of a design al-
ternative has to be based on qualitative considerations similar as proposed in, e.g., [11].

5 Discussion

The main contribution of the MIKE design approach is the explicit integration of the
treatment of non-functional requirements into KBS development which has several
benefits. First of all, the design process itself is made more transparent since the record
of design decisions and their rationale helps the designer to avoid repeating erroneous
design decisions as well as inadvertently undoing earlier design decisions simply be-
cause the reasons have got lost why they initially had been made. Furthermore, design
decisions and rationale are described in a formalism [8] which is amenable to automated
processing in order to provide intelligent support to the designer in a similar fashion as
envisioned in the mapping assistant in [12] (this type of support has not been addressed
in MIKE so far). Furthermore, the explicit connection between requirements and affect-
ed portions of the design product ensures traceability of requirements. Similarly, this
also holds for functional requirements since design decisions link two versions of the
design product such that parts of the final design can be traced back to corresponding
sections of the model of expertise and even further back to parts of a semiformal de-
scription of expertise [3]. The explicit description of design decisions and their conjunc-
tion to requirements is also indispensable if not only parts of the specification (i.e.
generic, implementation-independent descriptions of problem-solving methods), but
also corresponding designs are to be reused since it is then much easier to determine
which design decisions are still applicable in a new context and which others must be
treated differently.

The ideas concerning the treatment of non-functional requirements are considerably in-
fluenced by similar work in the context of information systems design, notably the DA-
IDA project ([10], [11], [12]). The major difference between this work and the approach
taken in MIKE lies in the fact that different types of requirements are considered most
relevant in the two domains and that MIKE puts more emphasis on the quantitative



ment, i.e. the portion of the design product to which it refers, may be made more spe-
cific, for instance, the aim for efficiency of the complete system may be reduced to
efficiency of a crucial subtask (or several crucial subtasks). Usually, goals can be de-
composed in several ways, i.e. there are several ways to reach a goal. Therefore, decom-
position of goals generally results in an AND/OR tree.

Besides the decomposition relationship, additional types of relationships may exist be-
tween goals. Since goals may be decomposed in various ways, the designer has to select
one of the available alternatives which seems to be most suitable in the given context.
The motivation for preferring one alternative over another can be expressed by means
of preferences. Preferences indicate, e.g., according to which criteria an alternative is
preferred over another. In some cases, the selection of an alternative may be due to the
fact that some potential alternatives are excluded because they are incompatible with
previous design activities or, conversely, implied by earlier activities. These circum-
stances can be expressed asimplications or exclusions between subgoals. Furthermore,
the basic quality of interdependencies between requirements can be described by means
of correlations. Correlations indicate if actions taken to satisfy one requirement posi-
tively or negatively affect the fulfilment of another requirement. For instance, efficien-
cy with respect to processing time and efficiency with respect to storage space are in
general inverselycorrelated. Often, a design alternative is chosen tentatively and has to
be withdrawn at a later stage of the design process when additional information has
been gained. This can be expressed as arevision to indicate which preferences are now
superseded.

4 Evaluation of Non-Functional Requirements

The choices between alternative ways to reach a goal are crucial steps in the design
process which should be grounded on a firm basis. Ideally, the selection of a design al-
ternative is based on a reliable quantitative estimate of what can be achieved with each
of the available alternatives. To that end, quantitative measures for the involved non-
functional requirements are necessary. In the context of evaluating, e.g., time efficien-
cy, estimates of the algorithmic complexity of the algorithms employed or execution
time estimates (cf., e.g., [13], [14]) may give an indication which alternative to choose.
Maintainability can be linked, e.g., to complexity: [15] show in a case study how com-
plexity may be used to predict, e.g., the effort required for maintaining a software sys-
tem. The complexity of a modular software design is determined by the
interconnectivity of modules and the internal complexity of individual modules, i.e. the
average number of “decisions” in the modules. Individual measures may then be com-
bined using a scheme similar to the one presented in [6].

Alternatively, a tentative decision for one of the alternatives may be substantiated by
running the current description of the design product as a hybrid prototype. The proto-
type then combines parts of the (executable) model of expertise with parts which have
already been mapped to the target language, in particular those portions of the design



requirements while the other one concentrates on non-functional requirements. Usually,
acquisition of functional requirements precedes acquisition of non-functional require-
ments. The identification or clarification of non-functional requirements can be facili-
tated by running a prototype. Such a prototype is available in MIKE due to the fact that
the model of expertise as the result of knowledge acquisition, i.e. the “document” cap-
turing the functional requirements, is described using an executable formalism. During
knowledge acquisition, this prototype first of all serves the purpose of evaluating the
developed model with respect to functional requirements whereas focus shifts to non-
functional requirements in the design phase.

3 Treatment of Non-Functional Requirements

Since the formalism for specifying the model of expertise is executable, an operational,
though usually inefficient, solution to the considered task is already available after each
cycle through the knowledge acquisition phase (a life-cycle model similar to Boehm’s
spiral model [7] is adopted in MIKE). Further development is driven by non-functional
requirements since these have not been addressed during knowledge acquisition. Nota-
bly, the efficiency of the solution has to be improved by developing appropriate algo-
rithms and data structures or the solution has to be integrated in a previously determined
hardware or software environment.

To that end, four basic types of design decisions have been identified ([1], [8]):realize,
which refines parts of the model by introducing algorithms and data structures,struc-
ture, which indicates the application of structuring primitives to decompose the overall
model to smaller, largely self-contained portions or externally visible modifications of
such portions,introduce, which refer to portions of the model which appear without be-
ing a refinement of previously existing parts of the model, andabandon, which indi-
cates that portions of the model are no longer needed and, thus, removed.

The motivation for performing an activity belonging to one of the four categories of de-
sign decisions lies in the aim to contribute to the satisfaction of a particular non-func-
tional requirement. Thus, we take a goal-oriented viewpoint on the design of KBS in a
similar way as it is done in [9] for requirements engineering and in [10], [11], and [12]
for information systems design, i.e. non-functional requirements are viewed as goals to
be achieved. In general, top-level requirements will be fairly unspecific, e.g., as a top
level goal it might be expressed that “the system should be efficient enough to respond
to a query within less than 10 seconds”. Unspecific means that it is not immediately
clear how such a requirement can be met or which portion of the system is affected by
the requirement in the first place. Therefore, goals are gradually decomposed into ele-
mentary subgoals which can be met by performing a collection of design decisions.
Two aspects may be used for achieving a decomposition. On the one hand, a require-
ment (i.e. a goal) may be reduced to a collection of more basic requirements. The global
aim for efficiency may, e.g., be reduced to efficiency with respect to processing time or
efficiency with respect to storage needs. On the other hand, the scope of the require-



In the following, non-functional requirements that turned out to be relevant for the de-
velopment of knowledge-based systems will be briefly characterised before their treat-
ment in the MIKE framework is sketched. In particular, the model for describing the
rationale behind design decisions and the role of non-functional requirements in this
model will be outlined. Finally, the approach taken in MIKE is discussed and put in re-
lation to similar work.

2 Non-Functional Requirements and KBS

The quality of KBS has become a research topic only recently. [4] address this issue in
the context of the CommonKADS framework for building KBS and provide a taxono-
my of factors which determine the overall quality of the system. The top levels of this
taxonomy very much resemble the ones that have been proposed for “conventional”
systems (cf., e.g., [5]). A different taxonomy proposed by [6] is basically characterised
by the distinction of factors affecting the behaviour of the system from factors associ-
ated with its ontology. In both proposals, no explicit distinction between functional and
non-functional requirements is made. These taxonomies indicate which types of re-
quirements must in principle be considered for being able to build a high-quality KBS.
On the basis of these taxonomies, important non-functional requirements to be ad-
dressed in MIKE currently include the following (the list is open for extension in a later
stage of the MIKE project):

• efficiency, i.e. the aspect whether the system can fulfil its task with the available
resources of processing time and storage space,

• maintainability, i.e. the question whether the system can easily be adapted to
changes in the environment or in case of detected insufficiencies,

• understandability, i.e. the ease of grasping how the system arrives at a solution,

• reliability in the sense of how robustly the system reacts to wrong or incomplete
case descriptions, missing knowledge, etc.,

• portability, i.e. how easily parts of the system can be transferred to other hard-
ware or software environments,

• requirements resulting from a fixed hardware / softwareenvironment or system
architecture.

As these requirements refer to the realisation of the KBS, they are in many cases not yet
clear in an early stage of the project, but evolve gradually when the functionality of the
system has been clarified. Furthermore, experts, i.e. persons that know how to solve the
task under consideration, are deeply involved in the formulation and evaluation of func-
tional requirements. However, these experts are experts in their domain, but usually not
in computer issues. Therefore, non-functional requirements usually cannot be acquired
from domain experts together with functional requirements, but rather must be acquired
separately at a different stage of development. Thus, there are basically two develop-
ment steps concerned with requirements acquisition, namely one focusing on functional



Addressing Non-Functional Requirements in the
Development of Knowledge-Based Systems

Dieter Landes

Institut für Angewandte Informatik und Formale Beschreibungsverfahren
Universität Karlsruhe, D-76128 Karlsruhe, Germany

e-mail: landes@aifb.uni-karlsruhe.de

We argue that non-functional requirements are the driving force behind the de-
sign decisions in the MIKE approach to the development of knowledge-based
systems. We outline the model adopted in MIKE to record the rationale of design
decisions by explicitly linking them to non-functional requirements and indicate
how the evaluation of the design wrt. the posed requirements can be integrated
into the development process.

1 Introduction

The main goal of a knowledge-based system (KBS) or, specifically, an expert system is
the ability to adequately perform a task which normally requires expert knowledge to
be carried out. For the type of problems considered, expertise does not only comprise
knowledge about the application domain, but also knowledge about how the problem in
question can be solved. Therefore, the specification of the system must, in contrast to
specifications in conventional software engineering, not only addresswhat functional-
ity the system must provide, but also has to pay attention tohow the required function-
ality can be exhibited, i.e. which steps have to be performed in order to solve the given
problem. Yet, aspects concerning therealization of the required functionality are still at
a different level. Therefore, issues of realization can be neglected as long as the focus
is on identifying the required functionality and may rather be addressed at a different
stage of development (cf. [1], [2]).

MIKE (Model-based Incremental Knowledge Engineering) [3] is a framework for the
development of knowledge-based systems which tries to integrate the benefits of life-
cycle models, prototyping, and formal specification techniques. In particular, the
above-mentioned types of considerations are carried out in different phases of the
MIKE life-cycle: while functional requirements are addressed in the knowledge acqui-
sition phase, aspects concerning the appropriate computational realization of the re-
quired functionality are emphasized in the design phase. This means in turn that
decisions in the design phase are primarily motivated by non-functional requirements,
or conversely, non-functional requirements constitute the justifications of design deci-
sions. In order to improve the transparency of the design process, a model for describing
the design rationale has been integrated in MIKE [1]. By the explicit consideration of
non-functional requirements, MIKE differs from many other knowledge engineering
approaches which mostly focus on functional aspects while non-functional issues only
play a minor, if any, role. Furthermore, MIKE explicitly ties non-functional require-
ments to those portions of the system design they affect.


