
Mechanisms for Structuring Knowledge-Based Systems

Dieter Landes and Rudi Studer
Institut für Angewandte Informatik und Formale Beschreibungsverfahren

Universität Karlsruhe, D-76128 Karlsruhe, Germany
e-mail: { landes | studer }@aifb.uni-karlsruhe.de

In order to reduce the complexity of large knowledge-based systems and promote re-
usability, means for decomposing them to smaller chunks are required. MIKE, our
knowledge engineering framework, provides three basic means for structuring which
are described in this paper: different kinds of knowledge are separated at different
knowledge layers, knowledge layers can be structured by modules, and knowledge
within modules is expressed in terms of an object-centred data model. In addition,
ideas from entity relationship model clustering are adapted and extended to facilitate
the understandability of domain knowledge and support the formation of modules.

1 Introduction
Two main principles for structuring programs evolved in computer science: modulari-
zation and object-orientation. While these mechanisms are commonly employed in
“conventional” programs in order to exploit their well-known benefits, the situation is
slightly different for knowledge-based systems (KBS). Common knowledge represen-
tation formalisms for KBS such as production rules, frames, or semantical networks im-
pose structure on the knowledge they embody by expressing it in terms of concepts or
rules, which are comparable to objects (and expressions involving such objects) in ob-
ject-oriented approaches with respect to granularity. In these representation formalisms,
however, usually no additional, more coarse-grained structuring primitives are availa-
ble which might constitute the counterpart to modules in traditional computer science.
Conversely, several proposals have been made for modularizing logic programs or log-
ical theories (cf., e.g., [9], [10], [11]). These proposals usually use modules or contexts
as the only structuring primitive, i.e. the contents of such structures are basically un-
structured collections of first order logic sentences.

Due to the complexity of KBS in realistic settings, appropriate structuring mechanisms
at different levels of granularity are required. For that reason, three types of structuring
mechanisms are available in MIKE (Model-based Incremental Knowledge Engineer-
ing), our framework for developing KBS [1]. MIKE provides three distinct layers to
separate domain knowledge, knowledge on inference steps, and knowledge on the con-
trol over these inference steps. This distinction is inspired by an analogous separation
in the KADS framework (cf., e.g., [12]) for knowledge engineering. The layer contain-
ing domain-specific knowledge (i.e. the domain layer) can be structured further by
means of domain modules, while portions of the two other layers (i.e. inference and task
layer) can be encapsulated in so-called processing modules. Domain and inference
knowledge in modules is expressed primarily in terms of object classes and objects, thus
introducing an object-centred notion.

Structuring systems using these three basic mechanisms facilitates understandability
since it allows to obtain global overviews as well as to go into the details of relevant
parts. Such an organization also supports maintenance since parts of the system that
must be adapted due to a changed context are easier to determine. Furthermore, reuse is

supported since constituents of the system interact in a controlled way, e.g., via inter-
faces in the case of modules.

In section 2 of this paper, we will shortly address the three knowledge layers and outline
the primitives of KARL ([2], [5], [3]), the formal and executable specification language
used for expressing knowledge at these layers in MIKE. The main parts of the paper
deal with the two types of modules (section 3) and with so-called clusters (section 4) as
additional structuring mechanism which is inspired by work on clustering entity rela-
tionship models. Clusters are intended to promote understandability and facilitate the
formation of domain modules. Section 5 puts the structuring mechanisms of MIKE into
perspective of related work and section 6 concludes the paper. Object classes and ob-
jects are not particularly addressed here since they are discussed at length in the context
of KARL. Language primitives for describing modules are part of DesignKARL, the
design language of MIKE [7]. It should be noted that the structuring primitives of MIKE
are not part of a particular implementation environment, but rather indicate how an ap-
propriately structured KBS might be realized within a suitable implementation environ-
ment.

2 Knowledge Layers
Like KADS (cf., e.g., [12]), MIKE distinguishes three types of knowledge each of
which is kept at a distinct knowledge layer. The domain layer contains domain-specific
knowledge while the inference layer comprises knowledge about inference steps that
might potentially be performed for solving a problem. Control over these inference
steps is not specified at the inference layer, but at the task layer. This separation of dif-
ferent knowledge types allows to describe problem-solving methods (i.e. inference plus
task layer) in a generic and domain-independent way, thus making it possible to reuse
problem-solving methods in a different domain or, conversely, reuse (parts of) a domain
model for a different application and problem-solving method. The description of the
problem-solving method is accomplished at two different layers as experience showed
that maintenance may become very complicated if control knowledge is intertwined
with the knowledge what the inference steps actually are.

Knowledge is described in MIKE using the declarative specification language KARL
[2] which is intended to be used during knowledge acquisition, i.e. focuses on concep-
tual issues. Therefore, KARL provides epistemological primitives which allow to mod-
el the knowledge of an expert precisely without immediately casting it into the
peculiarities of a particular representation formalism. To that end, KARL uses primi-
tives which resemble the primitives of (extended) entity relationship models, data flow
diagrams, and structured program flow diagrams. Domain knowledge is expressed ba-
sically in terms ofobjects (denoting individual entities in the domain of discourse to-
gether with their properties),classes (denoting concepts), andpredicates (describing
relationships between entities). Additionally, sufficient conditions for properties of ob-
jects or tuples of predicates can be expressed as Horn clause expressions. Knowledge
about inference steps is expressed mainly by means of (elementary or composed)infer-
ence actions androles. Inference actions correspond to processes in data flow diagrams.
Like hierarchical data flow diagrams, composed inference actions can be decomposed,
resulting in a collection of roles and more elementary inference actions. The behaviour

of elementary inference actions is specified declaratively with Horn clauses. Roles cor-
respond to data stores in data flow diagrams, i.e. provide input to or collect output of
inference actions. Roles are associated with class and predicate definitions establishing
the terminology of the problem-solving method. Some roles (namely, views and termi-
nators) are connected to the domain layer, thus making domain knowledge accessible
to inference actions. Finally, control knowledge is expressed by means ofprograms
which are calls to inference actions, assignments to boolean variables, or more complex
constructs built by sequence, alternative, and iteration. Programs may be combined to
subtasks, which constitute the analogue to composed inference actions at the inference
layer and define their internal control flow. The connection between task and inference
layer is established by the fact that inference actions can be called at the task layer.

3 Modules
The distinction of knowledge layers in MIKE is one step towards decomposing large
software systems into manageable pieces. Additionally, MIKE collects data objects
sharing the same properties in classes and encapsulates descriptions of properties (i.e.
attributes) with the objects they apply to. Still, additional means for imposing structure
on a KBS are required between these opposite ends of the spectrum of granularity. Mod-
ules are an appropriate additional structuring primitive since they further reduce the
overall complexity by splitting a software system into meaningful and manageable
pieces while bringing about the advantages of information hiding.

The separation of knowledge layers and the notion of concepts and individual entities
is part of the conceptual model underlying MIKE. Therefore, these structuring mecha-
nisms are already present in KARL (and even in a preceding semiformal representa-
tion). The definition of modules, however, is a matter of realization, to be addressed
during system design, rather than a conceptual issue. Consequently, modules are intro-
duced as a language primitive of DesignKARL [7], which extends KARL by the ability
to express realization-oriented aspects. In order to facilitate maintenance, the design
phase in MIKE aims at preserving the structure of the model developed in the analysis
phase, in particular the distinction between domain knowledge and domain-independ-
ent knowledge about the problem-solving method. Therefore, DesignKARL provides
two types of modules, namelydomain modules andprocessing modules.

3.1 Domain Modules

Domain modules collect related domain knowledge in a single place. A module may use
knowledge defined elsewhere as well as supply knowledge to other modules. Access to
external knowledge, i.e. classes and predicates, is restricted by module interfaces:
knowledge defined elsewhere may be used only if it is mentioned in the import interface
of the module intending to use it and if another module makes the knowledge available
in its export interface. Imported knowledge may be renamed. Additional classes and
predicates may be defined in the declaration part. In the body, extensions of classes and
predicates from the interface and declaration parts are described by means of Horn
clauses or simple facts. The body comprises an additional subsection for facts that are
subject to change when the system is solving another case, thus distinguishing case data

from knowledge which is constant across different cases. A subset of imported and lo-
cally defined classes and predicates may be exported to other modules. Exporting class-
es or predicates implies that their extension will also become known to the importing
module. Elements of object classes and tuples of predicates cannot be exported selec-
tively. The rules defining the extension are not accessible, but determine the semantics
that must be respected by the importing modules (cf., e.g., [10]).

Example 1: [8] report on a KARL specification of a solution to a configuration task,
namely configuring elevator systems. A valid configuration of an elevator system con-
sists of a collection of components such that none of the constraints on their compati-
bility is violated. Knowledge concerning such components might then be collected in
domain modules. Knowledge concerning, e.g., the car might be found in the module
car-data (cf. Fig. 1.) which exports some knowledge to the outside without using
knowledge described elsewhere (i.e. the import interface is empty). ♦

3.2 Processing Modules

The notion of composed inference actions and subtasks in KARL already constitutes a

BODY
DEFINITIONS // Class and predicate definitions to be used only locally ...

PREDICATE intermediate_base
lb: { base };
ub: { base };

END;
RULES // Intensional descriptions of classes and predicates ...

∀xB ∀yB ∀zB ∀xM ∀yM ∀zM
(intermediate_base(lb: xB, ub: yB)

← xB[base_model: xM] ε base∧ yB[base_model: yM] ε base∧
zB[base_model: zM] ε base∧ xM < zM ∧ zM < yM) .

∀xB ∀yB ∀xM ∀yM
(base_order(act: xB, next: yB)

← xB[base_model: xM] ε base∧ yB[base_model: yM] ε base∧
xM < yM ∧ ¬ intermediate_base(lb: xB, ub: yB)) .

FACTS // Extensional descriptions of classes and predicates ...
base25B[bs_model: "2.5B", bs_height: 6.625]ε base .
base6B[bs_model: "6B", bs_height: 6.6875]ε base .

INPUTDATA // Case-specific data ...
pltf[pl_width: 70] ε platform .

END;

CLASS car
car_platform: { platform };
car_sling: { sling };
car_door: { door };
...

END;
CLASS platform

pl_base: { base };
pl_width: { INTEGER };
...

CLASS base
bs_model: { STRING };
bs_height: { INTEGER };

END;
...
PREDICATE base_order

act: { base };
next: { base };

END;
...

DMODULE car-data
INTERFACE

EXPORT // Class and predicate definitions to be used elsewhere ...

Fig. 1. A domain module

means of abstraction at the inference and task layer. Processing modules are based on
this notion since each of them describes a composed inference action and its associated
subtask, thus resembling procedures in common programming languages. Due to the
close relationship of task and inference layer, processing modules collect knowledge of
both layers. The body of a module details the decomposition of an inference action into
more basic inference steps and roles in the interface part, while the control flow among
these inference steps is described in the control part. Thus, the distinction between the
two different types of knowledge is still largely retained.

Like domain modules, processing modules communicate through interfaces. Process-
ing modules interact with modules at the same level of abstraction by exchanging data
via roles, but may also call modules which are part of their decomposition. The interface
signifies which data or control information the processing module exchanges with other
parts of the system or external agents such as the user, but also which data are ex-
changed within the problem-solving method and between problem-solving method and
domain knowledge base. That is, the interface lists input and output roles of the infer-
ence action described by the processing module as well as domain modules which sup-
ply domain knowledge to views and receive knowledge through terminators. Roles
appearing only in the body of a module are not accessible to other processing modules
at the same level of decomposition, may, however, be used as input stores or output
stores by more elementary processing modules. Processing modules may be parameter-
ized with respect to roles and associated classes and predicates and can be instantiated
as needed at various places.

The functional decomposition carried out during knowledge acquisition implies an ini-
tial modularization, yet may not be the best decomposition from a realization point of
view. Therefore, this initial decomposition may be subject to modifications during the
design phase.

Example 2: A major step in solving the elevator configuration task of Example 1 con-
sists in proposing a yet unknown value of a parameter of the elevator (e.g., the model
of the platform base) which is computed on the basis of previously determined param-
eter values, thus extending the set of known parameter values in the storeKnownPa-
rameters. Knowledge about how to actually compute a parameter is available in domain
modules which are accessible through the viewParameters. This can be summarized in
a processing module as shown in Fig. 2. ♦

4 Clusters
An initial partitioning of task and inference layer into processing modules is based on
the functional abstraction brought about by composed inference actions and subtask.
For the formation of domain modules, however, related portions of domain knowledge
must be identified, e.g. by abstracting from unnecessary detail and thus improving un-
derstandability of large models. A similar problem arises when conceptual models in
database applications grow so large that the entity relationship (ER) models describing
them become unreadable. Several proposals (cf., e.g., [13], [4], [6]) tackle this problem
by constructing hierarchies of ER models by means of clustering. The basic idea is to
abstract from the internal structure of a portion of an ER model in a new model where

the respective sub-model is substituted by a new artificial object, a so-calledcluster.
Since the language primitives that KARL supplies for describing the ontology of an ap-
plication correspond to those of an extended ER model, ideas from ER model clustering
also apply to KARL descriptions of domain layers. Three basic clustering mechanisms
are distinguished:concept clustering, property clustering, and complex clustering
which largely correspond to entity clustering, simple relationship clustering, and com-
plex relationship clustering in [6]. Notice that clustering does not pay attention to the
extension of classes and predicates.

Concept clustering maps related object classes into a higher-order cluster, e.g., by clus-
tering a “dominating” concept with its “dominated” concepts. Concepts forming the

BODY
CONTROL

(STORES PossibleParameters) :=
SelectPossibleParameters(STORES KnownParameters, VIEWS Parameters);

// Determine set of parameters that can currently be computed
IF (¬ ∅(PossibleParameters, PossibleParam)) THEN

// If there is a parameter that can currently be computed ...
...

ELSE end := TRUE; // Otherwise we are done
ENDIF;

INFERENCE
STORE PossibleParameters

CLASS PossibleParam ISA Param;
END;

END;
...
INFERENCE ACTION SelectPossibleParameter

PREMISES KnownParameters, Parameters
CONCLUSIONS PossibleParameters
...
RULES

∀xp (xp ε PossibleParam
← xp ε Param∧ ¬ xp ε KnownParam∧ ¬ unknown_deps(p: xp)).

END;
...

END;

PMODULE propose
INTERFACE

PREMISES
STORE KnownParameters

CLASS KnownParam
value: { };
depends: SET OF { Param };

END;
END;
VIEW Parameters

CLASS Param
value: { };
depends: SET OF { Param };

...
END;

CONCLUSIONS
STORE KnownParameters

...
END;

DMODULES
elevator-data, car-data, ...

Fig. 2. A processing module

range of an attribute may be clustered with the concept forming its domain. In this case,
the attribute (which is viewed as a special kind of predicate in this context) is included
in the cluster. Likewise, relationships (i.e., predicates) are usually included in such a
cluster if they only involve the concept forming the range of the attribute in question.
Concept clusters may also be formed by abstracting several semantically similar con-
cepts into a cluster (cf. abstraction grouping in [6]). For instance, subconcepts may be
clustered with their common superconcept. Clusters that are formed using concept clus-
tering have the character of concepts and may be used like elementary classes in pred-
icates or when forming even more abstract clusters.

Property clustering abstracts semantically similar relationships into a cluster. Relation-
ships in this context comprise predicates as well as attributes with non-elementary
range. Attributes with elementary ranges such as, e.g., strings or integer numbers are
not considered in our clustering scheme since they are assumed to be an integral part of
the concept constituting their domain. Thus, such attributes may simply be neglected as
a first step of abstraction. Property clusters may either collapse only predicates or only
attributes into a cluster which then behaves as an abstract predicate or abstract attribute.
Before applying property clustering the classes or clusters involved in the relationships
or constituting the domains and ranges of the affected attributes must be clustered by
concept clustering. This treatment of attributes extends the proposals in [13], [4], or [6].

Finally, complex clustering allows to collapse parts of domain ontology into a cluster
which cannot be clustered according to the concept or property clustering schemes, but
still bear sufficient similarities. Depending on its contents, the resulting cluster may
have the character of either a class or a predicate.

Example 3: Returning to the elevator configuration problem of the previous examples,
a small part of the domain ontology (which comprises a total of some 50 classes and 40
predicates) is shown in the graphical notation of KARL (which is quite similar to an ER
diagram) in Fig. 3. Due to the complexity of the complete model, clustering is useful in
order to abstract from some of the details.

Concept clustering can be applied to cluster the platform base with the platform of the

carcar_platform car_sling

platform sling

base crosshead

pl_base sl_crhead

base_order

sling_order

incompatible_sling_base sling_to_
crosshead

KEY: class attribute
predicate domain range

intermediate_base

class class

class class

Fig. 3. Part of the domain ontology for an elevator configuration task

elevator. The predicatesbase_order and intermediate_base and the attributepl_base
are also included in the newly formed cluster. Sinceplatform is the dominating class,
the cluster will be calledplatform as well. Since the predicateincompatible_sling_base
refers to the platform base as one of its arguments, this reference has to be replaced by
a reference to the clusterplatform since the classbase is encapsulated in the respective
cluster and no longer visible in the abstract representation (cf. Fig. 4.). Complex clus-
tering is applied to form a second cluster,sling, comprising the classessling andcross-
head, the attributesl_crhead, and the predicatessling_order andsling_to_crosshead.

Clustering might be carried even further by collapsing the clustersplatform andsling
(and other constituents of an elevator’s car which are not shown in Fig. 4.) into a new
clustercar_components (abstraction grouping) and by forming an attribute clustercom-
ponents from the attributescar_platform, car_sling etc. (property clustering). ♦

Especially when forming clusters using complex clustering, links between a cluster and
its environment, i.e. all classes, attributes, or predicates to which the cluster is connect-
ed, must be consistent with the links in more detailed representations. For instance, it is
illegal to form a predicate-like cluster in such a way that it is linked to another predicate.
Furthermore, arguments of predicates as well as domains and ranges of attributes must
be adapted when forming clusters. In the previous example, the link of the predicatein-
compatible_sling_base to the classbase must be changed into a connection to the clus-
ter platform. The transformation of a cluster into its refinement and vice versa is
expressed quite similar as in [4] by indicating which items in the abstract representation
are replaced by which items in the refinement and vice versa.

Example 4:Taking the clusterplatform from the previous example, the relationship be-
tween the cluster and its refined representation is specified by the transformation below:

CLUSTER platform
ABS platform, PRED(incompatible_sling_base, platform, sling);
SPEC platform, base,

PRED(incompatible_sling_base, base, sling), PRED(base_order, base, base),
PRED(intermediate_base, base, base), ATT(pl_base, platform, base);

END;

The classesplatform andbase, the predicatesbase_order, intermediate_base, andin-
compatible_sling_base, and the attributepl_base are removed from the model while the
class (cluster)platform and the predicateincompatible_sling_base (with modified first
argument) are added in the abstract view. If the internals of the cluster are to be inspect-
ed the transformation is applied in the reverse direction, i.e. the items in theSPEC sec-
tion are replaced for the constituents in theABS section. ♦

In contrast to modules, which prescribe a partitioning of the implemented system (pro-
vided the implementation environment includes a possibility to define modules), clus-
tering is a means to improve understandability during development, but has no direct

carcar_platform car_sling

platform sling
incompatible_sling_base

Fig. 4. Part of the domain ontology after introducing two clustersplatform andsling

counterpart in the implementation. Clustering is useful early in the design process since
clusters may indicate which parts of knowledge might be candidates for encapsulation
in the same module. The clusters defined in Example 3, e.g., indicate that their contents
should be collected in one module (cf. Example 1).

5 Related Work
[14] present an approach to structuring knowledge bases into three knowledge layers.
Layer H1 contains factual data on the basis of which layer H2 draws inferences. Prag-
matic guidance of when to draw which inferences is provided by layer H3 which em-
bodies heuristics which hold in particular applications. Layer H1 partly corresponds to
the domain layer in MIKE, layer H2 is the counterpart of the inference layer, and layer
H3 can be viewed as an analogue to the task layer with an additional strategic compo-
nent. The layers H1 and H2 do not coincide completely with the domain and inference
layers of MIKE since H1 only contains factual domain data and H2 is not generic in the
sense of the MIKE inference layer, but also contains domain specific knowledge in ad-
dition to particular inferential capabilities. Therefore, layer H2 roughly corresponds to
the MIKE inference layer plus the part of the domain layer comprising case-independ-
ent knowledge.

Each layer is composed of sub-structures. H1 usually consists of several autonomous
data bases, whereas layer H2 contains so-called SoDs. Layer H3 may consists of several
applications. Basically, an application consists of an appropriate collection of SoDs
which in turn establish suitable views on the data at the bottom layer. [14] focus on
SoDs which, in principle, correspond to processing modules. In contrast to processing
modules which describe a complex inference step and its internal control flow and
which define a method-specific ontology, SoDs are larger granules. The main problems
of this decomposition scheme are the missing separation of different types of knowl-
edge, thus making reuse of parts of the system more difficult, and the fairly large gran-
ularity of SoDs, which still leaves the need for smaller constituents which are more
easily understood.

In [11], a (logic) knowledge base is viewed as a theory which is developed from a ge-
neric kernel by applying construction operators, i.e. specific theory morphisms. These
theory morphisms correspond to the semantic primitives of the chosen knowledge rep-
resentation approach. Thus, each application of such a theory morphism introduces an
instance of the corresponding representation primitive into the knowledge base. Inter-
mediate theories may serve as the building blocks that can be reused across applica-
tions. However, these reusable chunks are not modules in the usual sense since they do
not have an explicit interface that protects some of the chunk’s contents from unwanted
access. Furthermore, it is not clear if this type of organization of the knowledge base
can actually be exploited efficiently since the computation of the construction steps
which is required for arriving at a particular stage in the development of the global de-
velopment (i.e. a particular intermediate theory or “module”) can be quite costly.

6 Discussion
Three different kinds of structuring mechanisms are used in MIKE already during KBS

development. First, knowledge is represented at three different knowledge layers, thus
separating domain knowledge from the generic problem-solving method. Second,
knowledge layers can be structured further by means of domain modules and processing
modules. Third, the contents of modules are expressed in terms of an object-centred
data model. Through this organization, reuse of knowledge is supported at various lev-
els of granularity. Furthermore, understandability of the overall system is improved
since attention can be focused on particular, largely self-contained parts of the system.
The understandability of domain knowledge is facilitated further by the possibility to
abstract from details by means of clustering.

Further work is required to develop stronger guidelines which clusters should be formed
and what their contexts should be, in particular when complex clustering has to be em-
ployed. Currently, a tool supporting the formation and manipulation of clusters is under
development. In addition, the semantics of KARL ([5], [3]) is extended to cover the
module concept outlined informally in this paper. This might also improve the efficien-
cy of the KARL interpreter since the perfect Herbrand models constituting the seman-
tics of inference action only need to include the relevant domain modules instead of the
complete domain knowledge. The framework presented in this paper is applied quite
successfully to the elevator configuration problem [8] mentioned in the examples.

References

[1] J. Angele, D. Fensel, D. Landes, S. Neubert, and R. Studer: Model-Based and Incremental
Knowledge Engineering: The MIKE Approach. InKnowledge Oriented Software Design,
J. Cuena, ed. IFIP Transactions A-27, Elsevier, Amsterdam, 1993, 139-168.

[2] J. Angele, D. Fensel, and R. Studer: The model of expertise in KARL. InProc. 2nd World
Congress on Expert Systems(Lisbon/Estoril, Portugal, Jan. 10-14), 1994.

[3] J. Angele: Operationalisierung des Modells der Expertise mit KARL (Operationalization of
the model of expertise with KARL). infix Verlag, St. Augustin, Germany, 1993 (in german).

[4] C. Batini, G. Di Battista, and G. Santucci: Structuring primitives for a dictionary of entity
relationship data schemas. InIEEE Trans. on Software Engineering 19(4), 1993, 344-365.

[5] D. Fensel: The knowledge acquisition and representation language KARL. Doctoral disser-
tation, University of Karlsruhe, Germany, 1993.

[6] P. Jaeschke, A. Oberweis, and W. Stucky: Extending ER model clustering by relationship
clustering. InProc. 12th Int. Conf. on the Entity-Relationship Approach ERA´93 (Arlington,
Texas, Dec. 15-17), 1993, 447-459.

[7] D. Landes and R. Studer: The design process in MIKE. InProc. 8th Knowledge Acquisition
for Knowledge-Based Systems Workshop KAW’94 (Banff, Canada, Jan. 30 - Feb. 4), 1994.

[8] K. Poeck, D. Fensel, D. Landes, and J. Angele: Combining KARL and configurable role
limiting methods for configuring elevator systems. InProc. 8th Knowledge Acquisition for
Knowledge-Based Systems Workshop KAW’94 (Banff, Canada, Jan. 30 - Feb. 4), 1994.

[9] U. Pletat: The knowledge representation language LLILOG. In Text Understanding in
LILOG, O. Herzog and C.-R. Rollinger, eds. LNAI 546, Springer, Berlin, 1991, 357-379.

[10] U. Pletat: Modularizing knowledge in LLILOG. IWBS Report 173, IBM Germany, Stuttgart,
1991.

[11] C. Sernadas, J. Fiadeiro, and A. Sernadas: Modular construction of logic knowledge bases:
an algebraic approach. InInformation Systems 15(1), 1990, 37-59.

[12] G. Schreiber, B. Wielinga, and J. Breuker, eds.:KADS - A Principled Approach to Knowl-
edge-Based Systems Development. Academic Press, London, 1993.

[13] T.J. Teorey, G. Wei, D.L. Bolton, and J.A. Koenig: ER model clustering as an aid for user
communication and documentation in database design. InCACM 32(8), 1989, 975-987.

[14] G. Wiederhold, P. Rathmann, T. Barsalou, B.S. Lee, and D. Quass: Partitioning and com-
posing knowledge. InInformation Systems 15(1), 1990, 61-72.

