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Abstract

This paper first recalls some stochastic orderings useful for studying the L-class

and the Laplace order in general. We use these orders to show that the higher

moments of a L-class distribution need not exist. Using simple sufficient conditions

for the Laplace ordering, we give examples of distributions in the L- and Lα-

class. Moreover, we present explicit sharp bounds on the survival function of a

distribution belonging to the L-class of life distributions. The results reveal that

the L-class should not be seen as a more comprehensive class of aging distributions

but rather as a large class of life distributions on its own.
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1 Introduction

A distribution function F with support [0,∞) and finite mean µ =
∫∞
0 F̄ (x)dx, where

F̄ = 1− F , is said to belong to the L-class of life distributions (F ∈ L) if

∫ ∞

0
e−sxF̄ (x) dx ≥ µ

1 + sµ
for all s ≥ 0. (1)
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The class L was introduced by Klefsjö (1983). By means of the Laplace transform

LF (s) = EF e−sX , (1) can be restated as

LF (s) ≤ L(s, 1/µ) for all s ≥ 0, (2)

where L(s, λ) = λ/(λ+ s) denotes the Laplace transform of the exponential distribution

with distribution function F (t, λ) = 1 − exp(−λ t) for t ≥ 0. From (2), a distribution

belongs to the L-class if it dominates the exponential distribution with the same mean

in the Laplace transform order (Stoyan (1983), p. 22). In this case, we write X ≥L Y ,

where the random variable (rv) X has distribution function F , and Y is exponentially

distributed with mean µ.

We would have to point out that the above definition of the Laplace ordering is

adopted from Stoyan (1983). It differs from the definition used by Klefsjö (1983), where

the reverse inequality is required in (2). One reason why we prefer the above definition is

the following result (see, e.g., Reuter and Riedrich (1981), or Alzaid, Kim, and Proschan

(1991)): X ≤L Y if and only if Ef(X) ≤ Ef(Y ) for each non-negative function f having

a completely monotone derivative, provided the expectations exist.

For the following definitions, see Rolski (1976), Fishburn (1980a), Kaas and Hesse-

lager (1995) and Denuit, Lefevre, and Shaked (1998). We use the terminology of Denuit

et al. (1998). Let X and Y be positive random variables. X is said to be smaller than

Y in the s-increasing convex order (X ≤s−icx Y ) if

E(X − t)s−1
+ ≤ E(Y − t)s−1

+ < ∞ for all t ≥ 0. (3)

X is smaller than Y in the s-increasing concave order X ≤s−icv Y if

E(t−X)s−1
+ ≥ E(t− Y )s−1

+ for all t ≥ 0. (4)

If, in addition to (3), EXk = EY k for k = 1, 2, . . . , s − 1, then X is said to be smaller

than Y in the s-convex order (written X ≤s−cx Y ). Likewise, if, in addition to (4),

EXs−1 < ∞, EY s−1 < ∞, and EXk = EY k for k = 1, 2, . . . , s − 1, then X is said

to be smaller than Y in the s-concave order (written X ≤s−cv Y ). Hence, X ≤s−cx Y

(X ≤s−cv Y ) implies X ≤s−icx Y (X ≤s−icv Y ).

There are further connections between the different order relations. For example, if

X ≤s−cx Y , then X ≤s−cv Y when s is odd, and Y ≤s−cv X when s is even. Moreover,
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X ≤s−icx Y (X ≤s−icv Y ) implies X ≤(s+1)−icx Y (X ≤(s+1)−icv Y ), provided the

moments exist.

Note that, when s = 1 and 2, the orders are known as stochastic dominance, convex

and concave orders, as well as increasing convex and concave orders. In actuarial sci-

ence, the increasing convex orders are called n-th stop-loss orders (Kaas and Hesselager

(1995)).

Since LX(t) ≥ LY (t) for t > 0 if X ≤s−icv Y (Rolski (1976), Corollary 2 of Theorem

2.1), and, hence, X ≤s−icv Y implies X ≤L Y , these order relations can be utilized for

studying the L-class of life distribution.

For example, let X be in the harmonic new better than used in expectation (HNBUE)

class of life distributions, satisfying
∫∞
t F̄ (x) dx ≤ µ exp(−t/µ) for every t ≥ 0 (Rolski

(1975)). Equivalently, X ≤2−cx Y (or X ≥2−cv Y ), where Y is exponentially distributed

with mean µ, which implies the well-known fact that the L-class is larger than the

HNBUE class.

The paper is organized as follows. In Section 2 we give an example of a L-class distribu-

tion with infinite third moment. Section 3 is devoted to examples of distributions in the

L-class. To this end, we provide simple sufficient conditions for the s-increasing concave

order. In Section 4 we present an explicit upper bound on the survival function S(t) of

a distribution in the L-class; this bound is sharp for t > 2 EX and differs substantially

from the corresponding bound for the HNBUE class. Section 5 concludes the paper.

2 Finiteness of moments

In contrast to cases of other well-known life distribution families like the HNBUE class

mentioned above, not much is known about the existence of moments of distributions

in the L-class.

One well-known result is that each distribution F ∈ L has a finite second moment;

furthermore, the coefficient of variation (CV ) is not greater than 1 (Mitra, Basu, and

Bhattacharjee (1995), Bhattacharjee and Sengupta (1996), Lin (1998a), Lin and Hu

(2000)). However, the exponential distribution is not characterized within the L-class

by the property that the coefficient of variation is one (contrary to the HNBUE class).

In this section, we give an example of a L-class distribution with infinite third mo-

ment. This result is in sharp contrast to the HNBUE class, since distributions which

are HNBUE have finite moments of all (positive) orders (Klefsjö (1982)).
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A real-valued function φ on [0,∞) is said to have n sign changes if there exists a

disjoint partition I1 < I2 < . . . < In+1 of [0,∞) such that φ has opposite signs on

subsequent intervals Ij and Ij+1 and
∫
Ij

φ(t)dt 6= 0 for all j.

The next theorem (Rolski (1976), Theorem 2.3, see also Denuit et al. (1998), Theorem

4.3) gives conditions which imply the s-convex (s-concave) orders.

Theorem 2.1 Let U and V be positive random variables with distribution functions G

and H, respectively. Further, let EUk = EV k, k = 1, . . . , s− 1.

(i) If G−H has exactly s− 1 sign changes, and if in some interval after the last sign

change the function G−H is greater than zero, then U ≤s−cx V .

(ii) If G−H has exactly s− 1 sign changes, and if in some interval after the last sign

change the function G−H is greater than zero for s odd and is less than zero for

s even, then U ≤s−cv V .

In particular, if a rv X has expected value µ and variance µ2, and its distribution

function F crosses 1−exp(t/µ) twice with 1−exp(t/µ) > F (t) after the second crossing,

then Y ≤3−cv X, where Y ∼ exp(1/µ). Hence, X belongs to the L-class.

We use this fact to construct a L-class distribution with infinite third moment.

Example 2.1 Let X be a positive random variable with survival function F̄ defined by

F̄ (t) =





1, t ≤ 81
100

c, 81
100

< t ≤ 3
d
t3

, t > 3,

where c = 9361/179361 and d = 124/91. Elementary calculations yield EX = V ar(X)

= 1. Since exp(−81/100) < 1, exp(−3) < c < exp(−81/100) and exp(−t) < d/t3 for

t > 3, F crosses 1− exp(−t) twice and 1− exp(−t) > F (t) for t > 3. Therefore, X ∈ L,

but EX3 = ∞.

Hence, the question posed by Lin and Hu (2000) wether or not each life distribution

F ∈ L possesses finite moments of all orders has to be answered in the negative.

Remark 2.2 If, for arbitrary life distributions F and G, and for some t0 ∈ [0,∞),

F̄ (t) ≥ Ḡ(t) if t ≤ t0 and F̄ (t) ≤ Ḡ(t) if t > t0, where F̄ = 1 − F , Mitra et al. (1995)

said that F̄ crosses Ḡ from above. They showed that F ∈ L if F̄ crosses exp(−t/µF )

from above. Theorem 2.1 with s = 2 shows that, in this case, X is even HNBUE.
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A related notion is used in actuarial science: X is said to be less dangerous than Y ,

if EX ≤ EY and F̄X crosses F̄Y from above; this fact implies X ≤2−icx Y (Karlin and

Novikoff (1963)).

3 Examples of Lα-class distributions

Many commonly used life distributions like the gamma or the Weibull distribution with

shape parameter greater than 1 are HNBUE and, hence, also belong to the L-class. To

show that the L-class is strictly larger than the HNBUE class, Klefsjö (1983) used the

two point distribution with P (X = 0.3) = 0.3 and P (X = 3) = 0.7 (for a proof that

X ∈ L, see Lin and Hu (2000)).

Bhattacharjee and Sengupta (1996) gave an example of a two-point distribution with

CV = 1 (hence, the distribution is not HNBUE) that belongs to the L-class (see Example

3.1 below).

Likewise, the distribution in Example 2.1 belongs to the L-class, but is not HNBUE

since its expectation and its variance are 1.

To obtain more natural examples of distributions from the L-class (besides the afore-

mentioned HNBUE distributions), we relax the equality condition on the (s− 1)-th mo-

ment in Theorem 2.1 to an inequality (see Kaas and Hesselager (1995), Theorem 2.3

for a corresponding statement for the s-increasing convex or (s− 1)-th degree stop loss

order).

Using this result, it is also possible to obtain examples of distributions belonging

to the Lα-class (Lin (1998b)), which is defined as follows. If X dominates the gamma

distribution Γ(α, β) (with density βαxα−1e−βx/Γ(α) for x > 0, expectation α/β, and

variance α/β2) with α > 0, β = α/EX in the Laplace order, then X belongs to the

Lα-class. Equivalently, LX(s) ≤ (1 + s/β)−α for s ≥ 0, where LX denotes the Laplace

transform of X. Note that the L1-class and the L-class coincide. Obviously, Lα ⊂ Lα′

for 0 < α′ < α. In particular, each distribution in the Lα-class with α > 1 belongs to

the L-class.

Theorem 3.1 Let U and V be positive random variables with distribution functions G

and H, respectively. Further, let EU j = EV j, j = 1, . . . , s − 2 and (−1)s−1EU s−1 ≥
(−1)s−1EV s−1. Then each of the following conditions is sufficient for U ≤s−icv V .

(i) S[G−H] ≤ s−1 with G ≥ H before the first sign change, where S[G−H] denotes
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the number of sign changes of G−H.

(ii) S[log(g/h)] ≤ s with g ≥ h before the first sign change, where G and H are

assumed to be absolutely continuous with densities g and h, respectively.

Proof: Define κ0(x) = G(x), κj(x) =
∫ x
0 κj−1(t)dt for all x ≥ 0 and j = 1, 2, . . . , n− 1,

and λj the same for H. Then

j! κj(x) = E (x− U)j
+ , x ≥ 0, j = 1, 2, . . .

One has to show that ∆j(x) = κj(x) − λj(x) ≥ 0 for x ≥ 0. To this end, assume that

S[∆j−1] = h for some positive integer h, with opposite signs on subsequent intervals

Ĩ1 < Ĩ2 < . . . < Ĩh+1. As in the proof of Theorem 2.3 of Kaas and Hesselager (1995), one

can see that ∆j can have at most h sign changes, one occurring on each of the intervals

Ĩ2, . . . , Ĩh+1. But if a sign change occurs on Ĩh+1, the monotonicity of ∆j on Ĩh+1 implies

that limx→∞ ∆j(x) 6= 0, and in particular that limx→∞ ∆s−1(x) < 0, which contradicts

the assumption that E[U j−V j] = 0 for j = 1, . . . , s−2 and (−1)s−1E[U s−1−V s−1] ≥ 0.

Hence S[∆j] ≤ max{0, S[∆j−1]} for j = 1, . . . , s−1, and consequently S[∆s−1] = 0. The

assumption G ≥ H on I1 then implies ∆s−1(x) ≥ 0, which proves (i).

As to the second assertion, one only has to note that (ii) is a sufficient condition for

(i).

Remark 3.2 Suppose the moments of G and H through order s are finite and U ≤s−icv

V . Then Fishburn (1980b) showed that either G ≡ H, or for some k ≤ s, EU j =

EV j, (j = 1, 2, . . . , k − 1) and (−1)kEUk > (−1)kEV k. Hence, if EU j = EV j, j =

1, . . . , s − 2, then the inequality (−1)s−1EU s−1 ≥ (−1)s−1EV s−1 in Theorem 3.1 is

necessary for U ≤s−icv V .

Example 3.1 Consider a random variable X with P (X = 3/10) = 25/29 and P (X =

7/4) = 4/29. Bhattacharjee and Sengupta (1996), Example 3.1, proved that X ∈ L.

Since EX = EX2 = 1/2, X is not HNBUE (Lin and Hu (2000)).

In order to show that X ∈ L using Theorem 3.1, let Y be exponentially distributed

with mean 1/2. Then, EY = EX, EY 2 = EX2 and EY 3 = 3/4 ≤ EX3 = 61/80.

The difference of the distribution functions FY − FX has three sign changes; clearly,

FY − FX > 0 before the first sign change. By Theorem 3.1(i), Y ≤4−icv X, and,

consequently, X ∈ L.
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Example 3.2 Let IG(µ, λ) denote the inverse Gaussian distribution with parameters

µ > 0 and λ > 0, which has density

f(x) =

√
λ

2π
x−3/2 exp

(
−λ(x− µ)2

2µ2x

)
, x > 0.

The expectation and variance of IG(µ, λ) are µ and µ3/λ, respectively.

Proposition 3.3 Let X ∼ IG(µ, λ) and Y ∼ Γ(α, β) with EX = EY and V ar(X) ≤
V ar(Y ). Then Y ≤3−icv X.

Proof: By rescaling if necessary, we may take µ = 1, so X ∼ IG(1, λ) and Y ∼ Γ(α, α)

with λ ≥ α. For some constant c, we have

log
fY (x)

fX(x)
= c +

(
α +

1

2

)
log x +

λ

2x
−

(
α− λ

2

)
x,

which tends to +∞ for x ↓ 0 and has no more than three sign changes (see Kaas and

Hesselager (1995), p. 197). By Theorem 3.1(ii), the assertion follows.

As a consequence, each IG(µ, λ)-distribution with λ ≥ µα belongs to the class Lα

(α > 0). In particular, when λ ≥ µ (or CV =
√

µ/λ ≤ 1), then IG(µ, λ) ∈ L. Henze

and Klar (2001) obtained this result using the Laplace transform of IG(µ, λ). If λ < µ

then CV > 1, and consequently IG(µ, λ) /∈ L.

Example 3.3 Let LN(ν, τ 2) denote the lognormal distribution with parameters ν ∈ R
and τ 2 > 0, which has density

f(x) =
1

xτ
√

2π
exp

(
−(log x− ν)2

2τ 2

)
, x > 0.

The expectation and variance of LN(ν, τ 2) are eν+τ2/2 and e2ν+τ2
(eτ2 − 1).

Proposition 3.4 Let X ∼ LN(ν, τ 2) and Y ∼ Γ(α, β) with EX = EY and V ar(X) ≤
V ar(Y ). Then Y ≤3−icv X.

Proof: Again, we take µ = 1, so X ∼ LN(−τ 2/2, τ 2) and Y ∼ Γ(α, α), where

necessarily τ 2 ≤ log(1 + 1/α). Here, we obtain

log
fY (x)

fX(x)
= c +

(
α +

1

2

)
log x− αx +

log2 x

2τ 2
,
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which tends to +∞ for x ↓ 0 and has at most three sign changes (see Kaas and Hesse-

lager (1995), p. 197). Hence, the assertion follows.

By Proposition 3.4, each LN(ν, τ 2)-distribution with τ 2 ≤ log(1 + 1/α) belongs to

the Lα-class.

Example 3.4 In the last example, we consider the Birnbaum-Saunders distribution

BS(γ, δ) with parameters γ, δ > 0, which has density

f(x) =
exp(γ−2)

2γ
√

2πδ
x−3/2(x + δ) exp

{
− 1

2γ2

(
x

δ
+

δ

x

)}
, x > 0

(Johnson, Kotz, and Balakrishnan (1995), p. 651). The expectation and variance of

BS(γ, δ) are δ(γ2/2 + 1) and δ2γ2(5γ2/4 + 1).

We deal only with the case α = 1; without restriction, we take the means equal to

1. Hence, let X ∼ BS(γ, (γ2/2 + 1)−1) and Y ∼ Γ(1, 1). If γ ≤ 1, V ar(X) ≤ V ar(Y ).

Now,

log
fY (x)

fX(x)
= c +

2− 3γ2

4γ2
x +

(
γ2(γ2 + 2)x

)−1
+

3

2
log x− log

(
x(γ2 + 2) + 2

)

which tends to +∞ for x ↓ 0. The first derivative is a rational function in x. The

denominator is positive for x > 0. The nominator is a third degree polynomial; some

computations show that it has at most two zeros for x ≥ 0, so the function itself has

no more than three sign changes. By Theorem 3.1(ii), we have Y ≤3−icv X. Therefore,

the Birnbaum-Saunders distribution belongs to the L-class, provided γ ≤ 1 (i.e. the

coefficient of variation does not exceed 1).

4 Explicit reliability bounds for the L-class

Chaudhuri, Deshpande, and Dharmadhikari (1996) gave the following explicit lower

bound on the survival function of a distribution F belonging to the L-class. If F has

mean µ, and F ∈ L, then F̄ (t) ≥ 1− (t/µ) exp(1− t/µ) for 0 ≤ t ≤ µ.

Sengupta (1995) obtained the following implicit, but sharp upper and lower bounds.

Suppose F ∈ L with mean µ. Then αt ≤ F̄ (t) ≤ 1 if t ≤ µ and 0 ≤ F̄ (t) ≤ 1 − αt if

t > µ, where

αt = inf
{
α : fα,t/µ(s) ≥ 0 ∀s > 0

}
(5)
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and

fα,u(s) = esu − (1 + s)
(
1− α + αe−s(1−u)/α

)
.

We use this result to derive explicit bounds on survival functions belonging to the L-

class.

Theorem 4.1 Let F ∈ L with mean µ. Then the following bounds hold:

(i) F̄ (t) ≥ 1− 1
(t/µ)2 − 2t/µ + 2

, if t ≤ µ. The bound is sharp for 2−√2 ≤ t/µ ≤ 1.

(ii) F̄ (t) ≤ 1
(t/µ)2 − 2t/µ + 2

, if t > µ. The bound is sharp for t/µ ≥ 2 +
√

2.

Proof: Fix t and put u = t/µ. A Taylor series expansion around s = 0 yields

fα,u(s) =

(
u2

2
− (u− 1)2

2α
− (u− 1)

)
s2 + O(s3)

= c1(u, α) s2 + O(s3),

say. Now, fα,u(s) ≥ 0 for all s > 0 only if c1(u, α) ≥ 0. Hence,

αt ≥ (u− 1)2

1 + (u− 1)2
=: α∗t (say), (6)

which yields the bounds in (i) and (ii). Another series expansion around s = 0 gives

fα∗t ,u(s) = c2(u) s3 + O(s4),

where c2(u) = (u2−4u+2)/(6(u−1)) ≥ 0 for u ∈ I1 = [2−√2, 1] or u ∈ I2 = [2+
√

2,∞).

Furthermore, using the inequality ex ≥ 1 + x (x ∈ IR), we see that the second derivative

f ′′α∗t ,u(s) = esu
[
u2 −

((
u2 − 2u + 2

)
s + u2

)
e−s u−2

u−1

]

is non-negative for u ∈ I1 ∪ I2. Hence, if u ∈ I1 ∪ I2, fα∗t ,u(s) ≥ 0 for all s > 0. In view

of (5) and (6), the lower (upper) bound is sharp for u ∈ I1 (u ∈ I2).

Remark 4.2 (i) The explicit lower bound 1− (t/µ) exp(1− t/µ) mentioned above is

better than the bound in (i) in the range 0 ≤ t/µ ≤ 0.415.

(ii) The upper bound µ/t, which applies to any survival function with mean µ, is better

than the bound in (ii) in the range µ < t < 2µ.
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(iii) Klefsjö (1982) obtained the sharp upper bound e1−t/µ (t > µ) on survival functions

in the HNBUE class. The difference between this bound and the upper bound in

(ii) also indicates that the L-property is considerably weaker than the HNBUE

notion.

In the rest of this section, we consider the class Lα of life distributions. For a

distribution with mean µ belonging to Lα, Lin and Hu (2000) gave the functional lower

bound F̄ (t) ≥ 1−
(

t
µ

exp(1− t/µ)
)α

for all t ≤ µ.

If the distributions F and G have the same mean µ and F ≥L G, Sengupta (1995)

obtained the bounds δt ≤ F̄ (t) ≤ 1 if t ≤ µ and 0 ≤ F̄ (t) ≤ 1− δt if t > µ, where

δt = inf
{
δ : inf

r>0

[
ert

(
1− r

∫ ∞

0
(1−G(x))e−rxdx

)
+ δ

(
1− e−r(µ−t)/δ

)
− 1

]
≥ 0

}
.

If G is the Γ(α, α/µ)-distribution with Laplace transform LG(r) = (1 + µr/α)−α, we

obtain (by using
∫∞
0 (1−G(x))e−rxdx = (1− LG(r)) /r and putting µr = s)

δt = inf
{
δ : fδ,t/µ(s) ≥ 0 ∀s > 0

}
,

where fδ,u(s) = esu − (1 + s/α)α
(
1− δ + δe−s(1−u)/δ

)
. Utilizing this result, we obtain

the next theorem. Its proof is omitted, since the reasoning closely follows the first part

of the proof of Theorem 4.1.

Theorem 4.3 Let F ∈ Lα with mean µ. Then the following bounds hold:

(i) F̄ (t) ≥ 1−
(
α (t/µ− 1)2 + 1

)−1
, if t ≤ µ.

(ii) F̄ (t) ≤
(
α (t/µ− 1)2 + 1

)−1
, if t > µ.

We conjecture that, similar as for α = 1, the bound in (i) is sharp for 1+α−√1+α
α

≤
t
µ
≤ 1, and the bound in (ii) is sharp for t

µ
≥ 1+α+

√
1+α

α
.

5 Conclusion

The inequalities (1) and (2), which define the L-class of life distributions, correspond to

several models in reliability and maintenance (see Klefsjö (1983), Alzaid et al. (1991)).

This fact explains the great deal of attention received by the L-class in the literature. As

remarked by Klefsjö (1983), a further reason for the importance of the L-class lies in the
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fact that it may be easier to determine the Laplace transform than the corresponding

survival function explicitly.

Often, the L-class is viewed as the largest class in a chain of classes of life distributions

that describe positive aging. As stated by Kochar and Deshpande (1985), the essential

property of distributions belonging to these classes is that the residual performance of

a unit having already survived up to time t is ‘inferior’ in some stochastic sense than

the performance of a fresh unit. This general definition of positive aging applies for

classes like increasing failure rate, increasing failure rate average, new better than used,

decreasing mean residual life, new better than used in expectation or harmonic new

better than used in expectation. However, there doesn’t seem to exist a corresponding

characterization for the class L.

The L-class contains distributions which do not belong to the aforementioned aging

classes, but are connected to some notion of aging. For example, the inverse Gaussian

and the Birnbaum-Saunders distribution are typical examples of fatigue failure models

(see, e.g., Bhattacharyya and Fries (1982)). The hazard rates of both distributions

increase from zero at time t = 0 until they attain a maximum at some critical time and

then decrease to a non-zero asymptotic value.

On the other hand, the distribution in Example 2.1 with hazard rate decreasing

to zero with the rate 1/t as t → ∞, or the lognormal distribution with hazard rate

decreasing to zero, show that the L-class also includes distributions which are not well

suited for describing positive aging.

Hence, the L-class should not be seen as a more comprehensive class of aging distri-

butions but rather as a large class of life distributions on its own.
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