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This paper gives a unified treatment of the limit laws of different mea-
sures of multivariate skewness and kurtosis which are related to components
of Neyman’s smooth test of fit for multivariate normality. The results are also
applied to other multivariate statistics which are built up in a similar way
as the smooth components. Special emphasis is given to the case that the
underlying distribution is elliptically symmetric.

1. INTRODUCTION

Suppose X1, . . . , Xn are independent observations on a d-dimensional
random column vector X with expectation E(X) = µ and nonsingular
covariance matrix T = E[(X−µ)(X−µ)′], where the prime denotes trans-
pose. Let X̃ = T−1/2(X−µ) denote the standardized vector with E[X̃] = 0
and E[X̃X̃ ′] = Id, the unit matrix of order d. Let

Zj = (z1j , . . . , zdj)′ = S−1/2
n (Xj − X̄n), j = 1, . . . , n,

where X̄n = n−1
∑n

j=1 Xj and Sn = n−1
∑n

j=1(Xj − X̄n)(Xj − X̄n)′ are
the sample mean vector and the sample covariance matrix of X1, . . . , Xn,
respectively. We assume that Sn is nonsingular with probability one. This
condition is satisfied if X has a density with respect to Lebesgue measure
and n ≥ d + 1 (Eaton and Perlman (1973)). Writing Ỹ is an independent
copy of X̃ = (ξ1, . . . , ξd)′, Mardia (1970) introduced the affine-invariant
skewness measure

β1,d = E(X̃ ′Ỹ )3 (1)
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=
d∑

r=1

(
E[ξ3

r ]
)2

+ 3
∑

r 6=s

(
E[ξ2

rξs]
)2

+ 6
∑

1≤r<s<t≤d

(E[ξrξsξt])
2
,

and the multivariate sample skewness

b1,d =
1
n2

n∑

i=1

n∑

j=1

[
(Xi − X̄n)′S−1

n (Xj − X̄n)
]3

=
1
n2

n∑

i,j=1

(Z ′iZj)
3
,(2)

and he proposed to use b1,d for testing the hypothesis H0 that the distri-
bution of X is nondegenerate d-variate normal. b1,d is closely related to
the first nonzero component of Neyman’s smooth test of fit for multivariate
normality, introduced by Koziol (1987).

The pertaining test statistics are built up as follows. First, a system
of orthonormal multivariate polynomials is defined. To this end, suppose
Hk are the normalized Hermite polynomials; Hk is a polynomial of de-
gree k, orthonormal on the (univariate) standard normal distribution. In
particular,

H1(x) = x, H2(x) = (x2 − 1)/
√

2,

H3(x) = (x3 − 3x)/
√

3!, H4(x) = (x4 − 6x2 + 3)/
√

4! (3)

Multivariate polynomials are then defined by

Lk1,...,kd
(X̃) = Hk1(ξ1) · · ·Hkd

(ξd), k1, . . . , kd ∈ N0.

Let {Lr} denote the sequence arising from an arbitrary ordering. Since,
under H0,

E[Lr(X̃)Ls(X̃)] =
d∏

i=1

E[Hki(ξi)Hmi(ξi)] =
d∏

i=1

δkimi = δrs, (4)

where δij denotes Kronecker’s delta, the sequence is orthonormal. Usually,
the polynomials are ordered by their degree k = k1 + . . . + kd; particularly,
L0 = 1. The smooth test of order k for multivariate normality rejects H0

for large values of

Ψ̂2
n,k =

∑
r

V̂ 2
n,r, V̂n,r =

1√
n

n∑

j=1

Lr(Zj), (5)

where summation is over all polynomials of degree at most k. Summing
only over all polynomials of degree k yields the kth smooth component
Û2

n,k.
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Since the standardized values Zj are used in the definition of V̂n,r,
V̂n,r = 0 for each polynomial Lr of degree one or two; hence, the first
two components are zero (see, e.g., Rayner and Best (1989), p. 102). Con-
sequently,

Ψ̂2
n,k = Û2

n,3 + . . . + Û2
n,k

for k ≥ 3. The first nonzero component Û2
n,3 consists of H3(xj), H2(xj)

H1(xk) and H1(xj) H1(xk) H1(xl), where j, k, l are different integers in the
range {1, . . . , d}. This gives

Û2
n,3 =

1
n





∑
r

1
6

(∑

i

(z3
ri − 3zri)

)2

+
∑

r 6=s

1
2

(∑

i

(z2
ri − 1)zsi

)2

+
∑

r<s<t

(∑

i

(zrizsizti)

)2




and hence, by comparison with (2), the identity (Koziol (1987))

n

6
b1,d = Û2

n,3. (6)

An alternative affine-invariant measure of multivariate skewness was in-
troduced by Móri et al. (1993); they proposed

b̃1,d =
1
n2

n∑

i=1

n∑

j=1

Z ′i Zj ‖Zi‖2 ‖Zj‖2 (7)

with population counterpart β̃1,d = ‖E( X̃‖X̃‖2)‖2 = E[(X̃ ′Ỹ )(X̃ ′X̃)
(Ỹ ′Ỹ )]. b̃1,d was further examined in Henze (1997).

To derive the limit null distribution of Mardia’s skewness measure, sev-
eral different approaches have been utilized. Mardia (1970) showed that
b1,d is asymptotically equivalent under H0 to a quadratic form of a normal
vector; Koziol (1987) used the theory of empirical processes and weak con-
vergence arguments to establish the appropriate distribution theory under
multivariate normality. Rayner and Best (1989) derived the limit law of
b1,d under H0 as score statistics (concerning difficulties of this approach
see Mardia and Kent (1991), p. 356; Kallenberg et al. (1997), p. 45). Bar-
inghaus and Henze (1992) represented b1,d as V-statistic and utilized the
appertaining distribution theory to study the asymptotic behavior of Mar-
dia’s skewness measure under arbitrary distributions. They showed that
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in the special case of an elliptical distribution, the limit law is a weighted
sum of two independent χ2-variates.

The present paper gives a unified treatment of the limit laws of both
skewness measures and other statistics like multivariate kurtosis which are
closely related to components of Neyman’s smooth test of fit for multivari-
ate normality.

In Section 2 we state a general result about the limit distribution of
statistics which are built up similarly as the components of a smooth test.
Using these findings, the limit laws of β1,d and β̃1,d are derived if the under-
lying distribution is elliptically symmetric. We point out that the skewness
measure b̃1,d, albeit being asymptotically distribution-free under elliptical
symmetry, is not well-balanced in a certain sense. Hence, we propose a
new skewness measure similar to Mardia’s skewness, but asymptotically
distribution-free under elliptical symmetry.

In Section 3, we consider measures of multivariate kurtosis and the fourth
component of Neyman’s smooth test for multivariate normality. The limit
law of Mardia’s kurtosis measure and of the fourth component under ellip-
tical distributions is examined in detail.

Higher order variants of multivariate skewness and kurtosis are consid-
ered in Section 4. Since these statistics do not consist of orthogonal polyno-
mials, the necessary computations are more involved. A kurtosis measure
introduced by Koziol (1989) and higher order analogues are closely exam-
ined.

2. THE LIMIT DISTRIBUTION OF SOME MEASURES OF
MULTIVARIATE SKEWNESS

We first derive the asymptotic distribution of the random vector V̂n =
(V̂n,1, . . . , V̂n,r)′, where V̂n,s = n−1/2

∑n
j=1 Ls(Zj) as in (5) and the mul-

tivariate polynomials Ls are of degree at least 3, but at most k (k ≥ 3).
Put ϑ = (ϑ1, . . . , ϑs)′ = (µ, T−1) (s = (d2 + 3d)/2), and write Ls(X,ϑ)
instead of Ls(X̃) to indicate the dependence of Ls(X̃) on ϑ. Furthermore,
let ∇ϑh(x; ϑ) denote the (r × s)-matrix with entries ∂hi(x; ϑ)/∂ϑj , where
h(x;ϑ) = (L1(x; ϑ), . . . , Lk(x; ϑ))′.

Since the multivariate skewness, and hence the first nonzero component
Û2

n,3, consists of products Z ′i Zj , it is affine-invariant, i.e.,

Û2
n,3(X1, . . . , Xn) = Û2

n,3(b + BX1, . . . , b + BXn)

for each nonsingular (d × d)-matrix B and each b ∈ Rd. Since the same
property holds for each of the statistics studied in this paper, we always
assume µ = 0 and T = Id. Assuming further that E‖X‖2k < ∞, we have
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√
n(X̄n − µ) = 1√

n

∑n
i=1 Xi + oP (1) and

√
n(S−1

n − Id) = − 1√
n

n∑

i=1

(XiX
′
i − Id) + oP (1) (8)

(see, e.g., Baringhaus and Henze (1992)), and hence
√

n(ϑ̂n − ϑ) = 1√
n∑n

i=1 l(Xi) + oP (1), where ϑ̂n = (X̄n, S−1
n ) and the function l satisfies

EP [l(X)] = 0.

Theorem 2.1.

a)Assume that E‖X‖2k < ∞. Let τ = (τ1, . . . , τr)′ = (E[L1(X̃)], . . . ,
E[Lr(X̃)])′. Then

V̂n − τ
D−→ Nr(0, Σ), (9)

where the covariance matrix Σ is given by

Σ = E
[
(v1(X, ϑ), . . . , vr(X,ϑ)) (v1(X, ϑ), . . . , vr(X, ϑ))′

]− τ τ ′, (10)

and vi(x, ϑ) = Li(x, ϑ) + E[∇ϑLi(X,ϑ)] l(x, ϑ) for i = 1, . . . , r.
b)Let X have distribution P ∈ Pk

0 , where Pk
0 is the set of probability

distributions on Rd defined by

Pk
0 := {P : EP [Lj(X̃)] = 0 for each polynomial Lj of degree

less than or equal to k, EP ‖X‖2k < ∞}. (11)

Then the covariance matrix in (9) takes the form

Σ = E

[(
L1(X̃), . . . , Lr(X̃)

)(
L1(X̃), . . . , Lr(X̃)

)′]
. (12)

Proof. a) follows by a series expansion similar as in Theorem 2.1 of Klar
(2000). Under the hypothesis H0 of multivariate normality, Eϑ[∇ϑh(X;ϑ)] =
−Cϑ, where Cϑ is the (r × s)-matrix with entries

cij = Eϑ

[
hi(X;ϑ)

∂ log f(X;ϑ)
∂ϑj

]

(see Klar (2000), Theorem 2.1). Now, some computation yields cij =
0 (i = 1, . . . , r, j = 1, . . . , s) (see Rayner and Best (1989), p. 101). Alter-
natively, this can be verified along the lines of the proof of Theorem 3.1 in
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Klar (2000). Hence, b) follows under H0. The general case P ∈ Pk
0 can be

treated similarly as in Theorem 2.3 of Klar (2000), noting that ∂Ls/∂ϑj is a
polynomial of degree at most k.

Using Theorem 2.1, it is possible to derive the limit law of statistics
which consist of polynomials Ls. For example, the asymptotic distribution
of a component of the smooth test of fit depends on whether τ = 0 or
τ 6= 0. If τ = 0, it is well-known that

Û2
n,k

D−→
r∑

j=1

N2
j , (13)

where (N1, . . . , Nr)′ ∼ Nr(0, Σ). The limit law is a weighted sum of in-
dependent chi-squared random variables, the weights being the eigenvalues
of Σ.

In particular, if X has some nondegenerate d-dimensional normal distri-
bution Nd, equation (4) shows that Nd ∈ Pk

0 and τ = 0. Using Theorem
2.1b) and (4) again yields Σ = Id. Hence, the asymptotic distribution of
Û2

n,k and Ψ̂2
n,k under Nd is χ2

ν , where ν equals the number of polynomi-
als which are used to build up Û2

n,k and Ψ̂2
n,k, respectively. Since there are(

k+d−1
k

)
polynomials of degree k, Û2

n,3 has a limit χ2-distribution with
(
d+2
3

)

degrees of freedom under Nd; the limit law of Û2
n,4 is χ2

ν with ν =
(
d+3
4

)
,

and Ψ̂2
n,k has a limit chi-squared distribution with

(
d + 2

3

)
+

(
d + 3

4

)
+ . . . +

(
k + d− 1

k

)
=

(
k + d

k

)
−

(
2 + d

2

)

degrees of freedom. However, if τ 6= 0,

√
n

(
Û2

n,k

n
− τ ′τ

)
D−→ N


0, 4

r∑

i,j=1

σij τi τj


 , (14)

where σij denote the entries of Σ (see, e.g., Serfling (1980), Corollary 3.3).

Remark: The above results show that a test for multivariate normality
based on the components Û2

n,j of order at most k is not consistent against
distributions of Pk

0 . An analogous remark applies to each of the statistics
examined in the following sections.

2.1. The limit distribution of Mardia’s skewness measure
In this subsection, we derive the asymptotic distribution of Û2

n,3 (and,
hence, of Mardia’s measure b1,d) by means of Theorem 2.1 if the underlying
distribution PX is elliptically symmetric.
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A d-dimensional random vector X has a spherically symmetric distribu-
tion (or simply spherical distribution) if H X

D= X for every orthogonal
(d× d)-matrix H. The distribution of X is elliptically symmetric (or sim-
ply elliptical) with parameters µ ∈ Rd and ∆ ∈ Rd×d if there is a random
(k × 1)-vector Y having a spherical distribution and a (k × d)-matrix A of
rank k such that ∆ = A′A and X

D= µ + A′ Y.

Proposition 2.1. (see Fang et al. (1989), p. 72) Let X = (X1, . . . , Xd)′

have an elliptically symmetric distribution. Let s1, . . . , sd be nonnegative
integers, and put s = s1 + . . . + sd. Then

E

[
d∏

i=1

Xsi
i

]
=





E(‖X‖s)
(

2
d

)[l] d∏

i=1

(2li)!
4li(li)!

,
if si = 2li, li ∈ N0,
i = 1, . . . , d, s = 2l;

0 ,
if at least one of
the si is odd

where a[l] = a(a + 1) · · · (a + l − 1).

Corollary 2.1. Let µs1,...,sd
= E

[∏d
i=1 Xsi

i

]
, where zeroes are sup-

pressed in the notation since the order of the si is irrelevant. Then, from
Proposition 2.1,

µ4 = 3 µ22; µ6 = 5 µ42 = 15 µ222;

µ8 = 7 µ62 =
35
3

µ44 = 35 µ422 = 105 µ2222.

If PX is elliptical with parameters µ and ∆, and if E‖X‖2 < ∞, then
E[X] = µ, Cov(X) = E[R2]∆/rank(∆). If ∆ is positive definite and
E(R2) > 0, the standardized vector X̃ = [Cov(X)]−1/2(X − µ) satisfies
E[X̃] = 0 and E[X̃X̃ ′] = Id. Hence, X̃ has a spherically symmetric dis-
tribution with E‖X̃‖2 = d. The mixed moments of X̃ are given in 2.1; in
particular, β1,d in (1) satisfies

β1,d = E[(X̃ ′Ỹ )3] = 0. (15)

Hence, elliptically symmetric distributions belong to the class P3
0 of distri-

butions with β1,d = 0. The covariance matrix Σ can be computed by equa-
tion (12). The third component consists of Lr(X̃) = H3(ξr), Lrs(X̃) =
H2(ξr)H1(ξs) (r 6= s) and Lrst(X̃) = H1(ξr)H1(ξs)H1(ξt) (r, s, t ∈ {1,
. . . , d}, r < s < t), where the Hermite polynomials Hj are given in (2). We
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obtain the following entries in the covariance matrix:

σ1 = E[L2
r(X̃)] =

1
6
E[(ξ3

1 − 3ξ1)2] =
1
6
(µ6 − 6µ4 + 9),

σ12 = E[Lr(X̃)Lsr(X̃)] =
1

2
√

3
(µ42 − 3µ22 − µ4 + 3),

σ2 = E[L2
rs(X̃)] =

1
2
E[(ξ2

1 − 1)2ξ2
2 ] =

1
2
(µ42 − 2µ22 + 1),

σ22 = E[Lrs(X̃)Lts(X̃)] =
1
2
(µ222 − 2µ22 + 1),

σ3 = E[L2
rst(X̃)] = µ222.

The remaining entries vanish by Proposition 2.1. Arranging the polyno-
mials in the form

L1, L21, L31, . . . , Ld1,

L2, L12, L32, . . . , Ld2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Ld, L1d, L2d, . . . , Ld−1,d,

L123, L124, L125, . . . , Ld−2,d−1,d ,

the correlation between polynomials of different rows is zero, i.e. the
covariance matrix partitions into d + 1 block diagonal matrices.

For simplification, we consider in the following the covariance matrix
of the polynomials pertaining to 6 Û2

n,3. Using Corollary 2.1 and putting
u = 6σ22 = µ6/5 − 2µ4 + 3, v = 6σ2 = 3/5 µ6 − 2µ4 + 3 and hence
6σ1 = 2u + v, 6σ12 =

√
3u, the (d× d)-covariance matrix corresponding to

one of the first d rows takes the form

Σ1,d =




2u + v
√

3u
√

3u · · · √3u
√

3u v u · · · u
√

3u u
. . . . . .

...
...

...
. . . . . . u√

3u u · · · u v




. (16)
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The characteristic equation of Σ1,d can be written equivalently as

det




2u + v − λ (d− 1)
√

3u
√

3u · · · √
3u√

3u (d− 2)u + v − λ u · · · u

0 0 v − u− λ 0
...

...
. . .

0 0 0 v − u− λ




= 0.

Hence, two eigenvalues are solutions of (2u + v − λ)((d − 2)u + v − λ) −
3(d − 1)u2 = 0,which yields λ1 = v − u = 2µ6/5 and λ2 = (d + 1)u + v =
(d + 4)µ6/5 − 2(d + 2)µ4 + 3(d + 2). Furthermore, λ3 = v − u = 2µ6/5 is
an eigenvalue of multiplicity d− 2.

The matrix pertaining to the last row is a diagonal matrix with entries
6σ3; hence, it has the eigenvalue λ4 = 6µ222 = 2µ6/5 with multiplicity

(
d
3

)
.

By (13), the limit distribution of 6 Û2
n,3 is a weighted sum of

(
d+2
3

)
inde-

pendent χ2
1 random variables. Since only two different weights occur, we

have the following result:

Theorem 2.2. Let X have an elliptical distribution with expectation µ
and nonsingular covariance matrix T such that E[{(X−µ)′T−1(X−µ)}3] <
∞; hence, PX ∈ P3

0 . Then

6 Û2
n,3

D−→ α1χ
2
ν1

+ α2 χ2
ν2

as n →∞, where

α1 =
2
5
µ6, ν1 = d(d− 1) +

(
d

3

)
=

d

6
(d− 1)(d + 4),

α2 =
d + 4

5
µ6 − 2(d + 2) µ4 + 3(d + 2), ν2 = d,

and χ2
νi

are independent chi-squared random variables with νi degrees of
freedom.

Remark 2. 1. Putting r2k = E(X̃ ′X̃)k and noting that, for elliptical
distributions, r4 = µ4 d(d + 2)/3, r6 = µ6 d(d + 2)(d + 4)/15 (cp. Theorem
4.2 below), we have

α1 =
6r6

d(d + 2)(d + 4)
, α2 =

3
d

(
r6

d + 2
− 2r4 + d(d + 2)

)
.
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In view of (6), Theorem 2.2 corresponds to Theorem 2.2 in Baringhaus
and Henze (1992) which was proved in a different way under the additional
assumption P (X = µ) = 0.

2.2. The skewness measure of Móri, Rohatgi and Székely
The skewness measure of Móri et al. (1993) in (7) can be written as

b̃1,d =
1
n2





d∑
r=1

(∑

i

z3
ri

)2

+ 2
∑

r 6=s


∑

i

z3
ri

∑

j

zrjz
2
sj




+
∑

r 6=s

(∑

i

z2
rizsi

)2

+
∑

r 6=s 6=t


∑

i

zriz
2
si

∑

j

zrjz
2
tj)






 .

Defining V̂r = (1/
√

n)
∑n

i=1 Lr(Zi) and V̂rs = (1/
√

n)
∑n

i=1 Lrs(Zi) with
Lr and Lrs given in Subsection 2.1, b̃1,d takes the form

n b̃1,d = 6
∑

r

V̂ 2
r + 4

√
3

∑

r 6=s

V̂rV̂sr + 2
∑

r 6=s

V̂ 2
rs + 2

∑

r 6=s 6=t

V̂srV̂tr.

Furthermore, putting Wr = (V̂r, V̂1r, . . . , V̂r−1,r, V̂r+1,r, . . . , V̂dr)′, it follows
that

n b̃1,d = W ′
1 AW1 + . . . + W ′

d AWd, (17)

where the (d× d)-matrix A has the entries a11 = 6, a1k = ak1 = 2
√

3 (1 <
k ≤ d) and akl = 2, otherwise. By (17), the asymptotic distribution of nb̃1,d

is readily obtained if the underlying distribution is elliptically symmetric.

Theorem 2.3. Under the assumptions of Theorem 2.2, we have

n b̃1,d
D−→ (d + 2) α2

3
χ2

d ,

where α2 = (d + 4)µ6/5− 2(d + 2)µ4 + 3(d + 2) as in Theorem 2.2.

Proof. Wr and Ws (r 6= s) are uncorrelated and hence asymptotically
independent (cp. Subsection 2.1). The covariance matrix of Wr is Σ1,d/6
with Σ1,d given by (16). We therefore consider the quadratic form W ′

1AW1

which is asymptotically distributed as a weighted sum of independent χ2
1

random variables, the weights being the eigenvalues of the (d × d)-matrix
Σ1,d A/6.
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Note that A = 2 ed e′d, where ed = (
√

3, 1, . . . , 1)′ ∈ Rd is the eigenvector
of Σ1,d pertaining to the eigenvalue α2. Consequently, Σ1,d A = 2α2 ed e′d.
Hence, (d + 2)α2/3 is a simple eigenvalue of Σ1,d A/6 with eigenvector ed,
and 0 is an eigenvalue of multiplicity d− 1.

Remark 2. 2. a) Under the additional assumption P (X = µ) = 0, The-
orem 2.3 was proved in Henze (1997) by a completely different reasoning.
b) The above proof yields the representation

n b̃1,d = 2
d∑

r=1

(W ′
r ed)2. (18)

Hence, the skewness statistic of Móri et al. uses the projections of the Wr

on the eigenvector ed.
c) For a distribution with β̃1,d > 0, Corollary 3.3 in Serfling (1980) yields

√
n(b̃1,d − β̃1,d)

D−→ N (0, τ ′ (A + diag(A))′Σ (A + diag(A))τ) .

2.3. A new measure of skewness
Theorem 2.2 shows that b1,d is not asymptotically distribution-free

within the class of elliptical distributions. The skewness of Móri et al.
can be modified to obtain an asymptotically distribution-free statistic, but
this property is achieved by projection of the vectors Wr into a particular
direction (see (18)). Therefore, one may ask whether there is a skewness
measure which gives equal weights to all polynomials of order three as does
Mardia’s skewness in case of a normal distribution, and at the same time
being asymptotically distribution-free within the whole class of elliptically
symmetric distributions. The previous subsections show that this will be
the case for the statistic

V = 6 W ′
1 Σ−1

1,d W1 + . . . + 6 W ′
d Σ−1

1,d Wd +
6
α1

∑

r 6=s 6=t

V̂rst,

where V̂rst = (1/
√

n)
∑n

i=1 Lrst(Zi). V has a limit chi-squared distribution
with

(
d+2
3

)
degrees of freedom if PX is elliptical. With the notations of
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Subsection 2.1, we have

Σ−1
1,d =

1
c




(d− 2)u + v −√3u −√3u · · · −√3u

−√3u du + v −u · · · −u

−√3u −u
. . . . . .

...
...

...
. . . . . . −u

−√3u −u · · · −u du + v




,

where c = (v − u) ((d + 1)u + v) = α1 α2. Hence,

V =
6

α1α2

d∑
r=1

W ′
r

(
α2 Id − u

2
A

)
Wr +

6
α1

∑

r 6=s 6=t

V̂rst

=
6
α1

Û2
n,3 −

3 u

α1 α2
n b̃1,d,

where u = (α2 − α1)/(d + 2). Since the moments µ4 and µ6 figuring in
the definition of α1 and α2 are unknown, they have to be replaced by the
corresponding empirical moments. This yields the following result.

Theorem 2.4. Let X have an elliptically symmetric distribution with
expectation µ and nonsingular covariance matrix T such that E[{(X −
µ)′T−1(X − µ)}3] < ∞. Let r̂2k = 1

n

∑n
i=1(Z

′
i Zi)k and

α̂1 =
6r̂6

d(d + 2)(d + 4)
, α̂2 =

3
d

(
r̂6

d + 2
− 2r̂4 + d(d + 2)

)
.

Then

n
˜̃
b1,d :=

n

α̂1
b1,d − 3 (α̂2 − α̂1)

(d + 2) α̂1 α̂2
n b̃1,d

has a limit chi-squared distribution with
(
d+2
3

)
degrees of freedom.

Remark: A test for elliptical symmetry based on n
˜̃
b1,d is consistent

against all distributions with β1,d > 0.

3. MULTIVARIATE KURTOSIS AND THE FOURTH
COMPONENT OF NEYMAN’S SMOOTH TEST
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Mardia (1970) introduced the measure of multivariate kurtosis

b2,d =
1
n

n∑

i=1

(Z ′iZi)
2 =

1
n





d∑
r=1

∑

i

z4
ri +

∑

r 6=s

∑

i

z2
riz

2
si



 ,

which is an estimator of β2,d = E[(X̃ ′X̃)2] = E‖X̃‖4. Hence, b2,d only ex-
amines the fourth moment of ‖X̃‖. Koziol (1989) proposed the alternative
kurtosis measure

b∗2,d =
1
n2

n∑

i=1

n∑

j=1

(Z ′iZj)
4

=
1
n2





d∑
r=1

(∑

i

z4
ri

)2

+ 4
∑

r 6=s

(∑

i

(z3
rizsi)

)2

+3
∑

r 6=s

(∑

i

(z2
riz

2
si)

)2

+ 6
∑

r 6=s 6=t

(∑

i

(z2
rizsizti)

)2

+24
∑

1≤r<s<t<u≤d

(∑

i

(zrizsiztizui)

)2


 (19)

with population counterpart β∗2,d = E[(X̃ ′Ỹ )4]. In contrast to Mardia’s
kurtosis measure, b∗2,d is a next higher degree analogue of b1,d.

To derive a connection of these measures with a component of Neyman’s
smooth test for multivariate normality, consider the polynomials

H4(yj), H3(yj)H1(yk), H2(yj)H2(yk),
H2(yj)H1(yk)H1(yl), H1(yj)H1(yk)H1(yl)H1(ym)

of degree 4 and the pertaining fourth component

Û2
n,4 =

1
n





1
24

∑
r

(∑

i

(z4
ri − 3)

)2

+
1
6

∑

r 6=s

(∑

i

(z3
rizsi

)2

+
1
8

∑

r 6=s

(∑

i

(z2
riz

2
si − 1)

)2

+
1
4

∑

r 6=s 6=t

(∑

i

(z2
rizsizti)

)2

+
∑

r<s<t<u

(∑

i

(zrizsiztizui)

)2


 .
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Since
∑

i zri = 0 and
∑

i z2
ri = 1, one obtains the algebraic identity

Û2
n,4 =

n

24
(
b∗2,d − 6 b2,d + 3 d(d + 2)

)

(Koziol (1989)). Moreover,

√
n (b2,d − d(d + 2)) =

d∑
r=1

1√
n

∑

i

(z4
ri − 3) +

∑

r 6=s

1√
n

∑

i

(z2
riz

2
si − 1)

=
√

24
n

d∑
r=1

∑

i

Lr(Zi) +
4√
n

∑
r<s

∑

i

Ls
r(Zi), (20)

where the polynomials Lr(z1, . . . , zd) = (z4
r − 6z2

r + 3)/
√

24 and Ls
r(z1,

. . . , zd) = (z2
r − 1) (z2

s − 1)/2 belong to the building blocks of Û2
n,4.

After centering, the individual terms in (19) are asymptotically normal
(cp. (9)); due to the different weights in (19), the covariance matrix Σ̂
differs from Σ. Hence, the limit law of

√
n(b2,d − β2,d) is N (0, e′Σ̂e) with

e = (1, . . . , 1)′. If τ = 0, then

β2,d =
d∑

j=1

E[ξ4
j ] +

∑

i 6=j

E[ξ2
i ξ2

j ] = 3d + d(d− 1) = d(d + 2).

Using the general results of Section 2, one has to consider two cases to
derive the asymptotic distribution of Û2

n,4. If τ = 0, the limit law of Û2
n,4

is a weighted sum of χ2
1-distributed random variables and, in particular, a

chi-squared distribution with
(
d+3
4

)
degrees of freedom under normality. If

τ 6= 0, the limit distribution of (Û2
n,4/

√
n − √

nτ ′τ) is normal.

3.1. The limit law of Mardia’s kurtosis measure under
elliptical distributions

In this subsection, we obtain the asymptotic distribution of
√

n(b2,d −
d(d + 2)) if the underlying distribution P is elliptically symmetric. Now,
if P /∈ P4

0 (see (10)), i.e. τ 6= 0, then β2,d 6= d(d + 2) and, by the above
results, b2,d tends to infinity. Hence, we consider elliptical distributions
P ∈ P4

0 . In principle, Σ̂ can be computed as in (12), taking into account
the different weights in (19). Using Corollary 2.1, an elliptical distribution
is in P4

0 if µ4 takes the ’normal’ value 3. Σ̂ has the entries

σ̂11 = 24E[L2
r(X̃)] = E[(ξ4

r − 6ξ2
r + 3)2] = µ8 − 12µ6 + 99,

σ̂12 = 24E[Lr(X̃)Ls(X̃)] = E[(ξ4
r − 6ξ2

r + 3)(ξ4
s − 6ξ2

s + 3)]
= µ44 − 12µ42 + 36µ22 + 6µ4 − 27 = 3µ8/35− 12µ6/5 + 27,
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σ̂21 = 16E[(Ls
r(X̃))2] = 4(3µ8/35− 4µ6/5 + 7),

σ̂22 = 16E[Ls
r(X̃)Lt

r(X̃)] = 4(µ8/35− 8µ6/15 + 5),
σ̂23 = 16E[Ls

r(X̃)Lu
t (X̃)] = 4(µ8/105− 4µ6/15 + 3),

σ̂31 = 4
√

24E[Lr(X̃)Ls
r(X̃)] = 2(µ8/7− 12µ6/5 + 21),

σ̂32 = 4
√

24E[Lr(X̃)Lt
s(X̃)] = 2(µ8/35− 4µ6/5 + 9),

where r, s, t, u ∈ {1, . . . , d}, r < s < t < u. Now, σ̂11 appears d times in
Σ̂, σ̂12 d(d − 1) times, σ̂21

(
d
2

)
times, σ̂22 2(d − 2)

(
d
2

)
times, σ̂23

(
d
2

)(
d−2
2

)

times, σ̂31 4
(
d
2

)
times and, finally, σ̂32 2(d− 2)

(
d
2

)
times. Summing over all

terms yields the variance

e′Σ̂e = µ8
d

105
(d3 + 12d2 + 44d + 48)− µ6

4d

15
(d3 + 8d2 + 20d + 16)

+d(3d3 + 20d2 + 44d + 32).

Replacing µ2k (k = 2, 3, 4) by r2k = E(X ′X)k as in Subsection 2.1 (for
elliptical distributions, r8 = µ8

105d(d+2)(d+4)(d+6), see 4.2 below), e′Σ̂e
takes the form

e′Σ̂e = r8 − 4(d + 2)r6 + d(d + 2)2(3d + 8).

This is the result of Henze (1994a), Example 3.3, letting µ4 = 3. Under
multivariate normality, e′Σ̂e = 8d(d + 2), which is the well-known result of
Mardia (1970).

Remark: If P /∈ P4
0 , the limit law of

√
n(b2,d−β2,d) could be determined

in a similar way using Theorem 2.1a) and (14) (regarding the necessary
computation to obtain the entries of Σ in this case, see Section 4).

3.2. The limit distribution of the fourth component under
elliptical symmetry

As second example in this section, we derive the limit law of 24Û2
n,4 if

the underlying distribution is elliptically symmetric. Again, we consider el-
liptical distributions P ∈ P4

0 (i.e. with m4 = 3), since otherwise Û2
n,4 tends

to infinity (in this case, one could determine the asymptotic distribution of√
n(Û2

n,k/n− τ ′τ) using (14)). As in Subsection 2.1, we have to determine
the eigenvalues of the covariance matrix in (12), multiplied with the factor
24. Besides the polynomials Lr and Ls

r, Û2
n,4 consists of Lrs(z1, . . . , zd) =

(z3
r−3zr)zs/6 (r 6= s), Lrst(z1, . . . , zd) = (z2

r−1)zszt/2 (r 6= s, t, s < t) and
Lrstu(z1, . . . , zd) = zrzsztzu (r < s < t < u). First note that the covariance
of any polynomial which is part of b2,d and the remaining polynomials is
zero since it solely consists of moments which are zero by Proposition 2.1;
we have, e.g.,

E[(X̃4 − 6X̃2 + 3)(X̃2 − 1)Ỹ Z̃] = µ611 − 7µ411 + 9µ211 − 3µ11 = 0.
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For the same reason, the correlation of Lrstu and any other polynomial is
zero. Hence, the covariance matrix can be decomposed into three parts.

The matrix pertaining to the polynomials Lrstu is a
(
d
4

)× (
d
4

)−diagonal
matrix with entries 24µ2222 = 24µ8/105. Hence, α1 = 8µ8/35 is an eigen-
value of multiplicity

(
d
4

)
.

The second matrix has the nonzero entries

σ41 = 24E[L2
rs(X̃)] = 4(µ8/7− 6µ6/5 + 9),

σ42 = 24E[Lrs(X̃)Lsr(X̃)] = 4(3µ8/35− 6µ6/5 + 9),
σ43 = 24E[L2

rst(X̃)] = 12(µ8/35− 2µ6/15 + 1),

σ44 = 24E[Lrst(X̃)Lst(X̃)] = 4
√

3(µ8/35− 2µ6/5 + 3),

where r, s, t ∈ {1, . . . , d}, r 6= s 6= t 6= r. Arranging the polynomials in the
form

L12, L21, L312, L412, . . . , Ld12,

L13, L31, L213, L413, . . . , Ld13,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
L1d, Ld1, L21d, L31d, . . . , Ld−1,1,d,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Ld−1,d, Ld,d−1, L1,d−1,d, L2,d−1,d, . . . , Ld−2,d−1,d ,

the matrix under consideration splits into
(
d
2

)
matrices




σ41 σ42 σ44 · · · σ44

σ42 σ41 σ44 · · · σ44

σ44 σ44 σ43 0
...

...
. . .

σ44 σ44 0 σ43




. (21)

Here, the diagonal matrix has dimension d − 2. For the matrix in (21),
α2 = σ43 is an eigenvalue of multiplicity d− 3. The remaining eigenvalues
are those solutions of the equation

(
(σ41 − λ)(σ43 − λ)− (σ44)2(d− 2)

)2 =(
σ42(σ43 − λ)− (σ44)2(d− 2)

)2 which differ from σ43. This yields the ad-
ditional eigenvalue α1 = 8µ8/35 and the two eigenvalues

α3,4 =
22
35

µ8 − 28
5

µ6 + 42± 2
35

√
24d− 23(µ8 − 14µ6 + 105)

which depend on the dimension d.
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Computing the eigenvalues of the third matrix is more involved since all
entries are nonzero; up to constant factors due to the different weight-
ing, the matrix corresponds to the covariance matrix of b2,d: defining
σ11 = σ̂11, σ12 = σ̂12, σ21 = 3σ̂21/2, σ22 = 3σ̂22/2, σ23 = 3σ̂23/2, σ31 =
(3/2)1/2σ̂31 and σ32 = (3/2)1/2σ̂32, and replacing σ̂ij in the covariance
matrix of Subsection 3.1 by the corresponding σij yields the third matrix
which we denote by Σ3. For a proof of the following lemma, see Klar (1998),
Lemma 1.3.10.

Lemma 3.1. Σ3 has the following eigenvalues: α1 = 8µ8/35 is eigen-
value of multiplicity

(
d
2

)
(where

(
1
2

)
= 0);

α5 = 4
(

(d + 6)
35

µ8 − 2d + 8
5

µ6 + 3(d + 4)
)

is an eigenvalue of multiplicity d− 1; finally,

α6 =
d2 + 10d + 24

35
µ8 − 4(d2 + 6d + 8)

5
µ6 + 3(3d2 + 14d + 16)

is a simple eigenvalue.

Summarizing all results, we obtain the following theorem.

Theorem 3.1. Let X have an elliptically symmetric distribution with
expectation µ and nonsingular covariance matrix T . Assume X̃ ∈ P4

0 ,
i.e. E[(X̃ ′X̃)4] < ∞ and m4 = E[ξ4

1 ] = 3, where X̃ = (ξ1, . . . , ξd)′ =
T−1/2(X − µ). Then

24 Û2
n,4

D−→
6∑

i=1

αi χ2
νi

,

where

α1 = 8µ8/35, ν1 =
(

d

4

)
+ 2

(
d

2

)
,

α2 = 12(µ8/35− 2µ6/15 + 1), ν2 = (d− 3)
(

d

2

)
,

α3,4 =
22
35

µ8 − 28
5

µ6 + 42± 2
35

√
24d− 23(µ8 − 14µ6 + 105), ν3,4 =

(
d

2

)
,

α5 = 4
(

(d + 6)
35

µ8 − 2d + 8
5

µ6 + 3(d + 4)
)

, ν5 = d− 1,

α6 =
d2 + 10d + 24

35
µ8 − 4(d2 + 6d + 8)

5
µ6 + 3(d2 + 14d + 16), ν6 = 1
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and χ2
νi

are independent chi-squared random variables with νi degrees of
freedom.

Remark: Under multivariate normality, we obtain αi = 24 for i =
1, . . . , 6; since

∑6
i=1 νi =

(
d+3
4

)
, Û2

n,4 has a chi-squared distribution with(
d+3
4

)
degrees of freedom.

4. THE LIMIT LAW OF VARIANTS OF MULTIVARIATE
SKEWNESS AND KURTOSIS

In this section, similar methods as in Sections 2 and 3 are used to treat
other statistics such as b∗2,d in (18) which are not directly related to com-
ponents of the smooth test of fit for multivariate normality, but which are
direct higher degree analogues of b1,d.

The results are again based on Theorem 2.1 a) which makes no use of
the orthogonality of the polynomials (see the remark after 2.1). However,
the computation of the covariance matrix Σ pertaining to the polynomials
which build up the statistics is more involved: whereas the examples in 2
and 3 make use of the fact that Σ can be computed by (12) not only under
the hypothesis of normality but also in the class Pk

0 , one always has to
compute the covariance matrix in case of nonorthogonal polynomials (i.e.
even under the parametric hypothesis) using equation (10).

In the following, we determine the limit distribution of the statistics

bk00 =
1
n2

n∑

i,j=1

(
(Xi − X̄n)′S−1

n (Xj − X̄n)
)k

=
1
n2

n∑

i,j=1

(Z ′iZj)
k
,

where k is a positive integer. Again we assume that Sn is nonsingular with
probability 1. An alternative notation is

bk00 =
∑

k1,...,kd≥0
k1+...+kd=k

(
k

k1 · · · kd

) (
1
n

n∑

i=1

d∏
r=1

zkr
ri

)2

.

The population counterpart of bk00 is

βk00 = E[((X − µ)′T−1(Y − µ))k]

=
∑

k1,...,kd≥0
k1+...+kd=k

(
k

k1 · · · kd

) (
E[

d∏
r=1

ξkr
r ]

)2

,
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where ξ1, . . . , ξd are the components of X̃ = T−1/2(X − µ). Since bk00

is affine-invariant, assume without restriction µ = 0 and T = Id. Again,
E‖X‖2k < ∞.

The parameterization used in Section 2 is no longer convenient since it
requires the partial derivatives of T−1/2 with respect to the elements of
T−1. Besides the expected value µ, we therefore use the elements t

−1/2
ij

of T−1/2 as parameters. The linear representation, which is now required
explicitly, is easily found: using (8) and

√
n(S−1

n − Id) =
√

n(S−1/2
n − Id) (S−1/2

n + Id),

we obtain

√
n(S−1/2

n − Id) = − 1
2
√

n

n∑

i=1

(XiX
′
i − Id) + oP (1).

Hence, lij(x, ϑ) = −(xixj − δij)/2. Now, it is not difficult to com-
pute the necessary partial derivatives. Noting that ∂ξr/∂µi |(µ,T )=(0,Id) =

−t
−1/2
ri

∣∣∣
(0,Id)

= −δri, we obtain

∂ξk1
1 · · · ξkd

d

∂µi

∣∣∣∣∣
(0,Id)

= −ki ξk1
1 · · · ξki−1

i−1 ξki−1
i ξ

ki+1
i+1 · · · ξkd

d (22)

for i = 1, . . . , d if ki ≥ 1. Using ∂ξr/∂t
−1/2
ij

∣∣∣
(0,Id)

= δir ξj yields the

derivatives

∂ξk1
1 · · · ξkd

d

∂t
−1/2
ij

∣∣∣∣∣
(0,Id)

= ki ξk1
1 · · · ξki−1

i · · · ξkj+1
j · · · ξkd

d , (23)

for i, j = 1, . . . , d, if ki ≥ 1. Therefore all quantities required to com-
pute the covariance matrix Σ are known. Arranging the building blocks(

k
k1···,kd

)1/2
xk1

1 · · ·xkd

d of bk00 in an arbitrary order and denoting them by
hl(x), l = 1, . . . , dk, defining τ = (τ1, . . . , τdk) by τl = E[hl(X̃)] and letting

vl(x) = hl(x) +
d∑

i=1

E

(
∂hl(X̃)

∂µi

)
xi

− 1
2

d∑

i,j=1

E

(
∂hl(X̃)

∂t
−1/2
ij

)
(xi xj − δij), (24)
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we can compute Σ using (10).
Regarding the limit distribution, one has to distinguish two cases as in

Section 2. If τ = 0 (which is only possible for odd k), the asymptotic dis-
tribution is a weighted sum of independent chi-squared distributed random
variables:

n bk00
D−→

dk∑

j=1

λj χ2
1(j),

where the weights are the eigenvalues of Σ. Note that the statistic b300

coincides with Mardia’s skewness b1,d. For higher odd values of k, Henze,
Gutjahr and Folkers (1999) determined the weights λj under elliptical sym-
metry.

If τ 6= 0 (which is always the case for non-degenerate distributions if k
is even), it follows from (14), using τ ′τ = βk00,

√
n (bk00 − βk00)

D−→ N (0, 4τ ′Στ) . (25)

To examine the case βk00 > 0 (k ≥ 3) more closely, we express the variance
σ2 = 4τ ′Στ of the limit distribution in a different way. To this end, let
h = (h1, . . . , hdk)′ and v = (v1, . . . , vdk)′. Further define

h1,k(x) := τ ′ h(x) = E[(x′X)k]. (26)

Combining (25) and (10) gives

σ2 = 4 τ ′ E[v(X̃) v(X̃)′] τ − 4 τ ′ (τ τ ′) τ

= E[(2τ ′v(X̃)) (2τ ′v(X̃))′] − 4 β2
k00. (27)

Besides h1,k(x), the product τ ′v(x) consists of terms like xi

∑
l τlE[∂hl(X̃)

/∂µi] and (xixj − δij)
∑

l τlE[∂hl(X̃)/∂t
−1/2
ij ]. Using (22) and (23), a com-

parison of the coefficients shows that the sums are given by

dk∑

l=1

E[hl(X̃)] E

[
∂hl(X̃)

∂µi

]
= (−k) E[(X̃ ′ Ỹ )k−1ηi]

and

dk∑

l=1

E[hl(X̃)] E

[
∂hl(X̃)

∂t
−1/2
ij

]
= k E[ξi(X̃ ′ Ỹ )k−1ηj ].
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In view of these equations and with the definitions

ak = E
[
(X̃ ′ Ỹ )k−1 Ỹ ′

]
,

Bk = (bij)1≤i,j≤d = E
[
X̃(X̃ ′ Ỹ )k−1 Ỹ ′

]
, (28)

uk = (2,−k b11,−k b12, . . . ,−k b1d,−k b21, . . . ,−k bdd,−2k a′k)′,
Zk = (h1,k(X̃)− βk00, ξ

2
1 − 1, ξ1ξ2, . . . , ξ1ξd, ξ2ξ1, . . . , ξ

2
d − 1, X̃ ′)′,

the asymptotic variance in (26) can be written as σ2 = u′kE[Zk Z ′k]uk.
Summarizing, we have the following result.

Theorem 4.1. Let the random vector X with expectation µ and nonsin-
gular covariance matrix T satisfy E[{(X−µ)′T−1(X−µ)}k] = E[(X̃ ′X̃)k] <
∞. Assume that the empirical covariance matrix Sn is nonsingular with
probability 1, and that βk00 > 0. Then

√
n (bk00 − βk00)

D−→ N (0, u′kE[Zk Z ′k]uk) ,

where the (1 + d2 + d)-dimensional vectors uk and Zk are defined in (27).

Remark: In the cases k = 3, k = 4 and k odd, this is the assertion of
Theorem 3.2 in [1], Theorem 2.2 in [7] and Theorem 4.3 in [9], respectively.
In these papers, the proofs are based on the theory of V-statistics, which
entails the additional requirement that the support of PX has positive
Lebesgue-measure.

Example 4.1. In the univariate case d = 1, the quantities in (26) and
(27) are

h1,k(x) = µk xk, ak = µk−1µk, Bk = µ2
k,

uk = (2,−kµ2
k,−2kµk−1µk)′, Zk = (µkX̃k − µ2

k, X̃2 − 1, X̃)′

and consequently

E[Zk Z ′k] =




µ2
k(µ2k − µ2

k) µk(µk+2 − µk) µk µk+1

µk(µk+2 − µk) µ4 − 1 µ3

µk µk+1 µ3 1


 .

This yields

u′kE[Zk Z ′k]uk = 4µ2
k

(
µ2k − k µk µk+2 +

k2

4
µ4 µ2

k −
(k − 2)2

4
µ2

k

+k2 µ3 µk−1 µk − 2k µk−1 µk+1 + k2 µ2
k−1

)
.
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In particular, for k = 3,

u′3E[Z3 Z ′3]u3 = 4 µ2
3 (µ6 + 9 + 9µ2

3(µ4 − 1)/4− 6µ4 − 3µ3µ5 + 11µ2
3)

(cp. Baringhaus and Henze (1992a), Example 3.3). After normalizing, we
obtain the well-known result of Gastwirth and Owens (1977).

In the remainder of this section, we derive the variance of the limit normal
distribution of

√
n(b2k,0,0 − β2k,0,0) (k ≥ 2) under elliptical symmetry. As

a special case, the asymptotic distribution of Koziol’s kurtosis measure
b∗2,d = b400 (cp. Section 2) is obtained. Under elliptical symmetry, β2k,0,0

has a simple representation.

Theorem 4.2. Let X = (X1, . . . , Xd)′ have a spherical distribution with
E‖X‖2k < ∞, and let Y be an independent copy of X. Then

r2k = E[(X ′X)k] = µ2k
d(d + 2) · · · (d + 2k − 2)

1 · 3 · 5 · · · (2k − 1)
,

where µ2k = E[X2k
1 ]. Furthermore,

β2k,0,0 = E[(X ′Y )2k] = r2
2k

1 · 3 · 5 · · · (2k − 1)
d(d + 2) · · · (d + 2k − 2)

,

and

B2k = E[X (X ′ Y )2k−1 Y ′] = r2
2k

1 · 3 · 5 · · · (2k − 1)
d2(d + 2) · · · (d + 2k − 2)

Id.

Proof. Assume d > 1. If N ∼ Nd(0, Id), it is well-known that

E‖N‖s =
Γ((d + s)/2) 2s/2

Γ(d/2)

and hence E[(N ′N)k] = Γ(d/2+k) 2k/ Γ(d/2) = d(d+2) · · · (d+2(k−1)).
Using Theorem 2.1, one obtains µ2k/µN

2k = r2k/rN
2k, where µN

2k and rN
2k

denote the corresponding quantities for N . Since µN
2k = 1 · 3 · 5 · · · (2k− 1),

the first assertion follows.
To show the remaining parts, let U be uniformly distributed on Sd =

{x ∈ Rd : ‖x‖ = 1}. Sd has the surface area A = 2πd/2/Γ(d/2). If u1 ∈ Rd

with ‖u1‖ = 1, Lemma 2.5.1 of Fang and Zhang (1990) yields

E[ (u′1U)2k ] =
Γ(d/2) Γ(k + 1

2 )√
π Γ(k + d

2 )
=

k−1∏

j=0

2j + 1
d + 2j

.



MULTIVARIATE SKEWNESS AND KURTOSIS 23

Since PX is spherically symmetric, the decomposition X
D= R U, where

R
D= ‖X‖ and R, U are independent, gives

h1,2k(z) = E[(z′X)2k] = ‖z‖2kE[R2k]
k−1∏

j=0

2j + 1
d + 2j

. (29)

Hence, the second assertion follows. In view of Proposition 2.1, it is not dif-
ficult to see that B2k = b11 Id. Using trace(B2k) = β2k,0,0, we obtain b11 =
β2k,0,0/d.

In view of Theorem 2.1, the vector a2k defined in (27) is zero. Putting

δ =
k−1∏

j=0

(2j + 1)/(d + 2j), (30)

Theorem 4.2 yields

uk = (2,−2k δ r2
2k/d · e′1,−2k δ r2

2k/d · e′2, . . . ,−2k δ r2
2k/d · e′d, 0′)′,

where ej = (0, . . . , 1, 0, . . . , 0)′ denotes the jth unit vector in Rd. Writing
L2k = h1,2k(X̃)−β2k,0,0 and Wj = (ξjξ1, . . . , ξjξj−1, ξ

2
j−1, ξjξj+1, . . . , ξjξd)′

for j = 1, . . . , d, the vector Z2k in (27) can be written as Z2k = (L2k,W ′
1,

. . . ,W ′
d, X̃

′)′. Using (29) and Theorem 4.2, we obtain L2k = δ r2k (‖X̃‖2k−
r2k), which yields E[L2kX̃] = 0, E[L2

2k] = δ2 r2
2k (r4k − r2

2k) and

E[L2k Wj ] = δ r2k (
r2k+2

d
− r2k) ej (j = 1, . . . , d).

Furthermore, E[X̃W ′
j ] = O (j = 1, . . . , d), where O is the zero matrix of

order d. Defining (d× d)-matrices

Bij = E[Wi W ′
j ] = (b(i,j)

k,l )1≤k,l≤d (i, j = 1, . . . , d)

and putting ρ = δ r2k( r2k+2
d −r2k), the matrix E[Z2kZ ′2k] of order 1+d2+d

can be written as

E[Z2kZ ′2k] =




E[L2
2k] ρe′1 ρe′2 · · · ρe′d 0′

ρe′1 B11 B12 · · · B1d O
ρe′2 B21 B22 · · · B2d O
...

...
...

...
...

ρe′d Bd1 Bd2 · · · Bdd O
0 O O · · · O Id




.
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Noting that b
(i,i)
i,i = 3r4/(d(d + 2))− 1 (i = 1, . . . , d) and b

(i,j)
i,j = r4/(d(d +

2))− 1 (i, j = 1, . . . , d, i 6= j), σ2
2k = u′2kE[Z2kZ ′2k]u2k takes the form

σ2
2k = 4δ2r2

2k

(
r4k − (k − 1)2r2

2k −
2k

d
r2kr2k+2 +

k2

d2
r4r

2
2k

)
, (31)

where δ is defined in (30). Summarizing, we have the following result.

Theorem 4.3. Let X be elliptically symmetric with expectation µ and
nonsingular covariance matrix T . Further, let E[{(X−µ)′T−1(X−µ)}k] <
∞, and assume that the empirical covariance matrix Sn is nonsingular with
probability 1. Then

√
n(b2k,0,0 − β2k,0,0)

D−→ N (
0, σ2

2k

)
,

where σ2
2k is given by (31). In particular,
√

n(b∗2,d − β∗2,d) =
√

n(b400 − β400)

D−→ N
(

0,
36r2

4

d2(d + 2)2

(
r8 + 4

r4

d

(
r2
4

d
− r6

)
− r2

4

))
.

Remark: The result requires neither that the support of PX has pos-
itive Lebesgue-measure nor that P (X = 0) = 0 as assumed in Henze
(1994b), Corollary 3.1, for the case k = 2.

Corollary 4.1. If X has a non-degenerate normal distribution, then

√
n


b2k,0,0 −

k−1∏

j=0

(2j + 1) (d + 2j)


 D−→ N (

0, σ2
2k

)
,

where

σ2
2k = 4

k−1∏

j=0

(2j + 1)2(d + 2j)




2k−1∏

j=k

(d + 2j)− d + 2k2

d

k−1∏

j=0

(d + 2j)


 .
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