
INCOME/STAR-ProMISE: Process-centered
Information System Development

Gabriele Scherrer
Institut für Angewandte Informatik und Formale Beschreibungsverfahren

Universität Karlsruhe (TH)
D-76128 Karlsruhe/Germany

E-Mail: scherrer@aifb.uni-karlsruhe.de

1 Process-centered Information System Development
In process-centered development environments, the software development process is
automatically guided and supported by a process model. In this context, a process
model can be defined as a formal, executable description of the development process
in terms of activities and results (documents).
Traditionally, process models - like the well-known waterfall-model and its variants -
reflect the software life cycle with its different stages: software projects are broken
down into a sequence of successive stages. The results of one stage serve as input for
the following stage. Each stage is connected to the preceding one by a feedback loop.
Criticism of stagewise process models mainly addressed the following aspects:
Lack of flexibility: Requirements change frequently due to market factors, new tech-
nologies or strategical decisions. Hence, software development is a highly dynamic
process which should not be rigorously separated in stages.
Neglect of maintenance: In spite of the well-known fact that the maintenance phase
normally is the longest and most expensive period in a software life cycle, stagewise
process models regard it as a kind of appendix of the preceding development stages.
Lack of attention for human factors: Many problems in the software development
field arise from communication problems between developers and future users of a
system. This is a point where stagewise models have some of their most important
drawbacks as they do not provide facilities for user integration.

This criticism led to some new software development paradigms proposed in the mid-
eighties [Agr86]: Concepts like evolutionary system development, prototyping,
operational specification, transformational implementation and software reuse in-
fluenced software engineering.
Yet, there is still an unresolved contradiction between two key requirements to process
models: on the one hand, they should result in a structured, well-planned development
process; on the other hand, flexibility is required. To bridge this gap, efforts were
made to integrate different approaches.
In the meantime, new trends became apparent in the field of process modeling:
Distribution: Systems may be geographically distributed and are quite frequently in-
tegrated in networks. This means that process models must offer description facilities
for a system's topology, i.e. new (or adaptive) result types are needed. Another con-
sequence of distribution is that it suggests the use of cooperative development tech-
niques [OWS94], which may influence the process model's activity types.
Interoperability: Systems are supposed to communicate and exchange data with other
systems. Consequently, an open information infrastructure is needed.
Side activities: In addition to activities being directly coupled with system develop-
ment, there are other activities involved in the future success of a software product:

product documentation, quality assurance or user training are highly important ac-
tivities, which should be integrated into a process model [Chr92].

2 ProMISE - a Process Model for Information System Evolution
The above discussion has been taken into consideration when ProMISE - a process
model for information system evolution - was developed [SOS94]. ProMISE is part of
INCOME/STAR, a repository-based environment for the development of distributed
information systems.
The development process with INCOME/STAR includes database and application
program generation, distribution of data and processes and parallelization of proces-
ses. It is supported by prototyping based on the conceptual schema. High level Petri
nets are used for the representation of the behaviour schema [OSS93] and a semantic
object model for the representation of the data schema. The INCOME/STAR reposi-
tory supports shared access to the design documents and by this supports concurrent
software engineering.

2.1 Basic Features of ProMISE
Figure 1 gives a generic
representation of a de-
velopment stage in
ProMISE. A specific
design document ('result
type') has got a certain
status as, e.g., require-
ments scheme document,
implementation module,
etc. and is modified with
stage-specific activities
(e.g. semantic data model
editing, compilation,
etc.). In the graphical
representation, activity
types have a specific
grey level indicating the
degree of formality of
this activity. Documents
belonging to different
parts of the system may
be handled in parallel by different persons, i.e. stages may be executed in parallel or
overlap where it is possible. Sometimes a situation may require a go-back to an earlier
stage for a certain document, e.g. if requirements are added or changed, i.e. the model
is dynamically modified whenever the development process requires such dynamic
changes.
Usually, document creation starts with a - more or less formal - transformation step,
converting resulting documents of the preceding stage into (initial) documents of the
current phase. These documents are iteratively adjusted by a sequence of activities
(refinement, structuring, modeling, information collection and quality-checking steps
etc.).

m e tho d o r
tec hn iqu e

resu lt
typ e

acti v i ty ty pe

tra nsfo rm ation

tra nsfo rm ation

acti v i ty typ e

(v al i dati o n)

ac ti v i ty type

acti v
i ty

 ty
pe

m e th o d o r
te c h n iq u e

m e tho d o r
tec hn iqu e m e tho d o r

tec hn iqu e

d if fe ren t g rey lev e ls
ind ic a te deg re e o f
fo rm a li ty

Fig. 1: Generic representation of a development stage in
ProMISE

At the end of each iteration, the existing documents will be examined in a validation
step. Whenever it makes sense, users will be involved in this process. If a document's
quality is acceptable, it may be transformed into an initial document of the successive
stage. Otherwise, it has to be modified, which means a new iteration of information
collection, modification and quality checking steps.
A specific description in the notation introduced in Figure 1 is available for strategic
planning, project specific planning, requirements collection and analysis, conceptual
modeling, database design and implementation, program design and implementation
[SOS94], but not for maintenance. In fact, maintenance is not considered as a phase at
all, but as a process of evolutionary system enhancement, resulting in a new iteration
of the development cycle.

2.2 Computer Support
An efficient application of a process model in practice needs tool support for moni-
toring of development activities, workflow management, document management,
control of project status and project responsibilities, activity and capacity planning
and coupling to tools for specific methods.
This requires a refined formal description of the process model. In INCOME/STAR,
the process model is specified as a hierarchy of Petri nets. This notation permits an
adequate description of relationships between activities: Activity sequences can be
modelled as well as conflict situations between activities (mutual exclusion) and con-
currency. Stepwise refinement of activities leads to net hierarchies. Manual and un-
structured activities (like unstructured communication) can be expressed by informal
types of Petri nets, so-called channel/agency nets, where the net components are
inscribed with natural language expressions. These top level nets provide a gross
overview about the process model and may be used as a graphical notation for com-
munication between different groups of people involved in a software project. The
bottom level of the hierarchy provides a precise NR/T-Net-description of the process
model which is directly executable by our Petri Net simulator.
A workflow manager [Obe94] supports planning and modeling of development ac-
tivities based on the Petri net model. It monitores and controls the execution of work-
flows and supports resource allocation.

References
[Agr86] W. W. Agresti (Ed.): New Paradigms for Software Development, IEEE Computer

Society Press, Washington 1986
[Chr92] G. Chroust: Modelle der Software-Entwicklung, Oldenburg Verlag, München 1992
[Obe94] A. Oberweis: Workflow Management in Software Engineering Projects, in: Proc. of

the 2nd International Conference on Concurrent Engineering and Electronic Design
Automation, Bournemouth/UK, April 1994, p. 55-60

[OSS93] A. Oberweis, P. Sander, W. Stucky: Petri net based modelling of procedures in
complex object database applications, in: D. Cooke (Ed.): Proc. IEEE 17th Annual
International Computer Software and Applications Conference, Phoenix/Arizona,
November 1993, p. 138-144

[OWS94] A. Oberweis, T. Wendel, W. Stucky: Teamwork coordination in a distributed
software development environment, in: Proc. GI-Fachgepräch Communication and
Coordination in Distributed Corporate Application Systems, IFIP-Workshop,
Hamburg/Germany, August 1994 (to appear)

[SOS94] G. Scherrer, A. Oberweis, W. Stucky: ProMISE - a process model for information
system evolution, in: Proc. 3rd Maghrebian Conference on Software Engineering
and Artificial Intelligence, Rabat/Morocco, April 1994, p. 27-36

