KIT | KIT-Bibliothek | Impressum | Datenschutz

Goodness-of-fit tests for the inverse Gaussian distribution based on the empirical Laplace transform

Henze, Norbert ORCID iD icon 1; Klar, Bernhard ORCID iD icon 1
1 Fakultät für Mathematik – Institut für Mathematische Stochastik (Inst. f. Math. Stochastik), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

This paper considers two flexible classes of omnibus goodness-of-fit tests for the inverse Gaussian distribution. The test statistics are weighted integrals over the squared modulus of some measure of deviation of the empirical distribution of given data from the family of inverse Gaussian laws, expressed by means of the empirical Laplace transform. Both classes of statistics are connected to the first nonzero component of Neyman's smooth test for the inverse Gaussian distribution. The tests, when implemented via the parametric bootstrap, maintain a nominal level of significance very closely. A large-scale simulation study shows that the new tests compare favorably with classical goodness-of-fit tests for the inverse Gaussian distribution, based on the empirical distribution function.


Preprint §
DOI: 10.5445/IR/29782002
Veröffentlicht am 16.10.2025
Originalveröffentlichung
DOI: 10.1023/A:1022442506681
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Mathematik – Institut für Mathematische Stochastik (Inst. f. Math. Stochastik)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 06.2002
Sprache Englisch
Identifikator ISSN: 0020-3157, 1572-9052
KITopen-ID: 29782002
Erschienen in Annals of the Institute of Statistical Mathematics
Verlag Springer
Band 54
Heft 2
Seiten 425-444
Schlagwörter Goodness-of-fit test, inverse Gaussian distribution, empirical Laplace transform, parametric bootstrap, smooth tests of fit
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page