
CuPit-2: Portable and Efficient High-Level Parallel

Programming of Neural Networks

Holger Hopp, Lutz Prechelt (hoppjprechelt@ira.uka.de)

Universität Karlsruhe, Fakult¨at für Informatik, D-76128 Karlsruhe, Germany

Phone: +49/721/608-7344, Fax: -7343

12th January 1998

Submission to the Special Issue on ”Simulation of Artificial Neural Networks”

for the Systems Analysis Modelling Simulation (SAMS) journal

Abstract

CuPit-2 is a special-purpose programming language designed for expressing dynamic neural

network learning algorithms. It provides most of the flexibility of general-purpose languages

such as C or C++, but is more expressive. It allows writing much clearer and more elegant

programs, in particular for algorithms that change the network topology dynamically (con-

structive algorithms, pruning algorithms). In contrast to other languages,CuPit-2 programs

can be compiled into efficient code for parallel machines without any changes in the source

program, thus providing an easy start for using parallel platforms. This article analyzes the

circumstances under which theCuPit-2 approach is the most useful one, presents a descrip-

tion of most language constructs and reports performance results forCuPit-2 on symmetric

multiprocessors (SMPs). It concludes that in many casesCuPit-2 is a good basis for neural

learning algorithm research on small-scale parallel machines.

1



Keywords: neural networks, parallel programming, portability, compiler, constructive algorithms,

pruning.

1 Neural network simulation: Requirements and approaches

For simulating artificial neural networks for engineering purposes, there are typically three major

requirements for the simulation system: ease of use, high performance (i.e., execution speed), and

flexibility.

We discuss for which sorts of users which of these requirements are most important, what solutions

are available, and what consequences these solutions have:

1. Ease of use.For rapid development of a neural network solution for a given application

problem (solution engineering) the most important requirement is often to reduce the amount

of human work involved. Hence, the simulation system should allow for simple data handling,

training setup and control, and interactive investigation of strengths and weaknesses of alternative

networks, algorithms, data encodings etc. for the given problem. Furthermore, the software should

be easy to learn.

This sort of requirement is usually best handled by integrated neural network simulators such as

SNNS [23], Xerion [19], NeuroGraph [22], NeuralWorks [11] etc. These programs package mul-

tiple well-known learning algorithms with data manipulation functions and interactive graphical

network exploration and manipulation capabilities. They are relatively easy to learn and will often

provide the fastest path to a reasonable solution of a given engineering problem.

The disadvantages of simulators are limited flexibility and often also suboptimal execution speed:

When algorithms beyond the supplied standard ones need to be employed, both ease of use and

ease of learning break down, because internal simulator programming is required. Furthermore,



integrated simulators rarely provide full access to the fastest means of network execution as dis-

cussed in the next paragraph.

2. High execution speed.If the networks required for the given learning problem are very large

or there are very many examples, execution speed becomes a dominant factor. In this case, the

simulation system must be optimized for exploiting available hardware performance.

There are three ways for obtaining fast neural network performance: using machine-dependent,

highly optimized libraries for matrix operations, utilizing parallel processors, or employing special-

purpose hardware.

All three kinds of solutions (which may be combined) typically either suffer from limited flexibil-

ity or lack ease of use. Not all kinds of learning algorithms can be implemented using given matrix

libraries or special-purpose hardware, the latter may also suffer from problems with computational

precision for some problem domains [20]. On the other hand, general-purpose parallel processors

are quite flexible, yet are typically difficult to program.

3. Flexibility. If one is doing research in neural network learning algorithms or very advanced

development, standard algorithms and network structures may be insufficient; the same is true if

the neural network has to be interwoven (as opposed to interfaced) with other parts of a system.

The worst case are learning algorithms that change the topology of the neural network dynami-

cally during the learning process. We call such algorithmsconstructive algorithms; they may be

either additive (adding nodes or connections), subtractive (pruning nodes or connections), or both.

Constructive algorithms make network handling very complicated for the simulation system.

In this case, most users end up with handwritten programs in conventional programming languages

such as C or C++. Sometimes, special neural network libraries such as MUME [6] or Sesame [10]

may be used to simplify parts of the programming.

3



Obviously such flexibility requirements impede or even contradict ease of use. Unfortunately

constructive algorithms also require immense effort for obtaining high execution speed, because

the resulting networks are both irregular and nonstatic; the problem is most pronounced on parallel

computers.

The present paper presents a simulation system based on a special-purpose programming language,

CuPit-2. The system is flexible enough for doing research into constructive learning algorithms,

yet allows for exploiting parallel hardware in a machine-independent, portable fashion. Further-

more, the language is problem-oriented and therefore relatively easy to use.

The next section discusses the general idea behind our approach. Subsequent sections informally

present theCuPit-2 language, its implementations, and benchmark results on symmetric multi-

processor machines.

2 TheCuPit-2 approach

Our work assumes the following requirements profile:

� The user wants to perform research or advanced development of learning algorithms that

modify the topology of the network during the learning phase (constructive algorithms).

To do this, the user will write appropriate simulation programs that implement the new

algorithms.

� The user wants to employ general-purpose parallel computers for (some of) the simulations.

The simulation programs must be portable. Their parallel execution should be efficient.

� The user is not willing to learn machine-dependent or low-level parallel programming con-

structs in order to write the simulation programs.

4



The goal of our work is to provide a simulation system that fits these requirements well. Obvi-

ously none of the simulation systems common today fulfills all three requirements: The available

preprogrammed simulators cannot accommodate constructive algorithms, at least not on parallel

machines. The same is true for neural network library approaches. Handwritten implementations

in standard languages such as C or C++ require low-level parallel programming (data distribution,

message passing, work partitioning, thread management, load distribution, etc.) and typically

result in non-portable programs. Finally, high-level general-purpose parallel languages (e.g. Con-

current Aggregates [3]) would be acceptable from the programming point of view, but they cannot

yet be translated into sufficiently efficient parallel code.

Thus we propose to use a special-purpose parallel programming language for neural network learn-

ing algorithms. Such a language could be sufficiently simple to learn, because the users under-

stand the abstractions behind its constructs well. It can be made flexible enough to accommodate

constructive algorithms, yet would be completely problem-oriented, thus providing portability

between various parallel and sequential machines. And it could allow for efficient parallel imple-

mentation, because knowledge about the behavior of the programs can be built into the compiler

for a special-purpose language.

We have designed a language, calledCuPit-2, with these properties.CuPit-2 describes networks

in an object-centered way using special object types “connection”, “node” and “network”. It has

special operations for manipulating network topology and allows for parallel operations by parallel

procedure calls at the network, node group, and connection level.

Various proposals for network description languages, often with less clear aims, have been made

by other researchers, e.g. [2, 8, 7, 9, 21]. Most of these cover only static network topologies

and are not full programming languages, thus still exhibit most of the problems of hand-written

implementations. The most advanced of the above proposals is CONNECT [8], which repre-

5



sents a mostly complete programming language, but still has only incomplete support for dynamic

changes of network topology.

3 CuPit-2 language overview

The programming languageCuPit-2 [5] views a neural network as a graph ofnodesandconnec-

tions. In the neural network literature, the nodes are often calledunitsor neurons, the connections

are often calledlinks or, misleadingly,weights.

CuPit-2 is based on the observation that neural algorithms predominantly execute local operations

(on nodes or connections), reductions (e. g. sum over all weighted incoming connections) and

broadcasts (e. g. apply a global parameter to all nodes). Operations can be described on local

objects (connections, nodes, network replicates) and can be performed group-wise (connections

of a node, nodes of a node group, replicates of a network, or subsets of any of these). This

leads to three nested levels of parallelism: connection parallelism, node parallelism and example

parallelism. There is usually no other form of parallelism in neural algorithms, such that we can

restrict parallelism to the above three levels without loss of generality.

Modifications of the network topology can also be performed in parallel, either by local operations

(a node splitting or deleting itself, a connection deleting itself) or by global operations (enlarging

or reducing a node group, creating or deleting the connections between two node subgroups).

CuPit-2 is a procedural, object-centered language; there are object types and associated operations

but no inheritance or polymorphism. The identification of network elements is based on four

special categories of object types: connection, node, node group, and network types. A simplified

view of theCuPit-2 network model is shown in the example in Figure 1.CuPit-2’s connections

are always directed, but that does not restrict the flow of information through them. Fig. 1 !!!

6



This approach makes a wealth of information readily available to the compiler that would be

difficult to extract from a similar program in a normal parallel programming language. We use

this information to generate efficient parallel and sequential code.

The rest of this section will describe the main parts of aCuPit-2 program consisting of connec-

tion, node, and network descriptions (including operations) and a main program that controls the

algorithm.

3.1 Connections

Let us start with an example definition of a connection type that handles weight multiplication

and weight pruning. The following declaration defines a connection typeWeight for connecting

two nodes of typeSigmoidNode . More precisely: anOUTinterface of aSigmoidNode with

an IN interface of another (or the same)SigmoidNode . The node typeSigmoidNode and its

interfaces will be introduced below.

TYPE Weight IS CONNECTION

FROM SigmoidNode OUT out;

TO SigmoidNode IN in;

Real weight := 0.0, delta := 0.0;

Real FUNCTION weightMultOutput () IS

RETURN ME.weight * out.data;

END FUNCTION;

PROCEDURE prune (Real CONST threshold) IS

IF abs(ME.weight) < threshold

THEN REPLICATE ME INTO 0; (* self-delete *)

END;

7



END PROCEDURE;

(* further connection procedures are not shown *)

END TYPE;

As mentioned before, connections are always directed, i. e. , there are no connectionsbetween

A and B, butfrom A to B, so the compiler can co-locate connection data with node data on the

processors of a parallel machine. Nevertheless, data can always be sent along a connection in both

directions.

The Weight connection object is a structure of two data elementsweight anddelta of the

built-in typeReal . Associated with this type are its object functions and procedures. The func-

tion weightMultOutput yields the product of theweight with the data element of the

connectedFROMnode (namedout , because it is the out interface of the node).MEalways desig-

nates the object for which the current procedure is being called.

The prune procedure implements a local topology modification, namely the conditional self-

deletion of the connection. To delete a connection, the connection replicates itself into 0 copies of

itself; the same can be done for nodes including all their connections. Both routines can only be

called from nodes that have connections of typeWeight attached, as in the following node type

example.

3.2 Nodes

This is an example definition of a node type that handles forward propagation and connection

pruning.

TYPE SigmoidNode IS NODE

8



IN Weight in;

OUT Weight out;

Real data, bias;

PROCEDURE forwardHidden () IS

Real VAR inData;

REDUCTION ME.in[].weightMultOutput():rsum

INTO inData;

ME.data := activation (inData + ME.bias);

END PROCEDURE;

PROCEDURE prune (Real CONST threshold, Bool CONST hasoutputs) IS

ME.in[].prune (threshold);

(* delete hidden nodes that have become unconnected: *)

IF hasoutputs AND

(MAXINDEX (ME.in[]) < 0 OR MAXINDEX(ME.out[]) < 0) THEN

REPLICATE ME INTO 0;

END;

END PROCEDURE;

(* further node procedures are not shown *)

END TYPE;

The node typeSigmoidNode has two data elements,data andbias , and twoconnection inter-

faces: in for incoming connections of the above typeWeight andout for outgoing connections.

Node procedures operate on all connections attached to an interface at once. For instance the node

procedureprune calls the connection procedureprune on all connections attached to thein

interface of the node. The[] notation stands for“all” and designates parallel calls.

The connection procedureprune is executed in asynchronous parallel fashion for every connec-

9



tion. This call realizes nested parallelism, as the node procedureprune itself may be executed

for several nodes in parallel as well.

To delete a node, the node replicates itself into 0 copies of itself; the same construction is shown

above for connections.MAXINDEXreturns the number of objects in a compound object, minus

one (here: the number of connections attached to a connection interface).

The REDUCTIONstatement in the node procedureforwardHidden combines the results of

weightMultOutput of all connections attached to thein interface using the reduction opera-

tor rsum , which is defined by the user as

Real REDUCTION rsum NEUTRAL 0.0 IS

RETURN (ME + YOU);

END REDUCTION;

The result is written into the variableinData and will be theNEUTRALvalue of the reduction

operator if there are no connections. The order in which the individual reduction operations (here:

additions) are executed is not defined. Arbitrary reduction operators on arbitrary data types can be

defined in the above manner and will be translated into efficient parallel tree reduction implemen-

tations.

Theactivation function called above is a so-calledfree subroutine: it is not attached to any

object type and can be called from anywhere.

3.3 Networks

Now we will construct a network ofSigmoidNode s and theirWeight connections:

TYPE Layer IS GROUP OF SigmoidNode END;

10



Real IO xIn, xOut; (* I/O-areas, managed externally *)

TYPE Mlp IS NETWORK

Layer inL, hidL, outL; (* three groups of nodes *)

Real totError; (* total sum squared error *)

PROCEDURE createNet (Int CONST inputs, hidden, outputs) IS

EXTEND ME.inL BY inputs; (* create input node group *)

EXTEND ME.hidL BY hidden; (* create hidden node group *)

EXTEND ME.outL BY outputs; (* create output node group *)

(* create all input-to-hidden and hidden-to-output connections: *)

CONNECT ME.inL[].out TO ME.hidL[].in;

CONNECT ME.hidL[].out TO ME.outL[].in;

END;

PROCEDURE trainEpoch (Int CONST nrOfExamples, repl) IS

Int VAR i := 0; (* start example index *)

Bool VAR done := false; (* termination indicator *)

ME.out[].resetErrors(); (* clear output node error sums *)

REPEAT

getExamples (xIn, xOut, repl, nrOfExamples, i, INDEX, done);

(* procedure is not shown *)

ME.inL[].data <-- xIn; (* write input & output coeffs. *)

ME.outL[].data <-- xOut; (* into appropriate nodes *)

ME.hidL[].forwardHidden (); (* begin forward pass *)

ME.outL[].processOutput (); (* forward + backward *)

ME.hidL[].backwardHidden (); (* finish backward pass *)

UNTIL done END REPEAT;

END PROCEDURE;

11



PROCEDURE prune (Real CONST fractionToPrune) IS

Real VAR threshold;

ME.determinePruningThreshold (fractionToPrune,

threshold); (* procedure is not shown *)

ME.hidL[].prune (threshold, true);

ME.outL[].prune (threshold, false);

END PROCEDURE;

(* further network procedures are not shown *)

END TYPE;

The network typeMlp is a simple three layer perceptron consisting of the node groupsinL,

hidL, outL and a floating point valuetotError . A node group is a dynamic, ordered set

of nodes. ThecreateNet procedure creates the nodes in the groups and the connections be-

tween them. Similar operations could also be performed later during the program run. The

trainEpoch procedure executes the forward and backward pass through the network for all

input/output example pairs. Theprune procedure determines the pruning coefficient threshold

below which connections are to be removed and then calls the actual pruning operation for each

layer of nodes. Note that for brevity the main program given below does not callprune at all.

The individual data values for the example are brought into the network by the<-- operations

via so-called I/O-areas. This mechanism is required because, on one hand, the memory layout of

the input nodes may be complicated and may change several times during program execution, but,

on the other hand, the actual input operations for reading examples from files need to rely on a

particular memory layout for delivering their data. I/O-areas act as mediators.

12



3.4 Main Program

The following presents a partial main program:

Mlp VAR net; (* THE NETWORK *)

PROCEDURE program () IS

Int VAR epochNr := 0;

Real VAR error;

net[].createNet (inputs, hidden, outputs);

REPLICATE net INTO 1...maxReplicates;

REPEAT

epochNr += 1;

net[].trainEpoch (nrOfExamples, MAXINDEX(net)+1);

MERGE net; (* sum weight changes from all replicates *)

net[].adapt; (* modify weights *)

net[].computeTotalError(); (* sum errors over output nodes *)

error := net[0].totError;

maybePrune(epochNr);

UNTIL (error <= stoperror) OR (epochNr >= maxEpochs) END REPEAT;

REPLICATE net INTO 1; (* merge, then remove replicates *)

END PROCEDURE;

The statementREPLICATE net INTO 1...maxReplicates requests network replication

in order to exploit parallelism over examples. The compiler or run time system can choose how

many replicates to actually use for fastest execution; any number in the range 1 tomaxReplicates

is allowed.

During training, the replicates will diverge in their data values but not in their network topology,

since topology modifications are forbidden while a network is replicated. To synchronize data

13



in replicates, the program callsMERGE net, which executes type-specific user-defined merge

operations in all objects. In the above program, merging is only required for thedelta values in

the connections just before the weight update step.

MERGE IS

ME.delta += YOU.delta;

END MERGE;

Merging is realized by including the definition shown besides in the typeWeight . All other

management of network replicates is implicit and provided by the compiler. To perform topol-

ogy changes on the network, one must reunite the replicates into just one network by the call

REPLICATE net INTO 1 , which also performs a merge first. For example, a simple (non-

realistic) pruning control scheme in the main program could be

PROCEDURE maybePrune (Int CONST epoch) IS

IF (epoch % 50 = 0) AND (epoch >= 100)

THEN REPLICATE net INTO 1;

net[].prune(0.1);

REPLICATE net INTO 1...maxReplicates;

END;

END PROCEDURE;

The REPLICATEoperation also automatically rearranges and compactifies the memory layout

(on all types of computers) and reoptimizes the data distribution (on distributed memory parallel

computers only).

14



3.5 Persistence of networks

TheCuPit-2 language provides operations for input and output of complete networks in different

file formats. This has two consequences: First, it supports persistent storage of networks and,

second, it allows to transfer networks betweenCuPit-2 and other systems. Currently only one

network file format is supported: the network format used by the SNNS [23] simulator. This

means for instance that a network produced by aCuPit-2 program can be written to a file, read

into the SNNS simulator, and analyzed using its graphical interface. The results could be further

trained by aCuPit-2 program etc.

For storing/reading a network only a singlenet[].fwrite() or net[].fread() call is

required. However, the semantics of these calls must be defined by the user by additional specifi-

cations in each connection, node, or network type definition.

First the operation type and file format needs to be selected, e.g.

IOSPEC fwrite IS STYLE snns KIND fileoutput END;

This defines an output procedurefwrite , which uses the library-definedsnns style.

The fields of a connection, node, or network that should be written to the file are specified by short

I/O specifications. For example in the connection type definition we may write

IOSPEC fwrite IS ME.weight; END;

The declaration defines that theCuPit-2 connection elementweight is to be written out, all other

elements will be ignored. Similar simple specifications must be defined for nodes and networks

in order to store other data and the network topology. The latter is represented by writing node

groups and connection interfaces.

15



This persistence mechanism provides a smooth integration ofCuPit-2 with other neural network

simulation tools.

3.6 Other Features

Some topology modification statements are not shown in the above program:DISCONNECT(in-

verse ofCONNECT), node self-cloning (e. g.REPLICATE ME INTO 3, which triplicates the

node and all its connections), and node deletion using negative arguments toEXTEND.

Subsets of node groups (or connection interfaces) can be accessed using a slice notation, e.g.

net.outL[2...5].data --> xOut would output thedata value from only the node

group slice consisting of nodes 2 to 5 ofoutL into the I/O areaxOut . The same notation can be

used inCONNECTstatements and parallel procedure calls.

Furthermore, it must be mentioned thatCuPit-2 is a complete programming language. Common

constructs such as array, record, and enumeration data types, or while and for loops etc. are also

available inCuPit-2. Finally, it is possible to incorporate program parts written in other languages

such as C.

4 Implementations and performance results

We have implemented prototype compilers for the massively parallel MasPar MP-1/MP-2 [14, 15]

(this compiler implements the languageCuPit [12, 16], which is very similar toCuPit-2), for

sequential computers, and for symmetric multiprocessors (SMP). We focus on the sequential and

SMP compilers here.

16



4.1 Basic performance: node vs. example parallelism

For simple feed-forward algorithms (backprop, rprop) the performance of sequential code is a little

better than the SNNS simulator [23].CuPit-2 is about 10% to 100% faster than SNNS on Sun

SuperSPARC or HyperSPARC, and about the same speed (�5%) on DEC Alpha systems. The

performance gain increases for algorithms performing connection pruning.

In contrast to the MasPar compiler, the implementation on SMPs never uses connection paral-

lelism, but makes use of as much example parallelism (network replicates) as allowed. If there is

more than one processor per network replicate, node parallelism will be used. Our results show

performance variation depending on the size of the network: Example parallelism is bad for net-

works larger than the cache, see Figure 2. The figure shows RPROP [18] performance expressed Fig. 2 !!!

in “Million Connection Updates Per Second” (MCUPS) for a large network (SNNS version of

nettalk, 203+120+26 nodes, 27480 connections, 200 patterns). The poor example-parallel per-

formance on the HyperSPARC system occurs because this network does not fit in the 256KB

local processor cache and cache misses are quite expensive on this architecture. Using only node

parallelism is much better in this case.

Figure 3 shows RPROP performance for a small network (vowel recognition, 9+20+3 nodes, 240 Fig. 3 !!!

connections, 5453 patterns). In this case the network is too small to use node parallelism effi-

ciently, but example parallelism is quite efficient.

4.2 Performance with pruning algorithms

However, the point ofCuPit-2 is not executing plain learning algorithms, but those that modify

the topology of the network during learning. To investigate the performance in this case, we

perform some benchmarks with theautoprunelearning algorithm [4]. This algorithm removes

17



some fixed fraction of the connections when overfitting is detected during training. Training then

proceeds with the thus pruned network. The connections to be removed are those that rank lowest

on a measure of connection importance defined by the algorithm.autopruneremoves 35% of all

connections in the first pruning step, and 10% of the remaining connections in each subsequent

pruning step. With a system that does not support pruning, the performance would decrease after

pruning: Pruned weights would just be fixed at zero, the program would still require the same run

time per epoch, but perform less and less actual work.

Figure 4 shows how the execution speed using example parallelism changes during pruning. Per- Fig. 4 !!!

formance for two problems is shown, both measured on the HyperSPARC machine. The first

is the nettalk problem shown above (with 203+120+26 nodes and 32758 connections initially).

The other is the soybean1 data set taken from the Proben1 benchmark set [13] (with 83+16+8+19

nodes and 4153 connections initially). See [13, 17] for details of the data and algorithm setup.

As we see, the nettalk problem initially shows rather low performance. As discussed above, this

is because the network is too large to fit into the processor cache. The performance is even lower

than in the RPROP measurement above because the autoprune algorithm performs more work and

requires more data. However, as more and more of the network is pruned, performance increases,

because increasingly more of the network fits into the cache. The strong fluctuations are due to

pseudo-random cache conflicts that are more frequent in some memory layouts during pruning

than in others. Cache misses are particularly expensive on the HyperSPARC machine used, yet its

cache is only one-level and only one-way associative.

The downward outliers in the four processor run are due to other processes active on the machine

at the same time. After some point (at roughly epoch 620 in the 4-processor case) performance

decreases again, but only slightly so. The decrease is unavoidable as less parallelism is available in

the ever smaller network, hence the sequential part (reading examples etc.) consumes an increasing

18



fraction of the run time.

The soybean problem is different in that is fits into the cache from begin on. Therefore, we

observe a steady decrease of performance with each subsequent pruning step. The decrease is

more pronounced than for nettalk because the soybean network is much smaller and thus the

sequential part of the run time is larger.

Are these results any good? Remember that the goal ofCuPit-2 is to reduce the run time per epoch

in proportion the decreasing amount of actual (i.e., useful) work done per epoch. There are two

situations with which we might compare the above results: First, what would happen if pruning

was realized by just setting weights to zero or, second, what performance does a smaller (regular)

network have compared to our pruned (irregular) one with the same number of connections?

In the nettalk run on four processors, the network is pruned from 32758 connections in epoch 0,

running at 1.03 MCUPS, down to 811 connections in epoch 1179, running at 3.06 MCUPS. That

is, 97.5% of all connections are removed1 and thus without physical pruning the performance

could be at most 2.5% of the initial value, namely 0.025 MCUPS, which is 120 times slower than

CuPit-2! The actual performance of the finalCuPit-2 network is even somewhat better than a fully

connected, regular nettalk network of similar size (3 (or 4) hidden nodes, no shortcut connections,

713 (or 916) weights, 2.26 (or 2.69) MCUPS).

In the soybean run on four processors, the network is pruned from 4153 connections in epoch 0,

running at 7.54 MCUPS, down to 769 connections in epoch 2444, running at 4.49 MCUPS. That

is, 81.5% of all connections are removed and thus without physical pruning the performance could

be at most 18.5% of the initial value, namely 1.40 MCUPS, which is 5.4 times slower thanCuPit-

2. The actual performance of the finalCuPit-2 network is equal to a fully connected, regular

soybean network of similar size (5+2 hidden nodes, no shortcut connections, 743 weights, 4.45

1Note that the best network typically occurs long before this final one during training.

19



MCUPS), i.e., as good as possible.

The nettalk performance could be further improved if the compiler would automatically switch

between node parallelism and example parallelism (starting with node parallelism until the net-

work becomes small enough). This is not currently implemented, but can be enforced explicitly

by theCuPit-2 program if necessary.

5 Conclusion

CuPit-2 offers several advantages as a platform for neural learning algorithm research. Its high

expressiveness for neural network constructs results in simpler and more readable programs than

general purpose languages such as C/C++could provide. The difference becomes most pronounced

for algorithms that modify the structure of the neural network dynamically, becauseCuPit-2 pro-

vides special constructs for topology changes. Our performance measurements show thatCuPit-2

run time performance is similar to other sequential simulation systems. Furthermore, the same

performance is realized even for irregular networks such as those resulting from connection prun-

ing.

The most interesting point ofCuPit-2 is that all of these advantages carry over to parallel imple-

mentations without any source code changes. In particular, we know of no other NN simulation

system that supports all kinds of dynamic topology changes on parallel machines, let alone main-

tains its parallel performance for irregular networks.

Our results suggest thatCuPit-2 is a reasonable basis for small-scale parallelism in neural net-

works research.

However,CuPit-2 is no panacea. If the algorithm is not sufficiently parallelizable at all or if the

program hides the parallelism, the compiler will not be able to produce efficient parallel code.

20



Similarly, if the problem at hand is too large or too small for the given machine, run time perfor-

mance suffers as with any other system. On the other hand, it may sometimes be worthwhile to

useCuPit-2 just for its high expressiveness even if no use of parallel machines is planned.

More information on the language and its implementations can be found at theCuPit-2 web page

http://wwwipd.ira.uka.de/˜hopp/cupit.html .

References

[1] 15th IMACS World Congress on Scientific Computation, Modelling, and Applied Mathemat-

ics, 1997.

[2] Nikolaus Almássy. Ein Compiler f¨ur CONDELA-III. Master’s thesis, Institut f¨ur praktische

Informatik, TU Wien, February 1990.

[3] Andrew A. Chien. Concurrent Aggregates: Supporting Modularity in Massively-Parallel

Programs. MIT Press Cambridge, Massachusetts, London, England, 1993.

[4] William Finnoff, Ferdinand Hergert, and Hans Georg Zimmermann. Improving model se-

lection by nonconvergent methods.Neural Networks, 6:771–783, 1993.

[5] Holger Hopp and Lutz Prechelt. CuPit-2: A parallel language for neural algorithms: Lan-

guage reference and tutorial. Technical Report 4/1997, Fakult¨at für Informatik, Universität

Karlsruhe, Germany, mar 1997.

[6] Marwan Jabri, Edward Tinker, and Laurens Leerink. MUME: An environment for multi-net

and multi-architectures neural simulation. Technical report, System Engineering and Design

Automation Laboratory, University of Sydney, NSW 2006, Australia, 1993.

21



[7] Gerd Kock and Thomas Becher. Mind: An environment for the development, integration,

and acceleration of connectionist systems. In[1] , pages 499–504, 1997.

[8] Gerd Kock and N.B. Serbedzija. Artificial neural networks: From compact descriptions to

C++. InProceedings of the International Conference on Artificial Neural Networks, 1994.

[9] Russel R. Leighton. The Aspirin/MIGRAINES neural network software, user’s manual,

release v6.0. Technical Report MP-91W00050, MITRE Corp., October 1999.

[10] Alexander Linden and Christoph Tietz. Combining multiple neural network paradigms and

applications using SESAME. InProc. of the Int. Joint Conf. on Neural Networks, Baltimore,

June 1992. IEEE.

[11] NeuralWorks Reference Guide, NeuralWare Inc. http://www.neuralware.com/.

[12] Lutz Prechelt. CuPit — a parallel language for neural algorithms: Language reference and tu-

torial. Technical Report 4/94, Fakult¨at für Informatik, Universität Karlsruhe, Germany, Jan-

uary 1994. Anonymous FTP: /pub/papers/techreports/1994/1994-04.ps.gz on ftp.ira.uka.de.

[13] Lutz Prechelt. PROBEN1 — A set of benchmarks and benchmarking rules for neural net-

work training algorithms. Technical Report 21/94, Fakult¨at für Informatik, Universität Karl-

sruhe, Germany, September 1994. Anonymous FTP: /pub/papers/techreports/1994/1994-

21.ps.gz on ftp.ira.uka.de.

[14] Lutz Prechelt. The CuPit compiler for the MasPar — a literate programming document.

Technical Report 1/95, Fakult¨at für Informatik, Universität Karlsruhe, Germany, January

1995. ftp.ira.uka.de.

[15] Lutz Prechelt. Data locality and load balancing for parallel neural network learning. In

Emilio Zapata, editor,Proc. Fifth Workshop on Compilers for Parallel Computers, pages

22



111–127, Malaga, Spain, June 28-31, 1995. Dept. of Computer Architecture, University of

Malaga, UMA-DAC-95/09.

[16] Lutz Prechelt. A parallel programming model for irregular dynamic neural networks. In

W.K. Giloi, S. Jähnichen, and B.D. Shriver, editors,Proc. Programming Models for Mas-

sively Parallel Computers, page ?, Berlin, Germany, October 1995. GMD First, IEEE

CS Press. by accident the article wasnot printed in the proceedings volume, but see

http://wwwipd.ira.uka.de/ prechelt/Biblio.

[17] Lutz Prechelt. Connection pruning with static and adaptive pruning schedules.Neurocom-

puting, 16:49–61, 1997.

[18] Martin Riedmiller and Heinrich Braun. A direct adaptive method for faster backpropagation

learning: The RPROP algorithm. InProc. of the IEEE Intl. Conf. on Neural Networks, pages

586–591, San Francisco, CA, April 1993.

[19] Drew van Camp. A users guide for the Xerion neural network simulator version 3.1. Techni-

cal report, Department of Computer Science, University of Toronto, Toronto, Canada, May

1993.

[20] Sven Wahle. Untersuchungen zur Parallelisierbarkeit von Backpropagation-Netzwerken auf

dem CNAPS Neurocomputer. Master’s thesis, Fakult¨at für Informatik, Universität Karlsruhe,

Germany, October 1994.

[21] Alfredo Weitzenfeld. NSL — neural simulation language. InProceedings of the Inter-

national Workshop on Artificial Neural Networks, number 930 in LNCS, pages 683–688,

Malaga-Torremolinos, Spain, June 1995. Springer.

[22] Peter Wilke and Christian Jacob. The NeuroGraph neural network simulator. InProceedings

of MASCOTS’93, San Diego, CA, 1993.

23



[23] Andreas Zell, G¨unter Mamier, Michael Vogt, Niels Mache, Ralf H¨ubner, Sven D¨oring, Kai-

Uwe Herrmann, Tobias Soyez, Michael Schmalzl, Tilman Sommer, Artemis Hatzigeorgiou,

Dietmar Posselt, Tobias Schreiner, Bernward Kett, Gianfranco Clemente, and Jens Wieland.

SNNS User Manual, Version 4.1. Technical Report 6/95, Universit¨at Stuttgart, Institut f¨ur

parallele und verteilte H¨ochstleistungsrechner, November 1995.

24



Note for typesetters: In the text we wrote often left/right for the parts of the figures. Here we print

the parts of one figure vertically instead of horizontally (next 3 pages). We think it is best to place

the figure parts horizontally again (otherwise change the text!).

node group

network

OUT interface

node

IN interface

connection

Figure 1: Terminology of theCuPit-2 network model

25



Example parallelism

0

2

4

6

8

10

0 1 2 3 4 5

M
C

U
P

S

processors

Alpha 21064A, 275 MHz
HyperSPARC, 100MHz
SuperSPARC, 60MHz

Node parallelism

0

2

4

6

8

10

0 1 2 3 4 5

M
C

U
P

S

processors

Alpha 21064A, 275 MHz
HyperSPARC, 100MHz
SuperSPARC, 60MHz

Figure 2: SMP performance on a large network

26



Example parallelism

0

2

4

6

8

10

0 1 2 3 4 5

M
C

U
P

S

processors

Alpha 21064A, 275 MHz
HyperSPARC, 100MHz
SuperSPARC, 60MHz

Node parallelism

0

2

4

6

8

10

0 1 2 3 4 5

M
C

U
P

S

processors

Alpha 21064A, 275 MHz
HyperSPARC, 100MHz
SuperSPARC, 60MHz

Figure 3: SMP performance on a small network

27



0

1

2

3

4

5

0 200 400 600 800 1000 1200

M
C

U
P

S

Epoch

4 processors
 2 processors

1 processor

0

1

2

3

4

5

6

7

8

9

0 500 1000 1500 2000 2500

M
C

U
P

S

Epoch

4 processors
 2 processors

1 processor

Figure 4: SMP performance using 1, 2, or 4 processors for a large network (nettalk, top figure)

or smaller network (soybean, bottom figure) during the execution of a pruning algorithm. The

horizontal axis shows the training epochs.
28


