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Abstract

This paper first recalls some stochastic orderings useful for studying the L-class
and the Laplace order in general. We use these orders to show that the higher
moments of a £-class distribution need not exist. Using simple sufficient conditions
for the Laplace ordering, we give examples of distributions in the £- and L,-
class. Moreover, we present explicit sharp bounds on the survival function of a
distribution belonging to the L-class of life distributions. The results reveal that
the L-class should not be seen as a more comprehensive class of aging distributions

but rather as a large class of life distributions on its own.
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1 Introduction

A distribution function F with support [0,00) and finite mean p = [5° F(x)dx, where

F =1-F, is said to belong to the L-class of life distributions (£ € L) if

® 0
*F(x)dx > for all s > 0. 1
/0 e (x)dz > T+ sy orall s > (1)
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The class £ was introduced by Klefsjo (1983). By means of the Laplace transform

Lr(s) = Erpe%, (1) can be restated as
Lp(s) < L(s,1/u) forall s >0, (2)

where L(s,A) = A/(A+s) denotes the Laplace transform of the exponential distribution
with distribution function F(t,\) = 1 —exp(—At) for ¢ > 0. From (2), a distribution
belongs to the L-class if it dominates the exponential distribution with the same mean
in the Laplace transform order (Stoyan (1983), p. 22). In this case, we write X >, Y,
where the random variable (rv) X has distribution function F', and Y is exponentially
distributed with mean .

We would have to point out that the above definition of the Laplace ordering is
adopted from Stoyan (1983). It differs from the definition used by Klefsjé (1983), where
the reverse inequality is required in (2). One reason why we prefer the above definition is
the following result (see, e.g., Reuter and Riedrich (1981), or Alzaid, Kim, and Proschan
(1991)): X <y Yifandonlyif Ef(X) < Ef(Y) for each non-negative function f having

a completely monotone derivative, provided the expectations exist.

For the following definitions, see Rolski (1976), Fishburn (1980a), Kaas and Hesse-
lager (1995) and Denuit, Lefevre, and Shaked (1998). We use the terminology of Denuit
et al. (1998). Let X and Y be positive random variables. X is said to be smaller than

Y in the s-increasing convex order (X <, ;. Y) if
E(X-0)" < BY—-1)5' <oo foralt>0. (3)
X is smaller than Y in the s-increasing concave order X <, ;., Y if
E(t—X)5" > E(t-Y)y! foralt>0. (4)

If, in addition to (3), EX* = EY* for k = 1,2,...,5s — 1, then X is said to be smaller
than Y in the s-convex order (written X <, ., Y). Likewise, if, in addition to (4),
EX*™1 < 00,BY*! < 00, and EX* = EY* for k = 1,2,...,5 — 1, then X is said
to be smaller than Y in the s-concave order (written X <, ., Y). Hence, X <, ., Y
(X <s-eo V) implies X <, e ¥V (X <4oien V).

There are further connections between the different order relations. For example, if

X <, ez Y, then X <, ., Y when s is odd, and Y <,_., X when s is even. Moreover,



X <osicz ¥V (X <oliew V) implies X <¢si1)—ice ¥ (X Z(s41)—icv Y'), provided the
moments exist.

Note that, when s = 1 and 2, the orders are known as stochastic dominance, convex
and concave orders, as well as increasing convex and concave orders. In actuarial sci-
ence, the increasing convex orders are called n-th stop-loss orders (Kaas and Hesselager
(1995)).

Since Lx(t) > Ly(t) for t > 0 if X <, ;., Y (Rolski (1976), Corollary 2 of Theorem
2.1), and, hence, X <, ;., Y implies X <; Y, these order relations can be utilized for
studying the L-class of life distribution.

For example, let X be in the harmonic new better than used in expectation (HNBUE)

class of life distributions, satisfying [ F(z)dr < pexp(—t/u) for every t > 0 (Rolski
(1975)). Equivalently, X <5 ., Y (or X >9_., Y), where Y is exponentially distributed
with mean g, which implies the well-known fact that the L-class is larger than the
HNBUE class.
The paper is organized as follows. In Section 2 we give an example of a L-class distribu-
tion with infinite third moment. Section 3 is devoted to examples of distributions in the
L-class. To this end, we provide simple sufficient conditions for the s-increasing concave
order. In Section 4 we present an explicit upper bound on the survival function S(t) of
a distribution in the L£-class; this bound is sharp for ¢ > 2 FX and differs substantially
from the corresponding bound for the HNBUE class. Section 5 concludes the paper.

2 Finiteness of moments

In contrast to cases of other well-known life distribution families like the HNBUE class
mentioned above, not much is known about the existence of moments of distributions
in the L-class.

One well-known result is that each distribution F' € £ has a finite second moment;
furthermore, the coefficient of variation (CV') is not greater than 1 (Mitra, Basu, and
Bhattacharjee (1995), Bhattacharjee and Sengupta (1996), Lin (1998a), Lin and Hu
(2000)). However, the exponential distribution is not characterized within the L-class
by the property that the coefficient of variation is one (contrary to the HNBUE class).

In this section, we give an example of a L-class distribution with infinite third mo-
ment. This result is in sharp contrast to the HNBUE class, since distributions which

are HNBUE have finite moments of all (positive) orders (Klefsjo (1982)).



A real-valued function ¢ on [0,00) is said to have n sign changes if there exists a
disjoint partition I; < Iy < ... < I,41 of [0,00) such that ¢ has opposite signs on
subsequent intervals I; and I, and [, o(t)dt # 0 for all j.

The next theorem (Rolski (1976), Theorem 2.3, see also Denuit et al. (1998), Theorem

4.3) gives conditions which imply the s-convex (s-concave) orders.

Theorem 2.1 Let U and V be positive random variables with distribution functions G
and H, respectively. Further, let EU* = EV* k=1,... s — 1.

(i) If G — H has ezactly s — 1 sign changes, and if in some interval after the last sign
change the function G — H 1is greater than zero, then U <,_.,. V.

(i1) If G — H has exactly s — 1 sign changes, and if in some interval after the last sign
change the function G — H is greater than zero for s odd and is less than zero for

s even, then U <,_., V.

In particular, if a rv X has expected value p and variance p?, and its distribution
function F' crosses 1 —exp(t/u) twice with 1 —exp(t/pu) > F(t) after the second crossing,
then Y <3_., X, where Y ~ exp(1/u). Hence, X belongs to the L-class.

We use this fact to construct a L£-class distribution with infinite third moment.

Example 2.1 Let X be a positive random variable with survival function F defined by

81
Lt < 156

Ft) = { ¢ 2-<t<3

4, t>3,
where ¢ = 9361/179361 and d = 124/91. Elementary calculations yield EX = Var(X)
= 1. Since exp(—81/100) < 1, exp(—3) < ¢ < exp(—81/100) and exp(—t) < d/t* for
t >3, F crosses 1 —exp(—t) twice and 1 — exp(—t) > F(t) for t > 3. Therefore, X € L,
but EX?3 = oo.

Hence, the question posed by Lin and Hu (2000) wether or not each life distribution

F € L possesses finite moments of all orders has to be answered in the negative.

Remark 2.2 If, for arbitrary life distributions F' and G, and for some t, € [0, 00),
F(t) > G(t) if t <tgand F(t) < G(t) if t > to, where ' = 1 — F, Mitra et al. (1995)
said that F' crosses G from above. They showed that F € L if F crosses exp(—t/ur)
from above. Theorem 2.1 with s = 2 shows that, in this case, X is even HNBUE.



A related notion is used in actuarial science: X is said to be less dangerous than Y,
if EX < EY and Fx crosses Fy from above; this fact implies X <s_jep Y (Karlin and
Novikoff (1963)).

3 Examples of L ,-class distributions

Many commonly used life distributions like the gamma or the Weibull distribution with
shape parameter greater than 1 are HNBUE and, hence, also belong to the L-class. To
show that the L-class is strictly larger than the HNBUE class, Klefsjo (1983) used the
two point distribution with P(X = 0.3) = 0.3 and P(X = 3) = 0.7 (for a proof that
X € L, see Lin and Hu (2000)).

Bhattacharjee and Sengupta (1996) gave an example of a two-point distribution with
CV =1 (hence, the distribution is not HNBUE) that belongs to the £-class (see Example
3.1 below).

Likewise, the distribution in Example 2.1 belongs to the L-class, but is not HNBUE
since its expectation and its variance are 1.

To obtain more natural examples of distributions from the L-class (besides the afore-
mentioned HNBUE distributions), we relax the equality condition on the (s — 1)-th mo-
ment in Theorem 2.1 to an inequality (see Kaas and Hesselager (1995), Theorem 2.3
for a corresponding statement for the s-increasing convex or (s — 1)-th degree stop loss
order).

Using this result, it is also possible to obtain examples of distributions belonging
to the L,-class (Lin (1998b)), which is defined as follows. If X dominates the gamma
distribution T'(a, 8) (with density S%z* le=#*/T'(a) for > 0, expectation a/3, and
variance a/(3?) with a > 0,3 = a/FEX in the Laplace order, then X belongs to the
L.-class. Equivalently, Lx(s) < (1+ s/8)~* for s > 0, where Lx denotes the Laplace
transform of X. Note that the £i-class and the L-class coincide. Obviously, £, C L
for 0 < o/ < a. In particular, each distribution in the L,-class with o > 1 belongs to
the L-class.

Theorem 3.1 Let U and V' be positive random variables with distribution functions G
and H, respectively. Further, let EU = EVI j =1,...,58 —2 and (=1)*"1EU*1 >
(=1)*YEVs=L. Then each of the following conditions is sufficient for U <, iz, V.

(i) S|G—H] < s—1 with G > H before the first sign change, where S|G — H| denotes



the number of sign changes of G — H.

(i1) Sllog(g/h)] < s with g > h before the first sign change, where G and H are

assumed to be absolutely continuous with densities g and h, respectively.

PROOF: Define ro(z) = G(2),k;(z) = [y kj—1(t)dt forall z > 0and j =1,2,...,n—1,
and \; the same for H. Then

gl ri(z) = E(x—U)i, x>0,7=12,...

One has to show that Aj(z) = k;(z) — Aj(z) > 0 for x > 0. To this end, assume that
S[A;_1] = h for some positive integer h, with opposite signs on subsequent intervals
fl < f2 <...< fh+1. As in the proof of Theorem 2.3 of Kaas and Hesselager (1995), one
can see that A; can have at most h sign changes, one occurring on each of the intervals
fQ, cee th. But if a sign change occurs on [:hﬂ, the monotonicity of A; on th implies
that lim, .. A;(z) # 0, and in particular that lim, ., As_1(x) < 0, which contradicts
the assumption that E[U? —V?] =0for j =1,...,s—2and (—1)* 'E[U! - V571] > 0.
Hence S[A;] < max{0, S[A;_;]} for j =1,...,s—1, and consequently S[A,_;] = 0. The
assumption G > H on I; then implies A;_1(x) > 0, which proves (i).

As to the second assertion, one only has to note that (ii) is a sufficient condition for

Q).

Remark 3.2 Suppose the moments of G and H through order s are finite and U <,_;,
V. Then Fishburn (1980b) showed that either G = H, or for some k < s, EU’ =
EVI (j = 1,2,....,k — 1) and (-=1)*EU* > (=1)*EV*. Hence, if EU} = EVI j =
1,...,s — 2, then the inequality (—1)*'EU*! > (—1)*'EV*"! in Theorem 3.1 is

necessary for U <,_;., V.

Example 3.1 Consider a random variable X with P(X = 3/10) = 25/29 and P(X =
7/4) = 4/29. Bhattacharjee and Sengupta (1996), Example 3.1, proved that X € L.
Since EX = EX? =1/2, X is not HNBUE (Lin and Hu (2000)).

In order to show that X € £ using Theorem 3.1, let Y be exponentially distributed
with mean 1/2. Then, EY = EX,EY? = EX? and EY?® = 3/4 < EX?® = 61/80.
The difference of the distribution functions Fy — Fx has three sign changes; clearly,
Fy — Fx > 0 before the first sign change. By Theorem 3.1(i), YV <, ;. X, and,
consequently, X € L.



Example 3.2 Let IG(u, A) denote the inverse Gaussian distribution with parameters

u >0 and A > 0, which has density

A Mz — p)?
flz) = 2 & 3/2 exp <_(2,u2x)>’ x> 0.

The expectation and variance of IG(u, \) are u and p®/\, respectively.
Proposition 3.3 Let X ~ IG(u,\) and Y ~ I'(a, B) with EX = EY and Var(X) <

Var(Y). Then Y <3 ;. X.

PROOF: By rescaling if necessary, we may take u = 1,80 X ~ IG(1,\) and Y ~ I'(a, @)

with A > «. For some constant ¢, we have

logﬁzg?) = c+ (a+;> logx%—;;— (a—?) x,

which tends to +oo for | 0 and has no more than three sign changes (see Kaas and
Hesselager (1995), p. 197). By Theorem 3.1(ii), the assertion follows. W

As a consequence, each IG(u, \)-distribution with A > pa belongs to the class £,
(v > 0). In particular, when A > p (or CV = m < 1), then IG(u,\) € L. Henze
and Klar (2001) obtained this result using the Laplace transform of IG(u, A). If A < p
then C'V > 1, and consequently IG(u, A) ¢ L.

Example 3.3 Let LN(v,72) denote the lognormal distribution with parameters v € R
and 72 > 0, which has density

1 (logx — v)?
) = exp| ————— |, z > 0.
/() T 27 p( 272
The expectation and variance of LN (v, 7?) are e’+7%/2 and 62y+72(672 —1).

Proposition 3.4 Let X ~ LN (v,7%) and Y ~ T'(«, 8) with EX = EY and Var(X) <
VCW’(Y). Then'Y SS*icv X.

PROOF: Again, we take u = 1, so X ~ LN(—7%/2,7?) and Y ~ T'(a,«), where

necessarily 72 < log(1 + 1/a). Here, we obtain

fr(z)
Ix(z)

log? z
272 7

log

1
c+<a+2)logm—ozx+



which tends to +o0o for z | 0 and has at most three sign changes (see Kaas and Hesse-
lager (1995), p. 197). Hence, the assertion follows. W

By Proposition 3.4, each LN (v, 7%)-distribution with 72 < log(1 + 1/a) belongs to
the £,-class.

Example 3.4 In the last example, we consider the Birnbaum-Saunders distribution
BS(v,6) with parameters ~,d > 0, which has density

flx) = 6‘2};13(\/72_??31:3/2(:13—|—<5)exp{—2172 <§+i>}, x>0

(Johnson, Kotz, and Balakrishnan (1995), p. 651). The expectation and variance of
BS(v,6) are 6(v*/2 + 1) and §24*(57%/4 + 1).
We deal only with the case v = 1; without restriction, we take the means equal to
1. Hence, let X ~ BS(y,(v*/2+ 1)) and Y ~ T(1,1). If y < 1, Var(X) < Var(Y).
Now,
log fr(@) = c+ 23y
fx () 4y?

which tends to +oo for | 0. The first derivative is a rational function in x. The

T+ (72(72 -+ 2)95)_1 + ;) log z — log (a:(ny +2)+ 2)

denominator is positive for x > 0. The nominator is a third degree polynomial; some
computations show that it has at most two zeros for x > 0, so the function itself has
no more than three sign changes. By Theorem 3.1(ii), we have Y <3 ;., X. Therefore,
the Birnbaum-Saunders distribution belongs to the L-class, provided v < 1 (i.e. the

coefficient of variation does not exceed 1).

4 Explicit reliability bounds for the L-class

Chaudhuri, Deshpande, and Dharmadhikari (1996) gave the following explicit lower
bound on the survival function of a distribution F' belonging to the L-class. If F' has
mean u, and F' € £, then F(t) > 1 — (t/p)exp(l —t/u) for 0 <t < p.

Sengupta (1995) obtained the following implicit, but sharp upper and lower bounds.
Suppose F' € £ with mean . Then oy < F(t) < 1ift < pand 0 < F(t) <1 — oy if
t > u, where

o = inf{a: faruls) >0Vs >0} (5)



and
Fuals) = e~ (L+9) (1 -t e C=e)

We use this result to derive explicit bounds on survival functions belonging to the £-

class.

Theorem 4.1 Let F' € L with mean p. Then the following bounds hold:

(i) F(t) >1— oL —12??/,u+2’ if t < . The bound is sharp for 2—/2 < t/pn<1.

(ii) F(t) < ok —12t/ﬂ wl if t > p. The bound is sharp for t/u > 2+ /2.

PROOF: Fix ¢t and put u =t/u. A Taylor series expansion around s = 0 yields

<u2 (u—1)2

fauls) = 5 Yo (u— 1)) s? + 0(33)

= ¢ (u,a)s® +0(s?),

say. Now, fo.(s) > 0 for all s > 0 only if ¢;(u,a) > 0. Hence,

(U-].)Q . *
o > m =: af (say), (6)

which yields the bounds in (i) and (ii). Another series expansion around s = 0 gives
faru(s) = ca(u) s* + 0(s?),

where ¢ (u) = (v —4u+2)/(6(u—1))

Oforuel, = [2—\/5, oruel,= [2+\/§, 00).
Furthermore, using the inequality e 1

>

> 14z (x € R), we see that the second derivative
foruls) = €™ [uz - ((u2 —2u+ 2) 5+ u2> 8_8%}

is non-negative for u € Iy U I. Hence, if u € I; U Iy, foru(s) > 0 for all s > 0. In view

of (5) and (6), the lower (upper) bound is sharp for u € I (u € I5). B

Remark 4.2 (i) The explicit lower bound 1 — (¢/u) exp(1 — ¢/u) mentioned above is
better than the bound in (i) in the range 0 < ¢/u < 0.415.

(ii) The upper bound g /t, which applies to any survival function with mean p, is better

than the bound in (ii) in the range p <t < 2.



(iii) Klefsjo (1982) obtained the sharp upper bound e!~*/# (¢ > p) on survival functions
in the HNBUE class. The difference between this bound and the upper bound in
(ii) also indicates that the L-property is considerably weaker than the HNBUE

notion.

In the rest of this section, we consider the class L, of life distributions. For a
distribution with mean p belonging to L, Lin and Hu (2000) gave the functional lower
bound F(t) > 1 — (ﬁ exp(l — t/,u))a for all ¢t < p.

If the distributions F' and G have the same mean p and F' >, G, Sengupta (1995)
obtained the bounds &; < F(t) < 1ift < pand 0 < F(t) <1 —6; if t > p, where

0y = inf {5 ; ing [e’”t (1 - 7’/000(1 - G(x))e‘”%lm) +0 (1 — e_’"(“_t)/‘s) — 1] > O} .

r>
If G is the I'(a, a/p)-distribution with Laplace transform Lg(r) = (1 + pr/a)™®, we
obtain (by using [;°(1 — G(x))e " dx = (1 — Lg(r)) /r and putting pr = s)
6 = inf{8: fsu/u(s) > 0Vs >0},

where f5,(s) = e — (1+s/a)” (1 -0+ (56_3(1_")/5) . Utilizing this result, we obtain
the next theorem. Its proof is omitted, since the reasoning closely follows the first part
of the proof of Theorem 4.1.

Theorem 4.3 Let F' € L, with mean . Then the following bounds hold:
B 2 -1
(i) F(t)>1— (a(t/p—1°+1) if t<p
= 2 -1
(i1) F(t)g(&(t/p—l) —1—1) Jif > .

We conjecture that, similar as for & = 1, the bound in (i) is sharp for HO‘_T Vite <

ﬁ < 1, and the bound in (ii) is sharp for ﬁ > @

5 Conclusion

The inequalities (1) and (2), which define the £-class of life distributions, correspond to
several models in reliability and maintenance (see Klefsjo (1983), Alzaid et al. (1991)).
This fact explains the great deal of attention received by the L-class in the literature. As

remarked by Klefsjo (1983), a further reason for the importance of the £-class lies in the

10



fact that it may be easier to determine the Laplace transform than the corresponding
survival function explicitly.

Often, the L-class is viewed as the largest class in a chain of classes of life distributions
that describe positive aging. As stated by Kochar and Deshpande (1985), the essential
property of distributions belonging to these classes is that the residual performance of
a unit having already survived up to time ¢ is ‘inferior’ in some stochastic sense than
the performance of a fresh unit. This general definition of positive aging applies for
classes like increasing failure rate, increasing failure rate average, new better than used,
decreasing mean residual life, new better than used in expectation or harmonic new
better than used in expectation. However, there doesn’t seem to exist a corresponding
characterization for the class L.

The L-class contains distributions which do not belong to the aforementioned aging
classes, but are connected to some notion of aging. For example, the inverse Gaussian
and the Birnbaum-Saunders distribution are typical examples of fatigue failure models
(see, e.g., Bhattacharyya and Fries (1982)). The hazard rates of both distributions
increase from zero at time ¢ = 0 until they attain a maximum at some critical time and
then decrease to a non-zero asymptotic value.

On the other hand, the distribution in Example 2.1 with hazard rate decreasing
to zero with the rate 1/t as ¢ — oo, or the lognormal distribution with hazard rate
decreasing to zero, show that the L-class also includes distributions which are not well
suited for describing positive aging.

Hence, the L-class should not be seen as a more comprehensive class of aging distri-

butions but rather as a large class of life distributions on its own.
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