
ProMISE - a Process Model for Information System Evolution
G. Scherrer* , A. Oberweis, W. Stucky

Institut für Angewandte Informatik und Formale Beschreibungsverfahren
Universität Karlsruhe (TH)

D-76128 Karlsruhe
Germany

E-Mail: {scherrer|oberweis|stucky}@aifb.uni-karlsruhe.de

Abstract
ProMISE is a process model for evolutionary development of information systems. It is part of INCOME/STAR, an environment
supporting the development and maintenance of large, distributed information systems. One of INCOME/STAR's main objectives is
providing computer-support for process model usage.
Based on the criticism of existing process models, this paper summarizes the main requirements to process models. It outlines the
structure and basic characteristics of ProMISE as an example for a model trying to meet these requirements.

Keywords
evolutionary software development, information system, process model, software development environment, software life cycle

1 Introduction
The development of efficient database supported information systems usually is a quite complex job as those systems
are not only supposed to be specially tuned for a certain application domain but also to support a wide range of
functionality within this domain. On the one hand they must be capable, e.g., to handle production control data, on the
other hand they must manage business and administration data of an enterprise. In addition, systems may be
integrated in networks or embedded in a heterogeneous software or hardware configuration which is subject to change.
Recently, a lot of research work has been done to achieve a deeper understanding of the software process which can be
defined as a set of activities, methods and practices that guide people in the production of software [16]. A process
model describes the development process in terms of activities and results (documents) and determines its overall
structure (temporal order of activities, cross references between documents).
This paper starts with a critical reflection of some techniques and principles for software development (section 2),
followed by a brief discussion of some new trends (section 3) which reflect key requirements for process models.
Section 4 describes a conception for a process model that tries to meet these requirements: ProMISE - a process model
for evolutionary development of information systems which is part of the INCOME/STAR development environment.
After a brief survey of the INCOME/STAR project, the main structure and basic characteristics of ProMISE are
presented. Section 5 gives an overview of the methodological support provided for the different development stages,
while section 6 mentions possible future extensions.

2 Traditional Process Models
Traditionally, process models reflect the software life cycle with its different stages. Well-known representatives of
these stagewise process models are Boehm's waterfall model [5] and its variants: they break software projects into a
sequence of successive stages (requirements analysis, specification, design, code, test, operation and maintenance), in
which the results of one stage serve as input documents for the following stage. Each stage contains verification and
validation processes and is connected to the preceding stage by a feedback loop.

2.1 Problems

Criticism of stagewise process models mainly addresses the following aspects:

a) Lack of flexibility of sequential processes:
It has been realized that software development is a highly dynamic process, where different stages influence each other
and cannot be rigorously separated. Although the waterfall model's feedback loop construct allows a certain deviation
from a strictly sequential procedure, the flexibility gained from that is not high enough if
• the original system requirements change during development. Changes in the environment, implementation

paradigms, quality assurance standards, staff and resource or a re-definition of user requirements are a common
observation during realization-time of long-term projects [27].

• results of different stages affect each other (e.g. a specification has to be restricted due to implementational
limitations; on the other hand, a chosen implementation may suggest an expansion of the original specification
[29].)

b) Neglect of maintenance:
In spite of the well-known fact that the maintenance phase normally represents the longest and most expensive period
in a software life cycle, stagewise process models regard it as a kind of appendix of the preceding development stages.
                                                       
* The work of this author is partially supported by the Deutsche Forschungsgemeinschaft DFG under grant Stu 98/9 in the program

"Verteilte DV-Systeme in der Betriebswirtschaft“.



Software projects are considered "completed" after the product release, and maintenance is viewed as bug-fixing. This
viewpoint simply ignores the fact that new requirements may turn out during operation and that maintenance may
include a rework of all prior stages.

c) Lack of attention for human factors:
Many problems in the software development field arise from communication problems between developers and future
users of a system. This is a point where stagewise models have some of their most important drawbacks [19]:
• They postulate that users are sure about all system requirements right from the start. This case may be ideal but it

certainly seldom holds true. Normally, the user will get a clear idea about what a system should do for him or her
(and what it actually does) by the time s/he is using the system (i.e. after the release). Unfortunately, stagewise
models don't offer facilities which provide users with a deeper knowledge at earlier stages.

• There is a knowledge gap between users and system designers: developers often do not know enough about the
application domain to understand user requirements properly, while users may find it difficult to understand
design documents.

In addition to communication problems, ergonomic reasons stand against a too restricted, strictly sequential
development principle: it is still an open problem how creative subtasks inherent in every development process can be
modelled (if they can be modelled at all) [27]. A process model should not restrict human creativeness too much. It
should at least give the opportunity to leave things open or try different alternatives in the early stages as most humans
solve complex problems using a "trial and error" policy.

2.2 Possible Solutions

The criticism mentioned above led to some new software development paradigms proposed in the eighties [1].
Concepts like evolutionary system development, prototyping, operational specification, transformational
implementation and software reuse influenced software engineering. A brief survey of these concepts will be given in
the following:
•• evolutionary system development:
Software systems are subject to an intrinsic change process, i.e. they get repeatedly enhanced and extended during the
operation and maintenance phase. This phenomenon is often referred as software evolution [17]. Evolutionary
development models try to govern this change process by dividing huge software projects into a series of smaller sub-
projects, each realizing a subset of the entire system's objectives. As these sub-systems are executable versions of the
target system, they can be extended in a stepwise manner or enhanced considering user experiences with earlier
versions.
•• prototyping:
A prototype can be defined as an early version of a system which contains all basic properties of the future target
system. The main goals of prototyping are validating presumed system requirements at an early stage and comparing
alternate user interface layouts.
Prototyping is sometimes combined with evolutionary development principles. (For a recent example for a
prototyping-based evolutionary process model cf. [4]).
•• operational specification:
Operational specifications are interpretatively executable and may therefore be regarded as a prototype of the target
system. An effective development strategy may convert this prototype into an implementation of the target system
using transformational implementation methods (see next paragraph).
•• transformational implementation:
The idea of transformational implementation is to generate programs automatically from a formal specification using a
sequence of computer-supported transformation rules. Transformation may include generalization or specialization of
the current representation. Ideally - i.e. provided that the system is constructed by an uninterrupted chain of proven
transformation rules - corrections, expansions and changes will only affect the specification. Maintenance efforts can
thus be reduced to keeping the specification up-to-date. (A recent approach combing the process-product-requirements
model and the transformational approach can be found in [12].)
•• software reuse:
As a last new paradigm, software reuse has become part of the development process [26]. Existing specifications,
designs or programs contain a lot of knowledge and experience and can be a valuable basis for new systems, especially
if the documents are stored in a well-organized repository.

3 Recent Trends
Regardless of the legitimacy of the above criticism, the waterfall model or similar life cycle oriented approaches have
some substantial advantages: a well-structured, stagewise approach to software development can be a basis for a
clearly-defined, business-like methodology, which was one of the main intentions for trying to establish software
engineering as an engineering discipline.
Yet, there is still an unresolved contradiction between two key requirements to process models: on the one hand, they
should result in a structured, well-planned development process; on the other hand, flexibility is required. To bridge
this gap, life cycle models should be combined with some of the approaches outlined in the preceding section: working
with prototypes, e.g., will definitely not make a requirements collection and analysis or other early stages obsolete. In
contrast, prototyping can be extremely helpful as an integrated part of the early development stages.
An 'ideal' process model will therefore integrate many different approaches. Efforts are made to detect relationships
between different areas in the field of information system engineering [18], which still lead to a deeper understanding



of software processes and process models (for a survey of experiences with process models cf. [25]). Some trends
became apparent recently:
– Applications tend to be distributed. This means that process models must offer description facilities for a system's

topology, i.e. new (or adaptive) result types are needed. Another consequence of distribution is that it suggests the
use of cooperative development techniques, which may influence the process model's activitiy types [11, 9].

– There is a high level of agreement that information should be treated like other basic resources (e.g. monetary
budget, raw materials, personnel, machines) and that the need for it should be planned independently from any
particular project in a strategy stage. The result of this stage should be an abstract, application-independent data
model which can serve as a basis for an organization-wide information system architecture [3].

– In addition to activities being directly coupled with system development, there are other activities involved in the
future success of a software product: product documentation, quality assurance, user training, project and product
management are highly important side activities [8], which should be integrated into a process model as sub-
models.

– National and international standards for process models have been established in recent years (cf. IEEE Standard
for Developing Software Life Cycle Processes [13], EUROMETHOD for EC countries [7]). Sometimes software
customers – especially in public administration – require a certain public standard process model for their
software development projects in order to be able to compare different offers.

4 INCOME/STAR-ProMISE: General Idea
So far, this paper has worked out key requirements for software process models. This section describes a conception
for a specific process model called ProMISE that tries to meet these requirements. As mentioned before, ProMISE is a
part of INCOME/STAR, a prototype of an integrated environment supporting evolutionary development of large,
distributed information systems [21]. It extends INCOME, an already existing tool for conceptual modelling and
prototyping of information systems, whose main features are: integration of structural and behavioural system aspects
(modelled in a semantic data model and high level Petri nets), prototyping facilities and design dictionary support.
Based on these concepts, a commercially available methods and tools package was developed [14].
While INCOME is primarily suited for the development of new information systems, INCOME/STAR will support
both the development of completely new systems and the integration of new components into existing hardware or
software environments. Special emphasis is put on distributed, heterogeneous target systems (like modern information
system networks).
Our previous research work - including practical case studies - has made obvious that methods and tools packages like
INCOME/STAR should offer computer support for a process model [28]. Therefore, the INCOME/STAR methodology
and general insights about process model (cf. sections 2 and 3) have been condensed to a process model called
ProMISE.

4.1 Basic Structure of ProMISE



Process models may have different levels of granularity.
Some exist as generic process model types (e.g. Boehm's
spiral model [6]), others have been refined to complete
guidelines for software system development.
Figure 1 shows ProMISE on the type level, i.e. it gives an
idea of its basic structure: system development with
ProMISE is done in an information oriented manner, i.e.
its key objective is to build a firm information structure as
a basis for application development and enhancement.
Hence, information system engineering and its phases
(requirements collection and analysis, conceptual
modelling, database design, database implementation and
operation) form the centre of the overall software
engineering life cycle which falls into the stages analysis,
design, implementation and operation.
The circular form indicates an evolutionary approach, i.e.
one iteration of the development cycle is shown. This is
the reason for not having an explicit maintenance phase:
in fact, maintenance is not considered as a phase at all,
but as a process of evolutionary system enhancement,
resulting in a new iteration of the development cycle
(excluded fixing of really small bugs which can be done
during operation). Generally speaking, development and
maintenance of a system are done as a sequence of sub-
projects, which are identified and roughly planned in a
project independent, maybe organization-wide strategic
planning phase.

re
qu

ire
m

en
ts

co
lle

ct
io

n 
+ 

an
al

ys
is

   database
im

plem
entation

planning
planning

co
nceptual

modellin
g

databasedesign

operation

an
al

ys
is

operation

im
plem

entation
design

strategic
planning

Figure 1: INCOME/STAR-ProMISE



4.2 A More Detailed View

To be applicable in practice, process models must be worked out in more detail. Therefore the general framework
shown in Figure 1 has been stepwisely refined to a sequence of activities which are supported by the specific methods
and tools package forming the INCOME/STAR environment.
A generic graphical representation of a refined development stage ist given in Figure 2:

method or
technique

result
type

activ
ity

 type

transformation

transformation

activity type

(validation)

activity type

act
ivity

 ty
pe

method or
technique

method or
technique method or

technique

different grey levels 
indicate degree of
formality

Figure 2: Generic representation of one developmnet stage in ProMISE

Each stage starts with a - more or less formal - transformation step, converting resulting documents of the preceding
stage into (initial) documents of the current phase. These documents are iteratively adjusted by a circular sequence of
activities (refinement, structuring, modelling, information collection and quality-checking steps etc.). Cost/benefit
analysis will suggest which specific techniques should be used in a particular case, and up to which extent documents
should be refined. (Note that this phase specific planning step is not mapped in Figure 2, as Figure 2 shows a fraction
of the process model that maps the development process itself, i.e. it only contains activities that manipulate results
directly. Planning and coordinating activities will be mapped separately in a project management component.)
Quality checks validate results of transformation and adjustment steps; if these steps lead to more than one possible
result, analytical methods or simulation may be used as a decision support. Software reuse is one potential alternative -
either as an integration of standard components or as a project specific adjustment of generic models.
At the end of each iteration, the existing documents will be examined in a validation or verification step. If their quality
is acceptable, they may be transformed into initial documents of the successive stage. Otherwise, documents have to be
modified, which means a new iteration of information collection, modification and quality checking steps.
Sometimes a situation may require even a go-back to an earlier stage, e.g. if requirements are added or changed.
Generally spoken, the occurrence of irregular or unexpected events (exceptions) may result in a deviation from the
'regular' development process (exception handling mechanism), i.e. the model is dynamically modified whenever the
development process requires such dynamic changes. Other examples for exceptions are situations where deadlines
cannot be met, due to, e.g., fluctuation or illness of development staff, unexpected technical failures or problems with
subcontractors.
Whenever it makes sense, users will be involved into development activities. The kind of involvement must be - of
course - suitable for the respective stage: In the requirements collection and analysis stage (Figure 5), e.g., interviews
are used (to answer open questions concerning the requirements scheme) while prototyping is a technique used in the
conceptual modelling stage (to validate the conceptual scheme, Figure 6).

5 Underlying Methodology
ProMISE may serve as a general framework for software development independently from a specific methodology
(collection of methods) or CASE environment. However, a certain methodology formed the basis when ProMISE was
worked out to a complete guideline for software development, i.e. existing successful methods have been completed by
new concepts and brought into a reasonable order. The underlying methodologies are INCOME/Method [21],
CASE*Method [3] (due to the coupling of the commercial version of INCOME to the ORACLE*CASE environment),
and the new concepts which are currently worked out for INCOME/STAR. The resulting methodology will now be
described in more detail. (For a summary of methods and tool support cf. table 1 in the appendix.)



•• strategic planning

This stage aims at the collection of global
strategies of an organization in order to extract a
broadly-based, 'strategic' information model.
Basic methods are interviews and project
sessions with key people, where the current state
of the (sub-) model is discussed. Since there are
basic strategies to be worked out, management
must be involved in the decision process at this
stage. To have a reasonable basis for discussion,
clear representations for the information model
are essential. INCOME/STAR offers graphical
descriptions: main business functions are
represented by function hierarchies or by
informal types of Petri nets, so-called
channel/agency nets, where the net components
are inscribed with natural language expressions.
The overall information structure (main entity
types and their relationships) can be expressed
by a semantic data model. Cross-reference
matrices show interconnections between entities
and business functions. Potential applications -
which may be associated with sub-projects - can
be derived from the cross-reference matrices
using clustering techniques.
All those description and representation methods
are supported by graphical editors. The entire
information contained in the diagrams is stored
and related to each other in a central design
dictionary, where additional information - e.g.
about business units, problems, objectives,
critical success factors, budget data - can be
administered as well.

•• project specific planning

Normally, this stage forms the beginning of one of the
sub-projects identified in the strategic planning phase.
In this case, basic functions and requirements may be
derived from the information contained in the
dictionary, e.g. a project specific sub-model is
extracted from the strategic information model.
Starting with this project specific information (sub-)
model, (technical, personnel and economic) feasibility
studies are carried out and different alternatives
(make or buy decisions, standard software versus
individual software etc.) are investigated. There may
be some ad-hoc projects that had not been pre-
planned in the strategic planning phase; in this case,
an extension of the strategic information model
should be taken into consideration.
Usually, the process model must be tailored
(adjusted) to the specific needs of the specific project.
One general difference, for example, is the distinction
between the development of an entirely new
information (sub-) system and a modification of an
existing system. Time and resources are scheduled in
a project management plan, that will be monitored
and updated throughout the project life cycle.
Up to now, methodological support for project
specific planning in INCOME/STAR is largely
identical with the support offered for the strategic
planning stage (graphical models and structured
cross-reference matrices). Additionally, a tailoring
component for the process model and an extension of

the dictionary's project management facilities are planned.

project specific (sub-)
information model

STRATEGIC
PLANNING

strategy
sessions

informal and
semiformal  notations

interviews,
document analysis

strategy
information

model

PROJECT
SPECIFIC
PLANNING

validation

project specific (sub-)
information model

modelling discu
ssio

n

informati
on clu

ste
rin

g

and
 co

mplet
ion

analytical
methods

corporate
direction

organizational structure

available technologies
and resources

information requirements

business functions

extraction

projektspez. Teil-
informationsmodell

projektspez. Teil-
informationsmodell

projektspez. Teil-
informationsmodell

existing systems

project specific (sub-)
information model

Figure 3: Strategic planning stage

PROJECT
SPECIFIC
PLANNING

interviews,
document analysis

requirements
scheme

REQUIREMENTS
COLLECTION
AND ANALYSIS

transformation

STRATEGIC
PLANNING

strategy
information model

extraction

validation

semiformal
notations

modelling

project group
sessions

discu
ssio

n

project specific (sub-)
information model

analytical
methods

infor
mati

on 
clu

ste
rin

g

and
 co

mplet
ion

Figure 4: Project specific planning stage



•• requirements collection and analysis

Requirements collection and analysis is
performed as a variant of the method
proposed by [10]. In a first step, a
requirements collection plan is worked out
by extracting business units and their
corresponding tasks from the project
specific information model. For each
task/business unit combination identified in
the requirements collection plan, a
requirements collection form is filled in,
using interview techniques and analysis of
existing forms or data files. Next,
information is classified (data, operation or
events requirements) and recorded in
structured forms (so-called glossaries).
Quantities of data items and frequencies of
operations are estimated. To avoid
redundancy and contradictions, synonyms
and homonyms are eliminated from the
glossary entries.
The method is supported by a special editor
providing a corresponding form for each
document type (collection plans, forms and
glossaries) and of course all documents are
part of the design dictionary. Again, cross-
reference matrices provide automated
quality-checking facilities validating
integrity-rules like "if there exists an object
x in document d1, document d2 must
contain an operation y". (One possible
check could make sure, e.g., that there is at
least one corresponding glossary entry for

each data and function element of the project specific information model.)

•• conceptual modelling

REQUIREMENTS
COLLECTION
AND ANALYSIS

requirement
classes

analytical
methods

semiformal
notations

interviews,
document analysis

requirements
scheme

cla
ssif

ica
tion

conceptual scheme
(static/dynamic)

CONCEPTUAL
MODELLING

transformation

transformation

PROJECT
SPECIFIC
PLANNING

validation

project specific (sub-)
information model

structuring

inform
ation clu

ste
rin

g

and co
mpletio

n

Figure 5: Requirements collection and analysis stage



In this stage, an initial conceptual scheme is
built by converting the structured glossaries into
a semantic data scheme and Petri net structures,
using formal transformation rules (e.g. mapping
data entries on entities and event entries on
transitions). The conceptual scheme is
iteratively modified and completed using
bottom-up methods (generalisation,
aggregation, grouping of data types, coarsening
of Petri nets) as well as top-down methods
(specialization, decomposition of data types,
refinement of Petri nets). The INCOME/STAR
toolset contains graphical editors supporting
both directions for semantic data models
(extended entity/relationship model [15]), high-
level Petri nets and dataflow diagrams. A
stepwise formalization of Petri nets leads from
informal net types (channel/agency nets) to
NR/T nets (nested relation/transition nets), a
new variant of Petri nets allowing complex
objects as tokens [23]. Additional system
requirements can be modelled declaratively by
so-called fact transitions restricting the set of
regular states and checkpoints indicating
irregular activity sequences. Exception handling
mechanisms and temporal aspects (deadlines,
temporal order of activities etc.) can be
modelled as well.
Automated analyzers check the formal
correctness of the data and function schemes
and their interconnections. It is possible, e.g., to
identify entities without attribute definition,
isolated transitions or predicates without entity or attribute reference.
Validation of requirements is done by simulation (automated or interactive firing of transitions in Petri nets) and
prototyping (Petri net simulation plus user interface similar to the target system). Results of simulation runs are stored
in the dictionary and can be analyzed using a graphical query language [22].
To allow a systematic reuse of conceptual schemes, libraries containing generic models and standard components are
planned. A limited amount of standard components - mostly net fragments modelling a certain temporal behaviour of
activities - is available by now.

•• database design and implementation

database scheme
(+ documentation)

CONCEPTUAL
MODELLING

transformation

standard
components

generic
models

simulation,
quality-checks

prototype

DATABASE
DESIGN AND
IMPLEMENTATION

formal
notations

transformation

REQUIREMENTS
COLLECTION
AND ANALYSIS

application programs
(+ documentation)

transformation

PROGRAM 
DESIGN AND
IMPLEMENTATION

conceptual scheme
(static/dynamic)

modell ing

ad
justm

en
t

requirements
scheme

integration

val
idatio

n (us
er)

validation (expert)

Figure 6: Conceptual modelling stage



In this stage, a system
architecture (which fulfills the
requirements) is created. In
more detail, this stage includes
the following activities:
– logical design (conversion

of the conceptual scheme
into a relational scheme,
key definition)

– (optional) design of system
distribution (data and
operation allocation and
fragmentation, design of
network architecture)

– internal design (indexing
of tables, storage
allocation)

– external design (user
views)

A strict distinction between
database design and database
implementation is not possible
as the availibility of 4GL
generators allows a high
degree of automation:
Generators create normalized
relations, forms, menues and
reports from the semantic data
scheme. The dictionary
contains several default
designs for this purpose, which
may be modified and - if
desired - kept for other
projects. Possible
inconsistencies (e.g. missing
key definitions) are identified
and eliminated.
On the function side,
normalization means
converting NR/T nets into Pr/T
nets (predicate/ transition nets
- in contrast to NR/T nets,
places in Pr/T nets represent
relation schemes in first
normal form, not nested
relations). Quantitative system

aspects - e.g. performance, possible distribution concepts etc. - are investigated using either analytical methods or Petri
net simulation. With respect to the design of system distribution, the use of Petri nets for behaviour modelling turns
out to be a particularly useful concept, since parallel operations can be derived directly from the net structure.
A so-called module network showing dependencies between modules is generated from the behaviour scheme (resp.
from the part of the scheme which is to be automated). Cross-reference matrices relate modules and data, while
module functionality is specified in pseudo-code notation.

co
nc ep tu

al

m
od el l i

ng

a
n

a
l y

si
s

re
qu

ir
em

en
ts

 c
o

ll
ec

ti
on

an
d 

an
al

ys
is

d a t ab a se -d e si gn

da
tab

ase
im

p
lem

e
ntatio

n

d e s i g n

im
p

le
m

e
n

ta
tio

n

operation op
eration

 planning

planning

DATABASE
DESIGN AND
IMPLEMENTATION

analytical
methods

database scheme
(+ documentation)

OPERATION AND
MAINTENANCE

transformation 
(= automated 
generation)

validation (expert)

conzeptual
scheme (static)

CONCEPTUAL
MODELLING

prototype
automated 
re-generation

existing system
components

manual
tuning

transformation
(experiences with  actual system
-> maintenance tasks)

complet
ion, co

rre
cti

on

modification

integration

valid
atio

n (user
)

Figure 7: Database design and implementation stage



•• program design and implementation

Source code generators create C-
code with embedded SQL-statements
from Petri nets, data schemes and
cross-reference matrices [14]. If
necessary, the code may be manually
tuned. Existing modules are tested
by coupling them to the Petri net
simulator, which simulates the
behaviour of connected modules.
Other generators produce reports
forming the system's documentation
or summarize module descriptions
collected in the dictionary to a first
version of the user documentation,
which can be manually tuned.

•• operation and maintenance

We define maintenance as the set of
modifications performed after the
release. It has been stated previously
that ProMISE does not take
maintenance as a stage in the
development cycle but as a new
iteration of the cycle. (Therefore,
there is no graphical representation
of this stage.)
In the planning stage, registered
maintenance requests are
investigated and - if accepted -
grouped into maintenance projects.
The process model is tailored for the
specific maintenance project; some
activities may become obsolete, new
ones may be added. Yet, the
principle process structure and the
methodology will be mainly the
same: during new development,
existing documents have to be
modified or extended as well - for
example if prototyping methods or
quality checks identify errors or
insufficient realization of require-
ments. The main difference to maintenance modifications is that one normally does not have to consider documents of
successive stages simply because they do not exist. In other words, maintenance can be thought of as development
under consideration of certain restrictions given by an existing target system. Hence, there are two important
requirements to an environment supporting maintenance:
a) During analysis it must be thoroughly investigated which parts of the system will be affected by a change (impact
analysis). To perform this, the dictionary with its various stage-overlapping analyzers gains particular importance.
Additionally, a hypertext interface is planned [20] to provide an even better visualization of stage-overlapping
interrelations by connectiong, e.g. source code with corresponding requirements or design documents or parts of the
documentation.
Simulation as a tool for validation and comparison of modification proposals is another concept of INCOME/STAR
which supports impact analysis.
b) The existing system restricts developers' opportunities. It would be useful if such restrictions could be expressed in a
simple, precise fashion. With the concept of checkpoint transitions (cf. section 'conceptual modelling'), a powerful
means for the expression of such constraints is available.

6 Summary and Outlook
This paper outlined the main structure and basic characteristics of ProMISE, a process model for development and
maintenance of information systems, which is part of the INCOME/STAR environment. The main features of the
model are: an integration of different development principles like user participation, automated software generation, a
stage-integrating, computer-supported methodology, software reuse and design-dictionary support.
At this time, documents and activity structures are further refined to a detailed formal description based on Petri nets
and semantic data schemes, permitting an integration of the process model into the design dictionary. Main benefits
will be an enhanced efficiency of process model usage and the opportunity to map different process model standards
on each other.

c onc eptu
al

m
odell i

n g

a
n

a
l y

si
s

re
qu

ir
em

en
ts

 c
ol

le
ct

io
n

an
d 

an
al

ys
is

d a tab ase-de si gn

d
a

tab
a

se
im

p
le

m
e

ntatio
n

d e si g n

im
p

le
m

e
n

ta
tio

n

operation operation

 planning

planning

CONCEPTUAL
MODELLING

OPERATION AND
MAINTENANCE

analytical
methods

application programs
(+ documentation)

validation (expert)

prototypeautomated 
re-generation

manual
tuning

transformation
(experiences with  actual system
-> maintenance tasks)

com
ple

tio
n, co

rre
cti

on

modification

integration

valid
atio

n (u
ser)

conceptual
scheme (dynamic)

transformation 
(= automated 
generation)

existing system
components

PROGRAM
DESIGN AND
IMPLEMENTATION

Figure 8: Program design and implementation stage



Future research work will largely concentrate on the following fields: At the moment, project management support is
more or less limited to the administration of some budget dates and critical success factors in the dictionary. Future
efforts in this area will concern the development of a detailed sub-model for computer-supported resource, capacity,
time and cost planning.
Many applications require integration of database and knowledge base components. Therefore, it could be useful to
combine process models from the area of knowledge engineering and of software engineering. We are currently
investigating possibilities to integrate concepts from MIKE (Model-based and Incremental Knowledge Engineering
[2] which is also developed at our institute) and INCOME/STAR-ProMISE.
A further research area is cooperative system development. Currently, INCOME/STAR provides simple locking-
mechanisms, future efforts will put stronger attention on computer supported cooperative work techniques like
providing an intelligent mailbox concept to support communication between developers [24].

Appendix

Stage Methods Tool support
Strategic
information
planning

extended ER-model
channel/agency net hierarchies
function hierarchies
cross-reference matrices
structured glossaries

graphical editors
automated analyzers

Project
specific
planning

extended ER-model
channel/agency nets hierarchies
function hierarchies
cross-reference matrices
structured glossaries

graphical editors
automated analyzers
tailoring-component

Requirements
collection and
analysis

extended ER-model
dataflow diagrams
channel/agency nets hierarchies
function hierarchies
cross-reference matrices
structured glossaries

glossary editor
graphical editors
automated analyzers

Conceptual modelling extended ER-model
NR/T nets:
• hierarchies
• declaratively modelled system requirements
• time aspects
standard components
generic models
simulation of design alternatives

graphical editors
NR/T net generators
automated analyzers
libraries for standard components and
generic models
simulators:
• quantitative investigations
• graphically animated

Logical
design
(→ rel. data base)

algorithms
SQL-Pr/T-Nets
simulation of design alternatives

graphical editors
SQL-Pr/T net generators
automated analyzers

Distribution
design

algorithms for data allocation and
fragmentation:
• generation of design alternatives
• valuation (analytic/simulation-based)

automated analyzers
simulators (distributed simulation model)

Ext. / int. data base
design

algorithms automated analyzers

Program design &
implementation

automated generation data base generators
source code generators

Operation and
maintenance

algorithms
simulation of modification proposals
hypertext techniques

graphical editors
simulators
hypertext interface
stage-overlapping automated analyzers:
• cross-checks
• correlation analysis
• consistency checks

Table 1: INCOME/STAR-ProMISE: methods and tools

Literature

[1] W.W. Agresti (Ed.): New Paradigms for Software Development, IEEE Computer Society Press, Washington 1986
[2] J. Angele, D. Fensel, D. Landes, S. Neubert, R. Studer: Model-based and incremental knowledge engineering: the MIKE

approach, in: J. Cuena (Ed.): Proc. IFIP TC12 Workshop on Artificial Intelligence from the Information Processing
Perspective, Madrid 1992, Elsevier, Amsterdam 1993

[3] R. Barker: CASE*Method: Tasks and Deliverables, Addison-Wesley, Wokingham, 1990



[4] A.T. Berztiss: Concurrent engineering of information systems, in: N. Prakash, C. Rolland, B. Pernici (Eds.): Information
System Development Process, Proc. of the IFIP WG8.1 Working Conference on Information System Development Process,
Como, Italy, September 1993

[5] B.W. Boehm: Software Engineering, IEEE Transactions on Computers, 25, p. 1226-1241, 1976,
[6] B.W. Boehm: A spiral model of software development and enhancement, IEEE Computer, 21(5), p. 61-72, May 1988
[7] Commission of the European Communities: EUROMETHOD Information Pack, Brussels 1991
[8] G. Chroust: Modelle der Software-Entwicklung, R. Oldenburg Verlag, Munich, Vienna 1992 (in German)
[9] B. Curtis, D. Walz, J. Elam: Studying the process of software design teams, in: D.E. Perry (Ed): Experiences with Software

Process Models, Proc. 5th International Software Process Workshop, Kennebunkport, Maine 1989, IEEE Computer Society
Press, Los Alamitos 1990

[10] V. DeAntonellis, B. Demo: Requirements collection and analysis, in: S. Ceri (Ed.): Methodology and Tools for Data Base
Design, p. 9-24, North-Holland Publ. Comp., Amsterdam, New York 1983

[11] A. Finkelstein: A structural framework for the formal representation of cooperation, in: D.E. Perry (Ed): Experiences with
Software Process Models, Proc. 5th International Software Process Workshop, Kennebunkport, Maine 1989, IEEE
Computer Society Press, Los Alamitos 1990

[12] J.-L. Hainaut, M. Cardelli, B. Decuyper, O. Marchand: Database CASE tool architecture: principles for flexible design
strategies, in: P. Loucopoulos (Ed.): Advanced Information Systems Engineering, Proc. 4th International Conference CaiSE
'92, Manchester 1992, Springer-Verlag, Berlin, Heidelberg, New York 1992

[13] IEEE Standard for Developing Software Life Cycle Processes, Institute of Electrical and Electronics Engineers, New York,
January 1992

[14] INCOME User Manuals: INCOME/Designer, INCOME/Dictionary, INCOME/Generator, INCOME/Simulator.
PROMATIS Informatik, Karlsbad 1993

[15] P. Jaeschke, A. Oberweis, W. Stucky: Extending ER model clustering by relationship clustering, in: R. Elmasri, V.
Kouramajian (Eds.): Proc. 12th International Conference on the Entity Relationship Approach, p. 447-459,
Arlington/Texas, December 1993.

[16] D.H. Kitson, S.M. Masters: An analysis of SEI software process assessment results: 1987-1991, Proc. 15th International
Conference on Software Engineering, IEEE Computer Society Press, Los Alamitos, California, May 1993, p.68-77

[17] M.M. Lehman: Programs, life cycles and the laws of software evolution, Proc. of the IEEE, 68(9), p. 1060-1076, September
1980

[18] P. Loucopoulos (Ed.): Advanced Information Systems Engineering, Proc. 4th International Conference CaiSE '92,
Manchester 1992, Springer-Verlag, Berlin, Heidelberg, New York 1992

[19] M.M. Mantei, T.J. Teorey: Cost/benefit analysis for incorporating human factors in the software life cycle, Communications
of the ACM, 31(4), p. 426-439, April 1988

[20] S. Neubert, A. Oberweis: Einsatzmöglichkeiten von Hypertext beim Software Engineering und Knowledge Engineering, in:
Proc. Hypertext und Hypermedia 92, Munich, p.162-174, September 1992 (in German)

[21] T. Németh, A. Oberweis, F. Schönthaler, W. Stucky: INCOME: Arbeitsplatz für den Programmentwurf interaktiver
betrieblicher Informationssysteme, Forschungsbericht 251, Institut für Angewandte Informatik und Formale Beschreibungs-
verfahren, Universität Karlsruhe, August 1992 (in German)

[22] A. Oberweis, V. Sänger: Graphical query facility for large Petri net simulation runs, in: F. Maceri (Ed.): Proc. of the 1992
EUROSIM Conference, Capri/Italy, p. 515-520, September/October 1992

[23] A. Oberweis, P. Sander, W. Stucky: Petri net based modelling of procedures in complex object database applications, in:
J.E. Urban (Ed.): Proc. 17th Annual International Computer Software and Applications Conference COMPSAC 93,
Phoenix/Arizona, p. 138-144, November 1993

[24] A. Oberweis, W. Stucky, T. Wendel: Rechnergestützte Kommunikation in Software-Entwicklungsprojekten - Workgroup
Computing für kooperative Sytementwicklung. Proc. Online '94, 17. Europäische Congressmesse für Technische
Kommunikation, February 1994 (in German, to appear)

[25] D.E. Perry (Ed): Experiences with Software Process Models, Proc. 5th International Software Process Workshop,
Kennebunkport, Maine 1989, IEEE Computer Society Press, Los Alamitos 1989

[26] N. Prakash, C. Rolland, B. Pernici (Eds.): Information System Development Process, Proc. of the IFIP WG8.1 Working
Conference on Information System Development Process, Como, Italy, September 1993

[27] G. Starke: Urgent research issues in software process engineering, ACM SIGSOFT Software Engineering Notes, 18(4), p.
13-15, October 1993

[28] W. Stucky, A. Oberweis, G. Scherrer: INCOME/STAR: Process model support for the development of information systems,
in: J. Niedereichholz, W. Schuhmann (Eds.): Wirtschaftsinformatik - Beiträge zur modernen Unternehmensführung, p. 145-
165, Campus-Verlag, Frankfurt/New York 1993

[29] W. Swartout, R. Balzer: On the inevitable intertwining of specification and implementation, Communications of the ACM,
25(7), p.438-440, July 1982


