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This paper gives a unified treatment of the limit laws of different mea-
sures of multivariate skewness and kurtosis which are related to components
of Neyman’s smooth test of fit for multivariate normality. The results are also
applied to other multivariate statistics which are built up in a similar way
as the smooth components. Special emphasis is given to the case that the
underlying distribution is elliptically symmetric.

1. INTRODUCTION

Suppose X7,...,X,, are independent observations on a d-dimensional
random column vector X with expectation F(X) = p and nonsingular
covariance matrix T = E[(X — p)(X — p)’], where the prime denotes trans-
pose. Let X = T~/2(X — ) denote the standardized vector with E[X] =0
and E[XX'] = I, the unit matrix of order d. Let

Zj:(le,...,Zdj)/ = 57:1/2<Xj_Xn)a j:l,...,’I’L7

where X, =n~' 30 | Xj and S, =n~' 30 (X — X)) (X — X)) are

the sample mean vector and the sample covariance matrix of X1,..., X,
respectively. We assume that S,, is nonsingular with probability one. This
condition is satisfied if X has a density with respect to Lebesgue measure
and n > d + 1 (Eaton and Perlman (1973)). Writing Y is an independent
copy of X = (&1,...,&4)’, Mardia (1970) introduced the affine-invariant
skewness measure

fra = E(X'Y)? (1)
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d
= Y (B +3Y (BlEk.)? > (Blegs))?,

r=1 r#s 1<r<s<t<d

and the multivariate sample skewness

n

biqg = T;z;;[(Xi—Xn)’Snl(Xj— 3 = % Z
i=1 j= —

and he proposed to use by q for testing the hypothesis Hy that the distri-

bution of X is nondegenerate d-variate normal. by 4 is closely related to
the first nonzero component of Neyman’s smooth test of fit for multivariate
normality, introduced by Koziol (1987).

The pertaining test statistics are built up as follows. First, a system
of orthonormal multivariate polynomials is defined. To this end, suppose
Hj, are the normalized Hermite polynomials; Hj is a polynomial of de-
gree k, orthonormal on the (univariate) standard normal distribution. In
particular,

Hy(z) =z, Ha(x)=(a®-1)/V?2,
Hs(z) = (2 — 32)/V3!, Hy(x) = (z* — 6% + 3)/V4! (3)

Multivariate polynomials are then defined by
Ly, (X)) = Hy, (&)~ Hy(&a),  kuy.o. ka € N

Let {L,} denote the sequence arising from an arbitrary ordering. Since,
under Hy,

d
E[LT(X)LS(X)} H [Hk (& m; fz H‘Sk m; = Ors, (4)

where d;; denotes Kronecker’s delta, the sequence is orthonormal. Usually,
the polynomials are ordered by their degree k = k1 + . .. + kq; particularly,
Lo = 1. The smooth test of order k for multivariate normality rejects Hy
for large values of

=X Vi = 23 b) o)

where summation is over all polynomials of degree at most k. Summing
only over all polynomials of degree k yields the kth smooth component
02,
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Since the standardized values Z; are used in the definition of Vnyr,
Vir = 0 for each polynomial L, of degree one or two; hence, the first
two components are zero (see, e.g., Rayner and Best (1989), p. 102). Con-

sequently,
\:[1721,,]6 = U,Z’g + e + Uﬁ,k‘
for k > 3. The first nonzero component 07373 consists of Hs(x;), Ha(z;)

Hi(z) and Hy(z;) Hi(xk) H1(z;), where j, k, [ are different integers in the
range {1,...,d}. This gives

| =

0 = M3 (De-ae) + T (26 ve)

r i r#s i

+

> (Z(Zrizsizti)>

r<s<t i

and hence, by comparison with (2), the identity (Koziol (1987))

bl,d = U5,3~ (6)

SRS

An alternative affine-invariant measure of multivariate skewness was in-
troduced by Mori et al. (1993); they proposed

_ 1 n n
bia = EZZZ; Zj ||Zi||2 HZJ'||2 (7)

i=1 j=1

with population counterpart 54 = ||E(X|X|?)|? = E[(X'Y)(X'X)
(Y'Y)]. by 4 was further examined in Henze (1997).

To derive the limit null distribution of Mardia’s skewness measure, sev-
eral different approaches have been utilized. Mardia (1970) showed that
b1,q4 is asymptotically equivalent under Hy to a quadratic form of a normal
vector; Koziol (1987) used the theory of empirical processes and weak con-
vergence arguments to establish the appropriate distribution theory under
multivariate normality. Rayner and Best (1989) derived the limit law of
b1,q¢ under Hy as score statistics (concerning difficulties of this approach
see Mardia and Kent (1991), p. 356; Kallenberg et al. (1997), p. 45). Bar-
inghaus and Henze (1992) represented by 4 as V-statistic and utilized the
appertaining distribution theory to study the asymptotic behavior of Mar-
dia’s skewness measure under arbitrary distributions. They showed that
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in the special case of an elliptical distribution, the limit law is a weighted
sum of two independent y2-variates.

The present paper gives a unified treatment of the limit laws of both
skewness measures and other statistics like multivariate kurtosis which are
closely related to components of Neyman’s smooth test of fit for multivari-
ate normality.

In Section 2 we state a general result about the limit distribution of
statistics which are built up similarly as the components of a smooth test.
Using these findings, the limit laws of 3; 4 and Bl,d are derived if the under-
lying distribution is elliptically symmetric. We point out that the skewness
measure l~717d, albeit being asymptotically distribution-free under elliptical
symmetry, is not well-balanced in a certain sense. Hence, we propose a
new skewness measure similar to Mardia’s skewness, but asymptotically
distribution-free under elliptical symmetry.

In Section 3, we consider measures of multivariate kurtosis and the fourth
component of Neyman’s smooth test for multivariate normality. The limit
law of Mardia’s kurtosis measure and of the fourth component under ellip-
tical distributions is examined in detail.

Higher order variants of multivariate skewness and kurtosis are consid-
ered in Section 4. Since these statistics do not consist of orthogonal polyno-
mials, the necessary computations are more involved. A kurtosis measure
introduced by Koziol (1989) and higher order analogues are closely exam-
ined.

2. THE LIMIT DISTRIBUTION OF SOME MEASURES OF
MULTIVARIATE SKEWNESS

We first derive the asymptotic distribution of the random vector V, =
(Vats- s Viy)s where V,, = n=1/2 > i—1Ls(Z;) as in (5) and the mul-
tivariate polynomials L, are of degree at least 3, but at most k& (k > 3).
Put ¥ = (V1,...,95) = (1, T71) (s = (d* + 3d)/2), and write Ls(X,9)
instead of L (X) to indicate the dependence of L, (X) on Y. Furthermore,
let Vyh(x; ) denote the (r x s)-matrix with entries 0h;(z;9)/09;, where
h(z;9) = (L1(z;9),. .., Li(x;9))".

Since the multivariate skewness, and hence the first nonzero component

Ug,g, consists of products Z; Z;, it is affine-invariant, i.e.,
U2 4(X1,...,X,) = UZs(b+ BXy,...,b+ BX,)

for each nonsingular (d x d)-matrix B and each b € R%. Since the same
property holds for each of the statistics studied in this paper, we always
assume p = 0 and 7 = I;. Assuming further that E|X||?* < oo, we have
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Via(Xy — p) = = 3012, Xi +op(1) and

VRS 1) =~ D O6X 1)+ or() ®)

Tl

(see, e.g., Baringhaus and Henze (1992)), and hence \/ﬁ(ﬁn —-9) = ﬁ
S U(Xy) + op(1), where 9, = (X,,,S;!) and the function [ satisfies

Ep[l(X)] =0.
THEOREM 2.1.

a)Assume that E||X||** < co. Let 7 = (11,...,7) = (B[Li(X)],...,
E[L.(X)]). Then

V=7 = N(0,5), (9)
where the covariance matriz X2 is given by
Y = Ef(0i(X,9),...,0:(X,9)) (0 (X,9),...,0.(X,9))] =77, (10)

and vi(x,9) = Li(z,9) + E[VoL{(X,9)]l(z,9) fori=1,...,r
b)Let X have distribution P € Pk, where P} is the set of probability
distributions on R defined by

Py = {P: Ep[L;(X)] =0 for each polynomial L; of degree

less than or equal to k, Ep|X||** < oo}. (11)

Then the covariance matriz in (9) takes the form

Y = E [(Ll(X),...,LT(X’D (Ll(X),...,LT(X))/} L 12)

Proof. a) follows by a series expansion similar as in Theorem 2.1 of Klar
(2000). Under the hypothesis Hy of multivariate normality, Ey[Vyh(X;9)] =
—Cly, where Cy is the (r X s)-matrix with entries

0log f(X;0)
i = By [hi(X;09) ——1~
c J 9 ( ) aﬁj

(see Klar (2000), Theorem 2.1). Now, some computation yields ¢;; =
0(G=1,...,r,7=1,...,s) (see Rayner and Best (1989), p. 101). Alter-
natively, this can be verified along the lines of the proof of Theorem 3.1 in
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Klar (2000). Hence, b) follows under Hy. The general case P € PF can be
treated similarly as in Theorem 2.3 of Klar (2000), noting that 0Ls/09; is a

polynomial of degree at most k. |

Using Theorem 2.1, it is possible to derive the limit law of statistics
which consist of polynomials Ls. For example, the asymptotic distribution
of a component of the smooth test of fit depends on whether 7 = 0 or
7#0. If 7 =0, it is well-known that

A ’D r
U2, — ZNJ?, (13)
j=1

where (Ny,...,N;)" ~ N;.(0,%). The limit law is a weighted sum of in-
dependent chi-squared random variables, the weights being the eigenvalues
of 3.

In particular, if X has some nondegenerate d-dimensional normal distri-
bution Ay, equation (4) shows that N € P§ and 7 = 0. Using Theorem
2.1b) and (4) again yields ¥ = I;. Hence, the asymptotic distribution of
Ufhk and \ifik under Ny is x2, where v equals the number of polynomi-

2

s 1., respectively. Since there are

d;Z)

als which are used to build up Uz . and ]

(kJrZ*l) polynomials of degree k, (7733 has a limit x2-distribution with (

degrees of freedom under Ng; the limit law of UEA is x2 with v = (dig),

and ‘i’i & has a limit chi-squared distribution with

(1)) () ()69

degrees of freedom. However, if 7 # 0,

02 i
\/ﬁ (:L,k _T/7'> L N 0,4 Z Oij Ti Ty | » (14)

ij=1

where 0;; denote the entries of ¥ (see, e.g., Serfling (1980), Corollary 3.3).

REMARK: The above results show that a test for multivariate normality
based on the components U,QL ; of order at most k is not consistent against
distributions of P§. An analogous remark applies to each of the statistics
examined in the following sections.

2.1. The limit distribution of Mardia’s skewness measure
In this subsection, we derive the asymptotic distribution of 033 (and,
hence, of Mardia’s measure b; 4) by means of Theorem 2.1 if the underlying
distribution P¥ is elliptically symmetric.
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A d-dimensional random vector X has a spherically symmetric distribu-
tion (or simply spherical distribution) if H X 2 X for every orthogonal
(d x d)-matrix H. The distribution of X is elliptically symmetric (or sim-
ply elliptical) with parameters u € R? and A € R¥* if there is a random
(k x 1)-vector Y having a spherical distribution and a (k x d)-matrix A of

rank k such that A = A’Aand X 2 4 + A’ Y.

PROPOSITION 2.1. (see Fang et al. (1989), p. 72) Let X = (X1,...,X4)
have an elliptically symmetric distribution. Let s1,...,sq be nonnegative
integers, and put s = sy + ...+ sq. Then

1 d .
sy (2 (2L;)! if si = 2l;, i € No,
o1 e (3) My s,
if at least one of
the s; is odd

0 ;

where all = a(a+1)---(a+1-1).

COROLLARY 2.1. Let ps,, .5, = E [H?:l Xisz}, where zeroes are sup-

pressed in the notation since the order of the s; is irrelevant. Then, from
Proposition 2.1,

pa = 3225 p6 = Spaz = 15 poos;
35
pHg = Tper = 3 Has = 35 flag2 = 105 po299.

If PX is elliptical with parameters p and A, and if E||X||? < oo, then
E[X] = u, Cov(X) = E[R?)|A/rank(A). If A is positive definite and
E(R?) > 0, the standardized vector X = [Cov(X)]"/2(X — p) satisfies
E[X] = 0 and E[XX'] = I;. Hence, X has a spherically symmetric dis-
tribution with E|X||? = d. The mixed moments of X are given in 2.1; in
particular, 8 4 in (1) satisfies

Bra = E[(X'Y)] = 0. (15)

s

Hence, elliptically symmetric distributions belong to the class P§ of distri-
butions with 31 ¢ = 0. The covariance matrix ¥ can be computed by equa-

tion (12). The third component consists of L,(X) = Hs(&,), Lys(X) =

Hy (&) Hi(&s) (r # 5) and Lyt (X) = Hi(&)Hi(85)Hi(&) (rs,t € {1,
...,d}, r < s <t), where the Hermite polynomials H; are given in (2). We
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obtain the following entries in the covariance matrix:

ot = BIAR) = SEIE — 3617) = 5l — 01 +9),

12 % \

12 = B[L(X) Lo (X)] = Tjgom 8130 — 4+ 3),

o = BIL2(X)) = 5Bl — 17€) = 5(uiz — 2 + 1),
0% = BlLes(R)Leo(X)] = § (222 — 220 + 1),

o’ = E[L%st(X)] = W222-

The remaining entries vanish by Proposition 2.1. Arranging the polyno-
mials in the form

L17 L217 L317 cee ;Ldla
L27 L127 L327 LR Ld27
Lg, L1g, Lag, ..., Lq—1.4,

L1237 L1247 L1257 e 7Ld72,d71,d ’

the correlation between polynomials of different rows is zero, i.e. the
covariance matrix partitions into d 4+ 1 block diagonal matrices.

For simplification, we consider in the following the covariance matrix
of the polynomials pertaining to 6 [733 Using Corollary 2.1 and putting
u = 60%2 = pg/5 —2us + 3, v = 602 = 3/5us — 24 + 3 and hence
60! = 2u+wv, 60'2 = \/3u, the (d x d)-covariance matrix corresponding to
one of the first d rows takes the form

2u+v‘\/§u V3u - V3u
V3u v U U

S R
\/gu u u [
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The characteristic equation of ¥ 4 can be written equivalently as

2u4+v—A (d—l)\/gu V3u V3u
V3u (d—2)u4+v—A u u
det 0 0 V—u—\ 0 = 0.
0 0 0 vV—uU—A

Hence, two eigenvalues are solutions of (2u +v — A)((d — 2)u +v — A) —
3(d — 1)u? = 0,which yields \; = v —u = 2u6/5 and Ay = (d+ Vu+v =
(d+4)pe/5—2(d + 2)pa + 3(d + 2). Furthermore, A3 = v —u = 2u/5 is
an eigenvalue of multiplicity d — 2.

The matrix pertaining to the last row is a diagonal matrix with entries
602; hence, it has the eigenvalue Ay = 6902 = 2p6/5 with multiplicity (g)

By (13), the limit distribution of 6 07%3 is a weighted sum of (dgz) inde-
pendent x? random variables. Since only two different weights occur, we
have the following result:

THEOREM 2.2. Let X have an elliptical distribution with expectation p
and nonsingular covariance matriz T such that E[{(X —p)'T=Y(X —pu)}?] <
oo; hence, PX € P3. Then

2 D 2 2
6 Un73 Oélxyl + a2 Xz/2

as n — 00, where

2 d d

o = 2o o= dd-1)+ <3) = Y-+ a),
d+ 4

as — ; fo —2(d+2) pa+3(d+2),  vs—d,

and X?,I_ are independent chi-squared random variables with v; degrees of
freedom.

Remark 2. 1. Putting ro, = E(X’X)¥ and noting that, for elliptical
distributions, r4 = ps d(d+2)/3,7r6 = pe d(d+2)(d+4)/15 (cp. Theorem
4.2 below), we have

676 3 T6
= — = - —=-2 dld+2)).
o dd+2)[d+ 1) e%) d<d+2 ra+d(d + ))



10 BERNHARD KLAR

In view of (6), Theorem 2.2 corresponds to Theorem 2.2 in Baringhaus
and Henze (1992) which was proved in a different way under the additional
assumption P(X = u) = 0.

2.2. The skewness measure of Moéri, Rohatgi and Székely
The skewness measure of Méri et al. (1993) in (7) can be written as

d 2
e = d 2 (D) X (TAT

r=1 r#s i i

3

2
+Z<szzzm> + Z Zz”zierjzfj)

r#Ss i r#s#t % J

Defining V,. = (1/v/n) 321y Lr(Z;) and Vis = (1/y/n) Y1) Lys(Zi) with
L, and L, given in Subsection 2.1, b; 4 takes the form

nbia = 6 VZ+4V3> ViV +2> V242 Y VoV
r r#s r#s r#s#t
Furthermore, putting W, = (V,«, Vlr, e qu,r, VHM, ceey Vdr)’, it follows
that

nbig = Wi AW, + ...+ W) AWy, (17)

where the (d x d)-matrix A has the entries a1 = 6, a1 = ag1 = 2V/3 (1<
k < d) and ay; = 2, otherwise. By (17), the asymptotic distribution of nb; 4
is readily obtained if the underlying distribution is elliptically symmetric.

THEOREM 2.3. Under the assumptions of Theorem 2.2, we have

where ag = (d+4)pe/5 — 2(d + 2)pa + 3(d + 2) as in Theorem 2.2.

Proof. W, and W; (r # s) are uncorrelated and hence asymptotically
independent (cp. Subsection 2.1). The covariance matrix of W, is X4 4/6
with ¥ 4 given by (16). We therefore consider the quadratic form W{AW;
which is asymptotically distributed as a weighted sum of independent x?
random variables, the weights being the eigenvalues of the (d x d)-matrix
El,d A/G
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Note that A = 2e, €/, where eq = (v/3,1,...,1)" € R? is the eigenvector
of 31 4 pertaining to the eigenvalue ay. Consequently, X1 g A = 2aseq€);.
Hence, (d + 2)az/3 is a simple eigenvalue of ¥; 4 A/6 with eigenvector eq,

and 0 is an eigenvalue of multiplicity d — 1. |

Remark 2. 2. a) Under the additional assumption P(X = u) = 0, The-
orem 2.3 was proved in Henze (1997) by a completely different reasoning.
b) The above proof yields the representation

d
71617,1 = QZ(WT/ ed)Q. (18)

r=1

Hence, the skewness statistic of Mori et al. uses the projections of the W,
on the eigenvector eg. _
c) For a distribution with 5y 4 > 0, Corollary 3.3 in Serfling (1980) yields

Vilbra — Bra) == N (0,7 (A+ diag(A))' 3 (A + diag(A))r).

2.3. A new measure of skewness

Theorem 2.2 shows that b; 4 is not asymptotically distribution-free
within the class of elliptical distributions. The skewness of Méri et al.
can be modified to obtain an asymptotically distribution-free statistic, but
this property is achieved by projection of the vectors W,. into a particular
direction (see (18)). Therefore, one may ask whether there is a skewness
measure which gives equal weights to all polynomials of order three as does
Mardia’s skewness in case of a normal distribution, and at the same time
being asymptotically distribution-free within the whole class of elliptically
symmetric distributions. The previous subsections show that this will be
the case for the statistic

6 ~
V:6W{2;3W1+...+6W32;}1Wd+—a > Vit
’ 1
r#s#t

where V.o, = (1/v/n) Y71 Lrst(Z;). V has alimit chi-squared distribution
with (d'§2) degrees of freedom if PX is elliptical. With the notations of
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Subsection 2.1, we have

(d72)u+v‘f\/§u —3u -+ —/3u

) —V/3u du+v —-u -+ —u
-1 .
Xra = —V/3u —u ’
: : - )
—V/3u —u v —u dutw

where ¢ = (v —u) ((d+ 1)u+v) = ay az. Hence,

6 u 6 N
vV = W ( I ——A) W, + — V.
109 ; r @24 2 + a1 T;ézs;:ét t
6 -~ 3u ~
= — 7%,3 - nbl,da

Qg

where u = (ag — a1)/(d + 2). Since the moments p4 and pg figuring in
the definition of ar; and as are unknown, they have to be replaced by the
corresponding empirical moments. This yields the following result.

THEOREM 2.4. Let X have an elliptically symmetric distribution with
expectation p and nonsingular covariance matriz T such that E[{(X —
)T~ (X — p)}?] < oo. Let fo, = L3 (Z! Z;)* and

) 676 YR
YT Jdrdr e d<d+2 P+ d(d+ )>
Then
= n 3(@2—@1) ~
brg = Dby - Sl g
nby g &y L A+ 2) 1 62 nby g

has a limit chi-squared distribution with (d;rz) degrees of freedom.

REMARK: A test for elliptical symmetry based on nl;l,d is consistent
against all distributions with 8; 4 > 0.

3. MULTIVARIATE KURTOSIS AND THE FOURTH
COMPONENT OF NEYMAN’S SMOOTH TEST
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Mardia (1970) introduced the measure of multivariate kurtosis

n d
ba = Y22 = 2SS A A
r=1 1

i=1 r#s i

which is an estimator of 35 4 = E[(X'X)?] = E| X ||*. Hence, by 4 only ex-
amines the fourth moment of || X||. Koziol (1989) proposed the alternative

kurtosis measure

1 n n 4
bra = 3 > (Ziz))

i=1j=1

eSS (Zz¢i>2+4z (Z(?’))

r=1 ) r#s 7

r#s r#£s#t 7

2
+24 Z (Z(%i%i%i%i)) (19)

1<r<s<t<u<d \ i

K2

with population counterpart 35 ;, = E[(f(’f/)‘l]. In contrast to Mardia’s
kurtosis measure, b3 ; is a next higher degree analogue of by 4.

To derive a connection of these measures with a component of Neyman’s
smooth test for multivariate normality, consider the polynomials

Hay(y;), Ha(y;)Hi(yr), Ha(y;)Hz(yr),
Hay(y;)Hy (yr)Hy (1), Hi(y;)Hy(yk) Hi(yi) Hi(ym)

of degree 4 and the pertaining fourth component

03,4 _ 1 2714 Z (Z(zﬁl - 3)) + éz (Z(zflzm>

- P r#s i
9 2
= (zuzz; - 1)) P (Z<>)
r#s i rFs#t '

+ Z (Z(%z%z%z%z))

r<s<t<u %
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Since Y-, z,; = 0 and >_, 2% = 1, one obtains the algebraic identity
. no, .
Upy = 5 (V5.4 — 6boa+3d(d+2))

(Koziol (1989)). Moreover,

d
Viilba—d(d+2) = 3 % Sk -3+ % S22 1)
r=1 i r#s 7
d
T O WACIEED 3 LAY
r=1 1 r<s 1

where the polynomials L,(z1,...,2q4) = (2} — 622 + 3)/v/24 and L3(z,
ooy 2d) = (22— 1) (22 — 1)/2 belong to the building blocks of U,QLA.

After centering, the individual terms in (19) are asymptotically normal
(cp. (9)); due to the different weights in (19), the covariance matrix 3
differs from X. Hence, the limit law of \/n(bg.q — Ba2.4) is N'(0, ¢'Se) with
e=(1,...,1). If 7 =0, then

d
Baa = Y EIG]+D B = 3d+d(d—1) = d(d+2).

j=1 i

Using the general results of Section 2, one has to consider two cases to
derive the asymptotic distribution of 05,4' If 7 = 0, the limit law of 0374
is a weighted sum of y?-distributed random variables and, in particular, a
chi-squared distribution with (dzg) degrees of freedom under normality. If

T # 0, the limit distribution of (Ufw/\f — /n7'7T) is normal.

3.1. The limit law of Mardia’s kurtosis measure under
elliptical distributions

In this subsection, we obtain the asymptotic distribution of v/n(ba 4 —
d(d + 2)) if the underlying distribution P is elliptically symmetric. Now,
if P ¢ P§ (see (10)), i.e. 7 # 0, then B24 # d(d + 2) and, by the above
results, by 4 tends to infinity. Hence, we consider elliptical distributions
P € P§. In principle, $ can be computed as in (12), taking into account
the different weights in (19). Using Corollary 2.1, an elliptical distribution
is in Pg if y4 takes the 'normal’ value 3. 3 has the entries

6" = UB[L2(X)] = Bl — 662 +3)%] = pus — 12716 + 99,

' = 24B[L,(X)Ly(X)] = B[(& — 667 +3)(&5 — 667 +3)]
= ftaa — 12442 + 36122 + 614 — 27 = 3ug/35 — 124u6/5 + 27,
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6% = 16E[(L3(X))?] = 4(3us/35 — 4u6/5+7),

62 = 16E[LL(X)LL(X)] = (s /35 — Sy16/15 + 5),

5% = 16E[L(X)L{(X)] = 4(us/105 — 4416/15 + 3),

&% = 4V2AB[L.(X)LY(X)] = 2(us/T — 12u6/5 + 21),

6% = 4V2AEB[L (X)LY(X)] = 2(us/35 — 4p/5 +9),
where r,s,t,u € {1,...,d}, 7 < s <t < u. Now, 6! appears d times in
33, 6'2 d(d — 1) times, 62! (g) times, 622 2(d — 2) (g) times, 623 (g) (d;2)

times, 31 4(3) times and, finally, 532 2(d — 2)(‘21) times. Summing over all
terms yields the variance

. d 4d
Ye = pg——(d® 4 12d°* + 44d + 48) — pg—
e e N8105( + + 44d + 48) M615(

+d(3d® 4 20d* + 44d + 32).

d® + 8d* 4 20d + 16)

Replacing pior (k = 2,3,4) by rop, = E(X'X)* as in Subsection 2.1 (for
elliptical distributions, rs = {gxd(d+2)(d+4)(d+6), see 4.2 below), e'Ye
takes the form

e'Se = 13 —4(d+ 2)rg + d(d + 2)%(3d + 8).

This is the result of Henze (1994a), Example 3.3, letting pg = 3. Under
multivariate normality, e/Se = 8d(d + 2), which is the well-known result of
Mardia (1970).

REMARK: If P ¢ P, the limit law of v/n(bz 4—/32.4) could be determined
in a similar way using Theorem 2.1a) and (14) (regarding the necessary
computation to obtain the entries of ¥ in this case, see Section 4).

3.2. The limit distribution of the fourth component under
elliptical symmetry

As second example in this section, we derive the limit law of 240374 if
the underlying distribution is elliptically symmetric. Again, we consider el-
liptical distributions P € P§ (i.e. with my = 3), since otherwise UTQLA tends
to infinity (in this case, one could determine the asymptotic distribution of
\/H(Uflk/n — 7'7) using (14)). As in Subsection 2.1, we have to determine
the eigenvalues of the covariance matrix in (12), multiplied with the factor
24. Besides the polynomials L, and L7, 072174 consists of L,s(21,...,24) =
(23-32,)25/6 (r # 8), Lyst(21,.-.,24) = (22—1)252¢/2 (r # s,t, s < t) and
Lystu(215- -+ 24) = 2rzszezy (r < s <t < u). First note that the covariance
of any polynomial which is part of by 4 and the remaining polynomials is
zero since it solely consists of moments which are zero by Proposition 2.1;
we have, e.g.,

E[(X4 —6X%+ 3)(X2 - 1)YZ] = peir — Tparr + 9p211 — 3p1n = 0.
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For the same reason, the correlation of L, and any other polynomial is
zero. Hence, the covariance matrix can be decomposed into three parts.
The matrix pertaining to the polynomials L, g, is a (Z) X (Z) —diagonal
matrix with entries 2410000 = 24p5/105. Hence, a; = 8pug/35 is an eigen-
value of multiplicity (9).
The second matrix has the nonzero entries

o' = 24E[L}(X)] = 4(ug/T — 6p6/5 +9),

o' = UE[L(X)Le(X)] = 4(3us/35 — 6p16/5 +9),
o' = 24E[L},(X)] = 12(ug/35 — 2u6/15 + 1),

0% = 24F[L, (X)L (X)] = 4V3(ug/35 — 2u6/5 + 3),

where r,s,t € {1,...,d},r # s # t # r. Arranging the polynomials in the
form

L3, Loy, L312, La12, ..., L2,
Li3, L31, Lo13, Lais, ..., Lai3,

Lg-1,4, Laa—1, L1,a-1,4, L2,a—1,dy -+, La—2,a-1,4 ,

the matrix under consideration splits into (g) matrices

ol g42| g4 L g4
12 A1 [ gad L gl
ot gtt| o3 0 1. (21)
JRYRSYE I o3

Here, the diagonal matrix has dimension d — 2. For the matrix in (21),
ay = 0*3 is an eigenvalue of multiplicity d — 3. The remaining eigenvalues

are those solutions of the equation ((o*! — X)(0** — X) — (6**)2(d — 2))2 =
(c*2(c*3 = X) — (™) (d — 2))2 which differ from o43. This yields the ad-
ditional eigenvalue a; = 8ug/35 and the two eigenvalues

22 28 2
Q34 = gops = et 42 + £\/24d — 23(us — 14p6 + 105)

which depend on the dimension d.
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Computing the eigenvalues of the third matrix is more involved since all
entries are nonzero; up to constant factors due to the different weight-
ing, the matrix corresponds to the covariance matrix of by 4: defining
ol = 611 012 = §12 521 = 35212 022 = 3522/2,0% = 3523/2,0%! =
(3/2)/2631 and % = (3/2)'/262, and replacing 6% in the covariance
matrix of Subsection 3.1 by the corresponding ¢% yields the third matrix
which we denote by ¥3. For a proof of the following lemma, see Klar (1998),
Lemma 1.3.10.

LEMMA 3.1. X3 has the following eigenvalues: oy = 8ug/35 is eigen-
value of multiplicity (g) (where (;) =0);

d 2d
s — 4<( +6) +8

35 M8~ —¢ M6+3(d+4))

s an eigenvalue of multiplicity d — 1; finally,

2 4 10d + 24 4(d?
ag = s ;;+ ps — (d +56d+8)ﬂ6+3(3d2+14d+16)

is a simple eigenvalue.

Summarizing all results, we obtain the following theorem.

THEOREM 3.1. Let X have an elliptically symmetric distribution with
expectation p and nonsingular covariance matriz T. Assume X ¢ 7361,
i.e. E[(X'X)Y] < oo and my = E[}] = 3, where X = (&1,...,&1) =
T=Y2(X — ). Then

6
2 D 2
24U, 4 — g Qi Xy, s
i=1

where

d d
041:8,u8/357 V1:<4>+2<2>’

a2:12(u8/35—2u6/15+l), V2:(d_3)<;i)7

22 28 2 d
Q34 = ——fig — — 6 + 42 + —+/24d — 23(,“8 — 1dpug + 105), V34 = s

35 5 35 2

d+6 2d + 8
as =4 ( )Ms— pe+3(d+4) ), vs=d-1,
35 5
d? 4+ 10d + 24 4(d% + 6d + 8

ag = s ps — (d"+6d + )/~L6+3(d2+14d+16)7 v =1

35 )
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and Xi are independent chi-squared random variables with v; degrees of
freedom.

REMARK: Under multivariate normality, we obtain «; = 24 for ¢ =
1,...,6; since Z?:1 v, = (dzs), U,%A has a chi-squared distribution with

(df) degrees of freedom.

4. THE LIMIT LAW OF VARIANTS OF MULTIVARIATE
SKEWNESS AND KURTOSIS

In this section, similar methods as in Sections 2 and 3 are used to treat
other statistics such as b3 ; in (18) which are not directly related to com-
ponents of the smooth test of fit for multivariate normality, but which are
direct higher degree analogues of by 4.

The results are again based on Theorem 2.1 a) which makes no use of
the orthogonality of the polynomials (see the remark after 2.1). However,
the computation of the covariance matrix ¥ pertaining to the polynomials
which build up the statistics is more involved: whereas the examples in 2
and 3 make use of the fact that ¥ can be computed by (12) not only under
the hypothesis of normality but also in the class ng, one always has to
compute the covariance matrix in case of nonorthogonal polynomials (i.e.
even under the parametric hypothesis) using equation (10).

In the following, we determine the limit distribution of the statistics

1 . . I
boo = —5 D (X=X (X = X)) = 5 3° (Z2)",

i,j=1 1,5=1

where k is a positive integer. Again we assume that S,, is nonsingular with
probability 1. An alternative notation is

Broo = E[(X —p)' T (Y — p))*]

I
S
i

=l
<
N—
/N
o
=~
o
2
N————
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where &1,...,&; are the components of X = T—/2(X — p). Since broo
is affine-invariant, assume without restriction ¢ = 0 and 7' = I;. Again,
E|X||?* < o0.

The parameterization used in Section 2 is no longer convenient since it
requires the partial derivatives of 7~1/2 with respect to the elements of

T~!. Besides the expected value u, we therefore use the elements ti_jl/ 2

of T~1/2 as parameters. The linear representation, which is now required
explicitly, is easily found: using (8) and

V(S = 1a) = V(S = 10) (5,12 + 1),

we obtain
1 n
-1/2 _ g :77§ X. X' -1 1).
Vn(S;, a) 2v/n i:l( ixg a) +op(1)

Hence, l;j(x,9) = —(z;z; — d;5)/2. Now, it is not difficult to com-
pute the necessary partial derivatives. Noting that 0¢&,/du; |(;¢,T):(0,Id) =
_4-1/2

i = —d,4, We obtain

(0,1a)

k k
dekr .. gha

k ki_ ki—1 #ki k
O = —h& GGG &G (22)

7 i+1
(0,14)

for i = 1,...,d if k; > 1. Using 5‘§T/6ti_jl/2( . 8ir & yields the
0,1q
derivatives

k k
ok .. gha

8tf1/2

)

= kgl g gk (23)
(0,14)

for i,5 = 1,...,d, if k; > 1. Therefore all quantities required to com-
pute the covariance matrix ¥ are known. Arranging the building blocks

1/2
(klk kd) / ;vlfl ~~-x§d of bgpo in an arbitrary order and denoting them by

hi(z), 1 =1,...,d*, defining 7 = (11,...,74+) by 7, = E[hg(f()] and letting

d ~
— % Z E (8}”0()) (JJZ‘ xj — (Sij), (24)
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we can compute ¥ using (10).

Regarding the limit distribution, one has to distinguish two cases as in
Section 2. If 7 = 0 (which is only possible for odd k), the asymptotic dis-
tribution is a weighted sum of independent chi-squared distributed random
variables:

dk:
D .
n bgoo — ZAJ Xi (9),
=1

where the weights are the eigenvalues of ¥. Note that the statistic bzgg
coincides with Mardia’s skewness b; 4. For higher odd values of k, Henze,
Gutjahr and Folkers (1999) determined the weights A; under elliptical sym-
metry.

If 7 # 0 (which is always the case for non-degenerate distributions if k
is even), it follows from (14), using 77 = Bkoo,

vV (broo — Broo) 2 N (0,47'%T). (25)

To examine the case koo > 0 (k > 3) more closely, we express the variance
02 = 47'S7 of the limit distribution in a different way. To this end, let
h=(h1,...,hge) and v = (v1,...,vgx)". Further define

hig(z) := 7' h(z) = E[(z'X)"]. (26)
Combining (25) and (10) gives

o? = 47 E[v():()v(X)’ 7'~—47" (rr)r
= B[(2r'v(X)) 27'v(X))'] — 4 500- (27)

Besides hy 1, (z), the product 7/v(z) consists of terms like x; 3=, 7 E[0hy(X)

/Ou;) and (z;25 — 0i5) >, TlE[ahl(X)/at;jl/Q]. Using (22) and (23), a com-
parison of the coeflicients shows that the sums are given by

= (=k) E[(X"Y)"*" ']

Opi

dk
S Ellu(X)] B
=1

3hl()~()]

and

d* 5
ZE[hl(X)] E [88};(5(/2)] = kE[fi(f(’Y)kflnj].
=1 ij
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In view of these equations and with the definitions

a = B[(XV)1Y],

By = (bijhi<ij<d = E[X(X'Y’)k*lf” : (28)
U = (2, —k bll; —k b12, ceey —k blda —k b21, ey —]C bdd7 —2]{) a}c)',

Zy = (hp(X) = Broo &7 — 1,&1&o, - 610 &6, .., & — LX),

the asymptotic variance in (26) can be written as 02 = u,E[Zy, Z}]uy.
Summarizing, we have the following result.

THEOREM 4.1. Let the random vector X with expectation p and nonsin-
gular covariance matriz T satisfy E[{(X—p)' T~ (X —p)}¥] = E[(X'X)*] <
0o. Assume that the empirical covariance matriz S, is nonsingular with
probability 1, and that Broo > 0. Then

v (broo — Broo) 2, N (0, up E[Zy, Z}]ug)

where the (1+ d? + d)-dimensional vectors uy, and Zj, are defined in (27).

REMARK: In the cases k = 3, k = 4 and k odd, this is the assertion of
Theorem 3.2 in [1], Theorem 2.2 in [7] and Theorem 4.3 in [9], respectively.
In these papers, the proofs are based on the theory of V-statistics, which
entails the additional requirement that the support of PX has positive
Lebesgue-measure.

EXAMPLE 4.1.  In the univariate case d = 1, the quantities in (26) and
(27) are

hig(z) = pea®,  ar = pe—1pe, Br = pi,
up = (2, —kpi, —2kpi—1pr)',  Zi = (ueX* —pi, X* =1, X)

and consequently

Mi(uzk - Mﬁ) P (kg2 — Hk) [k Pkt
EZv Zi]) = | pw(pbs2 — 1) fra —1 143
Mk k1 13 1

This yields

’ y 2 k2 ) (k — 2)2 )
upE[Zk Zilur = Api (M2k — k p piet2 + A T T He

+k? pig pr—1 pir — 2k prr—1 prrgr + K Mi_l)-
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In particular, for k = 3,
us B[ Zs Zaus = 4p3 (pe + 9+ 9p3(pna — 1)/4 — 6pa — 3psps + 1143)

(cp. Baringhaus and Henze (1992a), Example 3.3). After normalizing, we
obtain the well-known result of Gastwirth and Owens (1977).

In the remainder of this section, we derive the variance of the limit normal
distribution of \/n(bak,0,0 — B2k,0,0) (k > 2) under elliptical symmetry. As
a special case, the asymptotic distribution of Koziol’s kurtosis measure
b; 4 = baoo (cp. Section 2) is obtained. Under elliptical symmetry, B2x,0,0
has a simple representation.

THEOREM 4.2. Let X = (X1,...,Xq)" have a spherical distribution with
E|X||?* < 0o, and let Y be an independent copy of X. Then
d(d+2)---(d+ 2k —2)

135 (2k—1)

rar = E[(X'X)*] = pak

where pigy = E[X?]. Furthermore,

1-3-5---(2k—1
Bak,00 = E[(X/Y)%] = T%k d(d+2)-~-(c§+2k)2)’

and

Bop = E[X(le)Qk:flyl] _ 7,_2 135(2k_1)

1.
* Pd+2)-(d+2k—2) "

Proof. Assume d > 1. If N ~ Ny(0, 1), it is well-known that

I((d+ s)/2)2%/?
I'(d/2)

E|IN|]* =

and hence E[(N'N)*] = I'(d/2+k)2%/T'(d/2) = d(d+2)--- (d+2(k—1)).
Using Theorem 2.1, one obtains pog/pdl, = ror/rdl, where ul¥ and rly,
denote the corresponding quantities for N. Since ud} =1-3-5---(2k — 1),
the first assertion follows.

To show the remaining parts, let U be uniformly distributed on S; =
{x € R%: ||| = 1}. Sy has the surface area A = 27%/2/T'(d/2). If u; € R?
with |lug|| = 1, Lemma 2.5.1 of Fang and Zhang (1990) yields

k
E[(ullU)Qk] — F(d/2) F(kJr);) _

2j +1
Vr Dk + ¢ +25°

d

—1
=0
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Since P¥X is spherically symmetric, the decomposition X 2 RU, where
RZ ||X]| and R, U are independent, gives

k=1 .

27 +1

mar(z) = El(Z'X)™ = |z ER*] T] 113 (29)
§=0

Hence, the second assertion follows. In view of Proposition 2.1, it is not dif-
ficult to see that By = b1 Iq. Using trace(Bag) = B2k,0,0, We obtain by; =

ﬁ2k70,0/d- I

In view of Theorem 2.1, the vector ag; defined in (27) is zero. Putting

k—1
§=[1i+1/d+2i), (30)
=0
Theorem 4.2 yields
up = (2,—2kdrd/d e}, —2kdr3 /d-ey, ..., —2kdrs,/d- €0,

where e; = (0,...,1,0,...,0)" denotes the jth unit vector in R¢. Writing

Lok = h12k(X)=Bor00 and Wy = (§&1, .., §&-1, 21,8841, -+ §8a)
for j =1,...,d, the vector Zo; in (27) can be written as Zoy, = (Lag, W7,
<, Wh X'). Using (29) and Theorem 4.2, we obtain Loy = & ro (|| X||?*—
rox), which yields E[LoyX] = 0, E[L3,] = 6273, (rar — r3;,) and

T2k+2

E[Lgk W]] = 6T2k(

—ra) e (G=1,...,d).

Furthermore, E[XWJ’] =0 (j =1,...,d), where O is the zero matrix of
order d. Defining (d x d)-matrices

By = EW; W = b0 )1<kiza (1,j=1,...,d)

and putting p = 5r2k(r2’ji+2 —roy), the matrix E[Zox 25, ] of order 1+d?+d
can be written as

[ E[L3,] pey peby -~ pely O
pey  Bii Bia -+ Big O

, pey  Boy By -+ By O

E[Za 2] = ST o

pely  Bai Baz -+ Baa O
0 0 O - 0 L]
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Noting that b} = 3ry/(d(d+2)) —1(i = 1,...,d) and b\ = ry/(d(d +
2))—1(i,j=1,...,d, i #j), 03, = ub E[Zoy Z} Juoy takes the form

2k k2
ng = 452r§k (7"4k — (k — 1)2r§k — grszngrg + d27’47"§k) , (31)

where § is defined in (30). Summarizing, we have the following result.

THEOREM 4.3. Let X be elliptically symmetric with expectation p and
nonsingular covariance matriz T. Further, let E[{(X —p)'T~1(X —p)}*] <
00, and assume that the empirical covariance matrix S, is nonsingular with

probability 1. Then
Vi(baro0 — Bor00) — N (0,0%,) ,

where o2, is given by (51). In particular,

V(s 4 — B5.4) = vVn(baoo — Baoo)

D 3672 ry (13 9
L FLEY R .
—>N(O’d2(d+2)2 <7’8+ d(d re | — 13

REMARK: The result requires neither that the support of PX has pos-
itive Lebesgue-measure nor that P(X = 0) = 0 as assumed in Henze

(1994b), Corollary 3.1, for the case k = 2.

COROLLARY 4.1. If X has a non-degenerate normal distribution, then

k—1
Vi (oo — [ @+ 1D (d+25) | 2 N(0,0%,),
7=0
where
. 21 d+ 2k 5o
ope = 4]J @+ 1@ +2) | [T (@+25) - T[] +2j)
J=0

=0 =k
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