ProMISE - a Process Model for Information System Evolution
G. Scherrér, A. Oberweis, W. Stucky
Institut fir Angewandte Informatik und Formale Beschreibungsverfahren
Universitat Karlsruhe (TH)
D-76128 Karlsruhe
Germany

E-Mail: {scherrer|oberweis|stucky}@aifb.uni-karlsruhe.de

Abstract

ProMISE is a process model for evolutionary development of information systemsaltt iefINCOME/STAR, an environment
supporting thelevelopment and maintenance of large, distributed information systems. N&AWME/STAR'smain objectives is
providing computer-support for process model usage.

Based on the criticism of existimgrocess modelghis paper summarizes the main requirementgracess models. It outlines the
structure and basic characteristics of ProMISE as an example for a model trying to meet these requirements.

Keywords
evolutionary software development, information system, process model, software development environment, software life cycle

1 Introduction

The development of efficient database supported informaty@tems usually is quite complexob asthosesystems

are notonly supposed to be specialiyned for acertain application domain but also to suppomvide range of
functionality within this domain. On the one hand they must be capable, e.g., to handle production control data, on the
other hand they mustmanage businesand administration data of an enterprise. In additeystems may be
integrated in networks or embedded in a heterogeneous software or hardware configuration which is subject to change.
Recently, a lot of research work has been done to achieve a deeper understandisgftviales proceswhich can be

defined as a set of activities, methai®d practicesthat guide people irthe production okoftware[16]. A process

model describeghe development process ierms ofactivities and results (documenksand determines its overall
structure (temporal order of activities, cross references between documents).

This paper starts with a criticagéflection of some techniquesnd principles for software development (section 2),
followed by a brief discussion of some nésgnds (section 3) which refle&ey requirements for process models.
Section 4 describes a conception for a process ntiogietries taneet these requirements: ProMISE - a prooasdel

for evolutionary development of informatiaystemswhich is part of theNCOME/STAR development environment.

After a brief survey othe INCOME/STAR project,the mainstructureand basic characteristics of ProMISE are
presented. Section 5 gives averview ofthe methodological suppoptrovided forthe differentdevelopment stages,

while section 6 mentions possible future extensions.

2 Traditional Process Models

Traditionally, process models reflettte softwarelife cycle with its different stages. Well-known representatives of
thesestagewiseprocess modelare Boehm'swaterfall model[5] and its variantsthey break software projecisto a
sequence of successive staffeguirements analysis, specification, desigpde, test, operaticand maintenance), in
which the results of one stagerve asnput documents fothe following stage Each stage contains verification and
validation processes and is connected to the preceding stage by a feedback loop.

2.1 Problems
Criticism of stagewise process models mainly addresses the following aspects:

a) Lack of flexibility of sequential processes:

It has been realized that software development is a hitylmgmicprocess, where different stages influence each other

and cannot bagorously separated. Althoughe waterfall model'feedback loop construct allowscartain deviation

from a strictly sequential procedure, the flexibility gained from that is not high enough if

* the original systemrequirements change durimdevelopment. Changes ithe environment, implementation
paradigms, quality assurance standastiff andresource or a re-definition of user requiremeares acommon
observation during realization-time of long-term projects [27].

* results of different stageaffect each other (e.g. a specificatitias to be restrictedue to implementational
limitations; on the other hand,chosen implementatiomay suggest an expansiontbg originalspecification
[29].)

b) Neglect of maintenance:
In spite of thewell-known factthat the maintenangghase normally represents the longesi most expensive period
in a software life cycle, stagewise process moagard it as a kind of appendix of the precediegelopment stages.

* The work of this author is partially supported by the Deutsche Forschungsgemeinschaft DFG under grant Stu 98/9 in the program
"Verteilte DV-Systeme in der Betriebswirtschaft".

Software projectareconsidered "completed" aftére product releasend maintenance isewed asbug-fixing. This
viewpoint simply ignoreshe fact that new requirementsay turn out during operatiorand that maintenance may
include a rework of all prior stages.

c) Lack of attention for human factors:

Many problems irthe software development fieldrise from communication problerbstween developeendfuture

users of a system. This is a point where stagewise models have some of their most important drawbacks [19]:

* They postulatéhat uers are suraboutall systemrequirementsight from thestart. Thiscase may baleal but it
certainly seldom holdsue. Normally, the user will get a clear id#aout what aystemshould do fothim or her
(and what itactually does) byhe time s/he is using theystem(i.e. after the release). Unfortunate$fagewise
models don't offer facilities which provide users with a deeper knowledge at earlier stages.

* There is &knowledgegap between userand system ddgners:developers often doot know enough about the
application domain to understand user requirements properly, while magrénd it difficult to understand
design documents.

In addition to communication problems, ergonomic reasons stand agaitu&t r@stricted, strictly sequential

development principle: it is still an open probleow creative subtasksherent inevery development procesan be

modelled (if theycan bemodelled atall) [27]. A process model shoulabt restrict humarreativeness tomuch. It
should at least give the opportunity to leave things open or try different alternative®arlyhstages as madstimans
solve complex problems using a "trial and error” policy.

2.2 Possible Solutions

The criticism mentionedhboveled to some new software developmemtradigmsproposed inthe eighties [1].
Concepts like evolutionary system development, prototyping, operational specification, transformational
implementatiorandsoftware reuseénfluenced softwarengineering. Abrief survey otthese concepts will be given in
the following:

e evolutionary system development:

Software systemaresubject to anntrinsic changerocess, i.ethey get repeatedignhanced andxtendedduring the
operationand maintenance phase. Thikenomenon is often referred aeftware evolution[17]. Evolutionary
development models try to govetis changegrocess by dividing hugsoftware projectinto a series of smallesub-
projects, eachealizing asubset othe entiresystem'’s objectives. As these sub-systaregxecutable versions of the
targetsystem, theycan be extended in stepwisemanner or enhancecbnsidering user experiences with earlier
versions.

* prototyping:

A prototypecan bedefined as an early version of a systetnich contains albasic properties othe future target
system.The maingoals of prototypingre validating presumexystemrequirements at an early staged comparing
alternate user interface layouts.

Prototyping is sometimes combined with evolutionary development principles. (For a recent example for a
prototyping-based evolutionary process model cf. [4]).

e operational specification:

Operational specificationare interpretativelgxecutableand may therefore beegarded as prototype ofthe target
system. An effective developmestrategy may convethis prototypeinto an implementation of the targeystem
using transformational implementation methods (see next paragraph).

* transformational implementation:

The idea otransformational implementatios to generate programs automatically from a formal specification using a
sequence of computer-supported transformation rlil@smgormation may includgeneralization or specialization of
the current representatioldleally - i.e. providedthat thesystem is constructed by aminterrupted chain gbroven
transformation rules - corrections, expansiandchanges willonly affectthe specification. Maintenanedforts can

thus be reduced to keeping specification up-to-date. (A recent approach combiregprocess-product-requirements
model and the transformational approach can be found in [12].)

* software reuse:

As a lastnew paradigm,software reusenasbecomepart of thedevelopment process [2@Existing specifications,
designs or programs contain a lot of knowledge and experience and can be a valuable basis for new systems, especially
if the documents are stored in a well-organized repository.

3 Recent Trends

Regardless dhe legitimacy ofthe abovecriticism, the waterfalmodel orsimilar life cycle oriented approaches have
somesubstantial advantages: a well-structured, stagewise approadftw@re developmertan be abasis for a
clearly-defined, business-like methodology, which was onéhefmain intentiondor trying to establishsoftware
engineering as an engineering discipline.

Yet, there is still an unresolved contradictimetween two keyequirements to process models:tba onehand,they
should result in a structured, well-planned development procedbgasther handflexibility is required. To bridge
this gap, life cycle models should be combined with some of the approaches outlined in the preceding section: working
with prototypese.g., will definitelynot make a requirements collectiandanalysis or other early stagelssolete. In
contrast, prototyping can be extremely helpful as an integrated part of the early development stages.

An ‘ideal'process model will thereforiategrate many different approaché&sforts are made taletect relationships
between differenéreas in thdield of informationsystemengineering [18], which still lead to a deeper understanding

of software processeand process models (for a survey of experiensith process models cf. [25]B5ometrends

became apparent recently:

— Applications tend to bdistributed.This means thgtrocess models musffer description facilities for aystem's
topology, i.e. new (or adaptive) restylpesare needed. Anotheoposequence of distribution tat it suggests the
use ofcooperative development techniqugljch may influence the process model's activitiy types [11, 9].

— There is a highevel of agreementhat informationshould be treated like other basic resources (e.g. monetary
budget, raw materials, personnel, machireeg] that theneed for it should bplanned independently from any
particularproject in astrategy stageThe result of this stage should be an abstract, application-independent data
model which can serve as a basis for an organization-wide information system architecture [3].

— In addition to activities being directly coupled witystem developmenthere are other activitigavolved in the
future success of a software product: product documentation, gasdityance, uséraining, projectand product
management are highly importasitle activities[8], which should be integrated intopgocess model as sub-
models.

— National and internationatandardgfor process models have been established in recent yediSHEf.Standard
for Developing Software Lif€ycle Processed 3], EUROMETHODfor EC countries [7]). Sometimesftware
customers — especially in publadministration — require a certain pubBtandardprocess model fotheir
software development projects in order to be able to compare different offers.

4 INCOME/STAR-ProMISE: General Idea

So far, this paper hagorked outkey requirements for software process modglsis section describes a conception
for a specific process model called ProMIBiat tries taneet these requirements. As mentiobetbre, ProMISE is a
part ofINCOME/STAR, a prototype of amtegrated environment supporting evolutionary developmenarge,
distributed informatiorsystems[21]. It extends INCOME, an already existing tool for conceptual modelling and
prototyping of informatiorsystems, whosmain features are: integration of structuaald behavioural system aspects
(modelled in a semantigatamodeland highlevel Petri nets), prototyping facilitieand design dictionary support.
Based on these concepts, a commercially available methods and tools package was developed [14].

While INCOME is primarily suited fothe development of new informatiosystems, INCOME/STAR will support
both thedevelopment of completely new systearsd the integration afiew componentsto existing hardware or
software environments. Special emphasisuson distributed, heterogeneous tagystemglike modern information
system networks).

Our previous research workincluding practicaktase studies has madebviousthat methodsandtools packages like
INCOME/STAR shoulcbffer computessupport for a process model [28]. Therefdhe INCOME/STAR methodology
and general insightabout process model (cf. sectionsa@d 3) have been condensed to a process model called
ProMISE.

4.1 Basic Structure of ProMISE

Process models may have different levelgymainularity.
Some exist as generic process magpes(e.g. Boehm's
spiral model[6]), others have been refined tmmplete
guidelines for software system development.

Figure 1 shows ProMISE ahetype level,i.e. it gives an
idea of its basic structuresystem developmentvith
ProMISE is done in an information orientethnner, i.e.
its key objective is tdouild a firm information structure as
a basis for application developmeanhd enhancement.
Hence, informationsystem engineering and itphases
(requirements collection and analysis, conceptual
modelling, database design, database implementatioh
operatior) form the centre of the overalboftware
engineering lifecycle which falls into the stagesnalysis,
design, implementatioandoperation.

The circular form indicates agvolutionary approach, i.e.
one iteration of thelevelopmentycle isshown. This is
the reasorfor not having an explicit maintenance phase:
in fact, maintenance is not considered gshaseat all,
but as aprocess of evolutionary system enhancement
resulting in anew iteration of thedevelopmentcycle
(excluded fixing of really smalbugs whichcan bedone
during operation)Generally speaking, development and
maintenance of aystemare done as a sequence of sub-
projects, whichare identifiedand roughly planned in a
project independentmaybe organization-widestrategic
planning phase

O,
% %
0‘3//0
7.
%
L
g &
S
\""”
w

) 3 =
o NE—

E> 88 3
[30‘3
© o o @D
S x g2 8 =
< c = —
% 2° B
® 0 g ol

‘eO\““
%
%,
(o}
(>
u

strategic
planning

Figure 1: INCOME/STAR-ProMISE

4.2 A More Detailed View

To be applicable in practice, process models mustdr&ed out in moraletail. Therefore the generithmework
shown in Figure hasbeen stepwiselyefined to a sequence of activities whante supported by thepecific methods
and tools package forming the INCOME/STAR environment.

A generic graphical representation of a refined development stage ist given in Figure 2:

method or
technique

method or
technique

Figure 2: Generic representation of one developmnet stage in ProMISE

Each stage starts with a - moreless formal - transformation step, converting resulting documertke gireceding
stage into (initial) documents of the current phase. These docuareiteratively adjusted by a circulaequence of
activities (refinement, structuring, modelling, informatioallection and quality-checking steps etc.). Cost/benefit
analysis will suggest which specific techniques should be usegarntiaular caseand up towhich extent documents
should be refined. (Notinat thisphase specifiplanningstep is not mapped in Figure 2, as Figuigh@ws a fraction

of the process moddhat maps thelevelopment process itseife. it only contains activitieghat manipulateesults
directly. Planning and coordinating activities will be mapped separately in a project management component.)
Quality checks validate results of transformatéod adjustment steps; if these steps lead to ntiva@ one possible
result, analytical methods or simulation may be used as a decision support. Software reuse is one potential alternative -
either as an integration of standard components or as a project specific adjustment of generic models.

At the end of each iteration, the existing documents will be examined in a validation or verification thieip gliality

is acceptable, they may be transfornito initial documents of theuccessivastage. Otherwise, documents have to be
modified, which means a new iteration of information collection, modification and quality checking steps.
Sometimes a situatiomay require even ao-back to arearlier stage, e.g. if requirements are added or changed.
Generally spoken, theccurrence ofrregular orunexpected event@xceptions)may result in a deviation from the
‘regular'development proceseXception handling mechanisni). themodel is dynamically modified whenever the
development process requires such dynamic cham@eer examplesor exceptionsare situations where deadlines
cannot be met, due to, e.g., fluctuation or iliness of development staff, unexpected technical failures or problems with
subcontractors.

Whenever it makes sense, users will be invoivea development activitieShe kind ofinvolvement must be - of
course - suitable faherespective stage: liherequirements collection and analysigge(Figure 5), e.g.interviews
areused (to answer open questions concertiiegrequirementscheme) while prototyping is a technique used in the
conceptual modelling stadéo validate the conceptual scheme, Figure 6).

5 Underlying Methodology

ProMISE may serve as general framework fosoftware development independently from a specific methodology
(collection of methods) or CASE environmeHbwever, acertainmethodology formedhe basis when ProMISE was
worked out to a complete guideline for software developmeniexistingsuccessful methods have been completed by
new conceptsand brought into a reasonable order. The underlymgthodologiesare INCOME/Method [21],
CASE*Method [3] (due to the coupling of the commercial version of INCOME t@RACLE*CASE environment),
and thenew concepts whichre currentlyworked out for INCOME/STARThe resultingmethodology will now be
described in more detail. (For a summary of methods and tool support cf. table 1 in the appendix.)

strategic planning

This stage aims at theollection of global
strategies of an organization in order to extrag
broadly-based, 'strategic' information mod
Basic methods are interviews and project
sessions witlkey people, wher¢he current state
of the (sub-) model is discussed. Since there
basic strategies to be worked omtanagement
must be involved irthe decisiorprocess athis
stage. To have a reasonable basis for discussion,
clear representations fohe informationmodel
are essentialNCOME/STAR offers graphical
descriptions: main business functions ar
represented by function hierarchies or
informal types of Petri nets, so-called
channel/agency netsvhere the netomponents
are inscribed witmatural languagexpressions.
The overall information structurémain entity
typesand their relationships) can lexpressed
by a semantic data modelCross-reference
matricesshow interconnectionsetween entities
and business functions. Potential applicationg
which may be associatedith sub-projects - can
be derived fromthe cross-reference matrice
using clustering techniques.

All those description and representation meth
are supported by graphical editors. The en
information contained in the diagramsstored
and related to each other in a central desi
dictionary, where additional information - e.
about businessunits, problems, objectives,
critical success factors, budge@ata - can be

Al PROJECT
administered as well.

SPECIFIC
PLANNING

corporate
direction

information requirements

' 7
Proj
v iR

business functions

available technologies
and resources

existing systems

organizational structure

strategy
sessions

STRATEGIC
PLANNING

strategy
information
model

analytical
methods

extraction

v ! mec'@eciﬁci(suﬂ |
* Linformation model ., ,

< .. -

‘ v ‘7 7(project specific (sub)
infTinf 1im | information model , .

< v <o

Figure 3: Strategic planning stage

project specific planning

strategy

STRATEGIC . { A i
PLANNING R mf(mammimud;él ,
(Lo -
extraction
semiformal projept group
notations sessions
o0
%) ©
Q7@////7 &‘;‘“
g PROJECT
SPECIFIC
project specific (subr) PLANNING
information model
s %
@S >
& PR o

interviews, analytical
document analysis methods

transformation
REQUIREMENTS Kk R
COLLECTION requirementd
AND ANALYSIS \(ﬂemE—)

Figure 4: Project specific planning stage

the dictionary's project management facilities are planned.

Normally, this stage forms the beginning of one of the
sub-projects identified in the strategic planning phase.
In this case, basic functiorendrequirementsnay be
derived from the information contained in the
dictionary, e.g. a projectspecific sub-model is
extracted from the strategic informatiomodel.
Starting with thisproject specificinformation (sub-)
model, (technical, personnel and econorfegsibility
studies are carriedout and different alternatives
(make or buy decisions, standard software versus
individual software etc.)are investigated. There may
be some ad-hoc projecthat had not been pre-
planned in the strategic planning phase; in taise,
an extension of the strategic informatianodel
should be taken into consideration.

Usually, the process model must beailored
(adjusted) to thepecific needs dhe specific project.
One general difference, for examplettis distinction
between the development of an entirely new
information (sub-)systemand amaodification of an
existing systemTime andresourcesre scheduled in
a projectmanagement plan, thatill be monitored
and updated throughout the project life cycle.

Up to now, methodological support for project
specific planning in INCOME/STAR is largely
identical with the supporbffered for the strategic
planning stage (graphicalmodels and structured
cross-reference matrices). Additionally, tailoring
component fothe process modednd anextension of

. requirements collection and analysis

project specific (sub-) .
L information model

PROJECT
SPECIFIC .)
PLANNING <., . -

semiformal
notations

transformation

requirement
classes

REQUIREMENTS
COLLECTION
AND ANALYSIS

analytical
methods

requirements
scheme

con@tualischeﬁme\)
MODELLING | eatoidymamia) |

CONCEPTUAL P
‘< -

Figure 5: Requirements collection and analysis stage

Requirements collectiorand analysis is
performed as avariant of the method
proposed by [10]. In a first step, a
requirements collection plars worked out
by extracting businesaunits and their
corresponding tasks from theproject
specific information model. For each
task/businessnit combination identified in
the requirements collection plan, a
requirements collection form is filled in,
using interview techniqueand analysis of
existing forms or data files. Next,
information is classifieqdata, operation or
events requirements)and recorded in
structured forms (so-calledglossaries.
Quantities of data itemand frequencies of
operations are estimated. Toavoid
redundancyand contradictions, synonyms
and homonyms are eliminatedfrom the
glossary entries.

The method is supported by a special editor
providing a corresponding form for each
documenttype (collectionplans,forms and
glossariespnd ofcourseall documents are
part of the desigulictionary. Again,cross-
reference matrices provide automated
quality-checking facilities validating
integrity-rules like "if there exists aobject

x in document d1, document d2 must
contain an operatiorny". (One possible
check could make sure, e.that there is at
least one corresponding glossary entry for

each data and function element of the project specific information model.)

* conceptual modelling

In this stage, an initiatonceptual scheme i
built by converting the structured glossaries in
a semantic datschemeand Petri nestructures,
using formal transformation rules (e.g. mappi
data entries on entitieand event entries on
transitions). The conceptualscheme is
iteratively modified and completed using
bottom-up methods
aggregation, grouping of datgpes, coarsening
of Petri nets) aswell as top-down method
(specialization, decomposition alata types,
refinement of Petri nets). THAICOME/STAR

toolset containsgraphical editors supportin
both directions for semanticdata models
(extended entity/relationship model [15figh-

level Petri nets anddataflow diagrams. A
stepwise formalization dPetri nets leadérom

informal net types (channel/agency nets) t
NR/T nets (nested relation/transition nets),
new variant of Petri nets allowingcomplex
objects astokens [23]. Additional system
requirements can bmodelled declaratively by
so-called facttransitions restricting the set ¢
regular states and checkpoints indicating
irregularactivity sequences. Exceptitiandling
mechanismsand temporal aspects (deadline

temporal order of activities etc.) can |
modelled as well.
Automated analyzers checkthe formal

(generalisatior

BREQUIREMENTS
(GWLLECTION
AND ANALYSIS

ng

formal
notations
standard
components
generic
models
sl

P€ bATABASE
DESIGN AND

correctness of the datand function scheme

m)
IMPLEMENTATION * &‘f dOCUmeaIIOJ ‘

‘ requirements
scheme

transforkmation

conceptual scheme
(static/dynamic)

CONCEPTUAL
MODELLING

transformation

database sche

<.

simulation,
quality-checks

. PROGRAM

transformation

appllcatlon programs DESIGN AND

+ documentatlo@

< IMPLEMENTATION

and theirinterconnections. It is possible, e.g., Eigure 6: Conceptual modelllng stage

identify entities without attribute deflnltlon

isolated transitions or predicates without entity or attribute reference.

Validation of requirements is done by simulation (automated or interactive firing of transitions in Petri nets) and
prototyping (Petri net simulation plus user interface similar to the taygétm). Results of simulatioons arestored

in the dictionary and can be analyzed using a graphical query language [22].

To allow a systematic reuse of conceptual schemes, libiigaining genericnodelsand standard@domponents are
planned. A limited amount of standazdmponents - mostlget fragments modelling a certain temporal behaviour of
activities - is available by now.

database design and implementation

T
conzeptual
_scheme (static) |

<

CONCEPTUAL
MODELLING

transformation
(= automated
generation)

automated
re-generation

existing syster
componentg

database schenm
(+ documentation

manual
tuning

OPERATION AND
MAINTENANCE

transforma
(experienc
-> mainten

s with actual system
nce tasks)

s
22
$&

s

£
,\

3seqerpp
Ol®Ius wayg y,

UonEIUE Wwa g y,

), %
e
1)
%
u

DATABASE
DESIGN AND
IMPLEMENTATION

analytical
methods

Figure 7: Database design and implementation stage

aspects - e.g. performance, possible distribution concepts etc. - are investigated using either analytical methods or Petri

In this stage, a system

architecture (which fulfills the

requirements) is created. In

more detail, this stagacludes

the following activities:

— logical design (conversion
of the conceptuakcheme
into a relational scheme,

key definition)
— (optional) design ofystem
distribution (data and

operation allocation and
fragmentation, design of
network architecture)

— internal design (indexing

of tables, storage
allocation)

— external design (user
views)

A strict distinction between
database desigand database
implementation is nopossible
as the availibility of 4GL
generators allows a high
degree of automation:
Generators create normalized
relations, forms, menues and
reports from the semantic data
scheme. The dictionary
contains several default
designs fothis purpose, which
may be modifiedand - if
desired - kept for other
projects. Possible
inconsistencies (e.g. missing
key definitions) are identified
and eliminated.

On the function side,
normalization means
converting NR/T nets into Pr/T
nets (predicate/ transition nets
- in contrast to NR/T nets,
places inPr/T nets represent
relation schemes in first
normal form, not nested
relations). Quantitativesystem

net simulation. Withrespect tadhe design obystemdistribution, theuse of Petri nets for behaviour modellingns
out to be a particularly useful concept, since parallel operations can be derived directly from the net structure.
A so-calledmodule networkshowing dependencies between modulegeiserated from the behavioscheme (resp.
from the part of thescheme which is to be automate@yoss-reference matrices relate modwdes datawhile

module functionality is specified in pseudo-code notation.

* program design and implementation

Source codegenerators create C

codewith embedded SQL-statement§ONCEPTUAL

from Petri nets, datschemes ang
cross-reference matrices [14].

necessarythe code may benanually
tuned. Existing moduleare tested

by coupling them to the Petri ne

simulator, which simulates th
behaviour of connected modules.

Other generatorsproduce reports
forming the system's documentatio
or summarize module descriptior]
collected inthe dictionary to a first
version of the user documentatio

which can be manually tuned.

e operation and maintenance

We define maintenance #se set of
modifications performed after th
release. lhasbeen stategreviously
that ProMISE does not take
maintenance as a stage in t
developmentcycle but as a new
iteration of the cycle. (Therefore,
there is no graphical representati
of this stage.)

In the planning stageregistered
maintenance requests a
investigated and - if accepted -
grouped into maintenancprojects.
The process model is tailored for th
specific maintenance projectsome
activities maybecome obsolete, ney
ones may be added. Yet, th
principle process structurand the
methodology will be mainly the
same: during new development,
existing documents have to I
modified or extended as well - fq

MODELLING
If

=+

e

e

v

e
OPERATION AND
MAINTENANCE

e

r

" conceptual |
scheme (dynamic)

application program
(+ documentation)

o
%,
/ %%
%0, %
2

ecto™
S

o5 &
o

o
0

PROGRAM
DESIGN AND
IMPLEMENTATION

example if prototyping methods ©

quality checks identify errors oFigure 8: Program design and implementation stage

insufficient realization of require-

ments. The main difference to maintenance modificatiottgaione normallydoesnot have to consider documents of
successive stages simply because thepatoexist. In other words, maintenancan be thought of adevelopment
under consideration of certain restrictions given by an existing tasgtém. Hencethere aretwo important
requirements to an environment supporting maintenance:

a) During analysis it must be thoroughly investigated which parts afygtem will be affected by ehange (impact
analysis). To perform this, thdictionary with its various stage-overlapping analyzers gains particular importance.
Additionally, a hypertext interface is planned [20] goovide an even better visualization of stage-overlapping
interrelations by connectiong, egpurce codevith corresponding requirements or design documents or parts of the
documentation.

Simulation as a tool for validatioand comparison of modification proposals is anotbencept of INCOME/STAR
which supports impact analysis.

b) The existing system restricts developers' opportunities. It would be useful if such restrictions could be expressed in a
simple, precise fashioWith the concept of checkpointransitions(cf. section ‘conceptual modelling’), ppwerful
means for the expression of such constraints is available.

6 Summary and Outlook

This paper outlined thmain structureand basic characteristics of ProMISE, a process model for development and
maintenance of informatioaystems, which ipart of theINCOME/STAR environmentThe mainfeatures of the
modelare: an integration of differedievelopment principles like user participation, automat#tivaregeneration, a
stage-integrating, computer-supported methodology, software reuse and design-dictionary support.

At this time,documentsandactivity structuresre further refined to a detailed formal descriptiased orPetri nets
andsemantic data schemes, permitting an integration gbrtbeess modehto the design dictionary. Maibenefits

will be an enhancedfficiency of process model usagad theopportunity to map differerprocess modedtandards

on each other.

Future research work will largely concentratetioafollowing fields: Atthe momentproject managemergupport is
more or less limited tthe administration ofome budget datesnd criticalsuccess factors ithe dictionary. Future

efforts inthis area will concern thdevelopment of a detailed sub-model for computer-supported resource, capacity,
time and cost planning.
Many applications requirantegration of databasend knowledgebase components. Therefore, it could be useful to

combine process models frothe area ofknowledge engineeringnd of software engineering. We are currently
investigating possibilities to integratencepts from MIKE M odel-basedand IncrementaK nowledgeEngineering
[2] which is also developed at our institute) and INCOME/STAR-ProMISE.

A further research area operative system developme@urrently, INCOME/STAR provides simple locking-

mechanisms, futurefforts will put stronger attention onomputer supported cooperatiwgork techniques like

providing an intelligent mailbox concept to support communication between developers [24].

Appendix

Stage Methods Tool sypport
Strategic extended ER-model graphical editors
information channel/gengy net hierarchies automated angrers
planning function hierarchies

cross-reference matrices

structuredglossaries
Project extended ER-model graphical editors
specific channel/geng nets hierarchies automated angters
planning function hierarchies tailoring-cormponent

cross-reference matrices
structuredglossaries

Requirements
collection and
analysis

extended ER-model

dataflow digrams
channel/gengy nets hierarchies
function hierarchies
cross-reference matrices
structuredglossaries

glossay editor
graphical editors
automated angrers

Conceptual modelling

extended ER-model

NR/T nets:

* hierarchies

¢ declarativey modelled gstem rguirements
* time apects

standard components

generic models

simulation of degin alternatives

graphical editors

NR/T netgenerators

automated angrers

libraries for standard cgmonents and
generic models

simulators:

* guantitative invesgations

¢ graphically animated

Logical algorithms graphical editors

despn SQL-Pr/T-Nets SQL-Pr/T negenerators

(- rel. data base) simulation of degin alternatives automated angrers

Distribution algorithms for data allocation and automated angrers

despn fragmentation: simulators (distributed simulation mode

* generation of degn alternatives
¢ valuation (anaftic/simulation-based)

Ext. / int. data base
desgn

algorithms

automated analers

Program design &
implementation

automatedjeneration

data baggenerators
source codgenerators

Operation and
maintenance

algorithms
simulation of modificatiorproposals
hypertext techrques

graphical editors

simulators

hypertext interface

stage-overlgpping automated angters:
* cross-checks

e correlation anafsis

* consisteng checks

Table 1: INCOME/STAR-ProMISE: methods and tools

Literature

[1]
[2]

W.W. Agresti (Ed.):New Paradigms for Software DevelopméBEE Computer Society Press, Washington 1986
J. Angele, D. Fensel, D. Landes, S. Neubert, R. Studer: Model-based and incr&mentatige engineeringhe MIKE

~—

approach, in: J. Cuena (Ed.): PrdEIP TC12 Workshop on Artificial Intelligence frorthe Information Processing
Perspective, Madrid 1992, Elsevier, Amsterdam 1993

3]

R. Barker:CASE*Method: Tasks and Deliverablégldison-Wesley, Wokingham, 1990

[4]

[10]

[11]

[12]

[13]
[14]

[15]

[16]
[17]
(18]
[19]
[20]

[21]

[22]

(23]

[24]

[25]
[26]
[27]

(28]

[29]

A.T. Berztiss: Concurrent engineering of information systems, irPrdkash, C. Rolland, B. Pernici (Eddnformation
System Development ProceBsoc. ofthe IFIP WG8.1 Working Conference on Information System Development Process,
Como, Italy, September 1993

B.W. Boehm: Software EngineerinEEE Transactions on Compute§, p. 1226-1241, 1976,

B.W. Boehm: A spiral model of software development and enhancela&tt,Computer21(5), p. 61-72, May 1988
Commission of the European Communities: EUROMETHOD Information Pack, Brussels 1991

G. Chroust:Modelle der Software-Entwicklung. Oldenburg Verlag, Munich, Vienna 1992 (in German)

B. Curtis, D. Walz, JElam: Studyinghe process of software design teains,D.E. Perry (Ed)Experiences with Software
Process ModelsProc. 5th International Software Process Workshop, Kennebunkfaore 1989)EEE ComputefSociety
Press, Los Alamitos 1990

V. DeAntonellis, B.Demo:Requirements collection and analysis,S. Ceri (Ed.):Methodology and Tools for Datase
Design p. 9-24, North-Holland Publ. Comp., Amsterdam, New York 1983

A. Finkelstein: A structural frameworflor the formal representation afooperation,in: D.E. Perry (Ed)Experiences with
Software Process ModeldProc. 5th International Software Proced¥orkshop, KennebunkportMaine 1989, IEEE
Computer Society Press, Los Alamitos 1990

J.-L. Hainaut, M. Cardelli, BDecuyper, O. Marchand: DatabaSASE tool architectureprinciplesfor flexible design
strategiesin: P. LoucopoulogEd.): Advanced Information Systems Engineeridgc.4th InternationalConference CaiSE
'92, Manchester 1992, Springer-Verlag, Berlin, Heidelberg, New York 1992

IEEE Standardor Developing Software Life Cyclerocesses, Institute of Electrical and Electronics Engineers, New York,
January 1992

INCOME User Manuals: INCOME/Designer, INCOME/Dictionary, INCOME/Generator, INCOME/Simulator.
PROMATIS Informatik, Karlsbad 1993

P. Jaeschke, A. Oberweis, W&tucky: Extending ER model clustering by relationship clustering,R. Elmasri, V.
Kouramajian (Eds.): Proc. 12th International Conference tb@ Entity Relationship Approach, p. 447-459,
Arlington/Texas, December 1993.

D.H. Kitson, S.M. Masters: An analysis 8El software process assessment results: 1987-1991, Proc. 15th International
Conference on Software Engineering, IEEE Computer Society Press, Los Alamitos, California, May 1993, p.68-77
M.M. Lehman: Programs, life cycles and the laws of software evollRi@t. of the IEEEG8(9), p. 1060-1076, September
1980

P. Loucopoulos(Ed.): Advanced Information Systems EngineerifRyoc. 4th InternationalConference CaiSE92,
Manchester 1992, Springer-Verlag, Berlin, Heidelberg, New York 1992

M.M. Mantei, T.J. Teorey: Cost/benefit analysis for incorporating human factors in the software lif€oystaunications

of the ACM31(4), p. 426-439, April 1988

S. Neubert, A. Oberweis: Einsatzmdoglichkeitean Hypertext beim Software Engineering und Knowledge Engineering, in:
Proc. Hypertext und Hypermedia 92, Munich, p.162-174, September 1992 (in German)

T. Németh, A. Oberweis, F. Schonthaler, Btucky: INCOME: Arbeitsplatz fir den Programmentwurf interaktiver
betrieblicher Informationssysteme, Forschungsbericht 251, Institut fir Angewandte Informatik und Formale Beschreibungs-
verfahren, Universitat Karlsruhe, August 1992 (in German)

A. Oberweis, V. Sanger: Graphical query facifity largePetri net simulation runsn: F. Maceri (Ed.): Proc. ahe 1992
EUROSIM Conference, Capri/ltaly, p. 515-520, September/October 1992

A. Oberweis, P. Sander, VBtucky: Petri net basedodelling of procedures in complex object database applications, in:
J.E. Urban (Ed.)Proc. 17th Annual International Computer Software and Applications Confef@@84PSAC 93,
Phoenix/Arizona, p. 138-144, November 1993

A. Oberweis, W. Stucky, T. Wendel: Rechnergestiitzte Kommunikation in Software-Entwicklungsproj&keéekgroup
Computing fir kooperative Sytementwicklung. Proc. Onlied, 17. EuropaischeCongressmesse fiir Technische
Kommunikation, February 1994 (in German, to appear)

D.E. Perry (Ed):Experiences with Software Process Mogdd®soc. 5th International Software Procesdorkshop,
Kennebunkport, Maine 1989, IEEE Computer Society Press, Los Alamitos 1989

N. Prakash, C. Rolland, B. Pernici (Eddnformation System Developmdntocess Proc. ofthe IFIP WG8.1 Working
Conference on Information System Development Process, Como, Italy, September 1993

G. Starke:Urgent research issues in software process engine&@ig, SIGSOFT Software Engineering NotE3(4), p.
13-15, October 1993

W. Stucky, A. Oberweis, G. Scherrer: INCOME/STAR: Process mauggiort forthe development of information systems,
in: J. Niedereichholz, W. Schuhmann (EdgVjrtschaftsinformatik - Beitrdge zumodernen Unternehmensfiihruipg,145-
165, Campus-Verlag, Frankfurt/New York 1993

W. Swartout, R. Balzer: Othe inevitable intertwining of specification and implementat@ammunications of the ACM
25(7), p.438-440, July 1982

