
Documentation of the Intermediate Representation

Firm

Tech Report Nr. 1999-44

Martin Trapp, G�otz Lindenmaier and Boris Boesler

Institut f�ur Programmstrukturen und Datenorganisation

Fakult�at f�ur Informatik

Universit�at Karlsruhe

ISSN 1432-7864

ftrappjgoetzjboeslerg@ipd.info.uni-karlsruhe.de

December 1999

Contents

1 Introduction 3

2 Syntax and Semantics 5

2.1 Syntax of Firm . 5

2.1.1 Modes in Firm . 6

2.1.2 Operations of Firm . 6

2.1.3 Firm as a graph . 6

2.1.4 Further restrictions to Firm Graphs 8

2.2 Semantics of Firm modes and operations 9

2.2.1 Modes . 9

2.2.1.1 Control
ow modes 10

2.2.1.2 Primitive value modes 11

2.2.1.3 The Memory mode 12

2.2.2 Operations . 12

2.2.2.1 Basic Blocks 12

Block . 12

2.2.2.2 Control
ow operations 13

Start . 13

End . 14

Jmp . 14

Cond . 14

Return . 14

Raise . 15

2.2.2.3 Constants . 15

Consttv . 15

SymConsttype 15

2.2.2.4 The Select node 16

Selent . 16

2.2.2.5 Arithmetic operations 16

1

CONTENTS 2

Calltype . 16

Add . 16

Sub . 17

Minus . 17

Mul . 17

Quot . 17

DivMod . 18

Div . 18

Mod . 18

Abs . 18

And . 18

Or . 18

Eor . 19

Not . 19

Shl . 19

Shr . 19

Shrs . 19

Rotate . 19

Cmp . 19

Conv . 20

2.2.2.6 The Phi operation 21

Phi . 21

2.2.2.7 Operations to manage memory explicitly . . 21

Load . 22

Store . 22

Alloctype . 22

Freetype . 22

Sync . 23

2.2.2.8 Special operations simplifying the represen-

tation . 23

Proji . 23

Start and Call revisited 24

2.2.2.9 Operations used to hold intermediate infor-

mation during optimization 24

Id . 24

Tuple . 25

Bad . 25

Con�rm . 26

2.3 Exceptions . 26

2.4 Examples . 28

Chapter 1

Introduction

This documentation presents Firm, an intermediate representation (IR) pre-

sented �rst by Armbruster and von Roques in [AvR96], subsequently re�ned

and extended by Trapp ([Tra99]) in his Phd Thesis at the Institute for Pro-

gram Structures and Data Organization at University of Karlsruhe. Arm-

bruster and von Roques implemented Firm in an experimental compiler,

Fiasco, for the language Sather-K ([GS96]).

Compilers translating object oriented programs do not produce code of

comparable quality to compilers translating common imperative languages.

Partially this is due to the functionality of such languages that imposes

additional runtime costs such as resolving polymorphy dynamically. But a

lot of program runtime is wasted in unnecessary program and data structures

that arise from straight forward translation of object oriented programs. For

example, these have more and smaller procedures and allocate more variables

dynamically. Optimizations developed for traditional imperative languages

do not deal with these speci�c issues. Further, IRs originally developed for

imperative languages are not tuned to expose the additional problems of

translating object oriented programs.

The design goal for a new intermediate representation was to develop an

IR that supports fast and powerful optimization of object oriented programs.

Therefore Firm di�ers in several aspects from traditional IRs.

Firm is based on static single assignment (SSA) form. Variables repre-

sented in SSA are resolved to data
ow edges so that the IR contains no

objects to hold local variables. The data
ow representation further allows

to include value numbering in the representation. In addition to the depen-

dencies represented in SSA by traditional IRs, Firm represents dependencies

between dynamic allocated objects explicitly. Such program objects can not

3

CHAPTER 1. INTRODUCTION 4

be represented in SSA, so that anti- and output dependencies between these

objects are modeled. Further Firm implements a new concept to model ex-

ceptions reducing the loss of preciseness of data
ow analysis if exceptions

are modeled as control
ow changes. [AvR96] provide an eÆcient implemen-

tation of standard data
ow analysis on their initial version of Firm. [Tra99]

developed a heap analysis and optimizations of object oriented constructs

on Firm improving program performance of object oriented programs to a

level of clever implemented imperative programs.

Firm is a low IR, it's operations are similar to operations on target

machines. This supports to perform scheduling directly in Firm, so that the

scheduler can use all information gathered by any optimization to achieve

maximal parallelism. Firm's data
ow representation of variables that can

be allocated to registers represents the information needed for scheduling

syntactically.

The next Chapter de�nes the structure of Firm. Section 2.1 lists the syn-

tax of Firm. Section 2.2 explains in detail the semantics of Firm modes and

operations. Section 2.3 explains the concept of representating exceptions.

The last section gives some examples of Firm graphs.

Chapter 2

Syntax and Semantics

This chapter gives the speci�cation of the syntax and semantics of the in-

termediate representation Firm. The section about syntax gives a number

of types for values called modes known in Firm. Then it introduces a list

of operations with operands and results that are typed with these modes.

It explains how these operations can be assembled to form a graph and

formulates a set of restrictions to such graphs.

The section about the semantics of Firm pragmatically introduces se-

mantic meaning of the operations and modes. From this further restrictions

for Firm graphs can be derived. The third Section explains the representa-

tion of exceptions, and the last gives some examples of Firm graphs.

2.1 Syntax of Firm

This section de�nes the syntax of Firm. Firm knows 36 di�erent operations

that operate on values of 17 di�erent modes, i.e., it is very lean. Each

operation uses a certain number of operands to produce several results.

Operands and results are typed with modes.

Firm can easily be extended by additional operations and modes. The

intention of Firm is though, to represent a program in a �rm manner, using

as few di�erent operations and modes as possible. The present speci�cation

of Firm allows to represent programs written in any of the major program-

ming languages.

5

CHAPTER 2. SYNTAX AND SEMANTICS 6

2.1.1 Modes in Firm

The modes in Firm are BB, X, F , D, E, Bs, Bu, Hs, Hu, Is, Iu, Ls, Lu,

C, P , b, M .

2.1.2 Operations of Firm

A Firm operation is an operation on a set of operands producing a set of

results. The size of these sets is not �xed by the operation. The operation

can limit the possible modes of operands and results. The syntax of a �rm

operation is speci�ed by a name of the operation, the number of operands

and results and the modes possible for them.

Table 2.1 lists the syntax of all Firm nodes. The �rst column mentions

the name of the operation. The second column speci�es the number and

possible modes of operands, the third does so for results. If several modes

are possible for a single operand or result the table uses a generic mode.

Generic modes are resolved by Table 2.2.

2.1.3 Firm as a graph

Firm represents a program as a directed graph in contradiction to traditional

IRs. These view a program as a list of basic blocks where each basic block

is an ordered list of instructions or expression trees. Firm knows no such

hierarchical decomposition.

A Firm operation is associated with each node. We call a node associ-

ated with operation x an x node. Each node has sockets for incoming and

outgoing edges which correspond to the operands and results of the opera-

tion, so that the operation of a node speci�es the number of these sockets

and the mode of the edges beginning or ending at these sockets. Each edge

is labeled with a mode. There can be only one edge coming into a socket for

incoming edges, as the operands of an operation have to be unambiguous.

Several edges can start at a socket for outgoing edges. Sockets for incoming

edges are also called inputs to the node, such for outgoing edges outputs of

the node.

Figure 2.1 shows an example of a node. Sockets for incoming edges are

at the top of the node, such for outgoing edges at the bottom. With this

convention we do not need to draw the directed edges as arrows.

CHAPTER 2. SYNTAX AND SEMANTICS 7

Operation : Modes of Operands ! Modes of Results

Block : Xn ! BB

Start : BB ! X �M � P � P � data1 � : : :� datan
End : BB !

Jmp : BB ! X

Cond : BB � b ! X �X

Cond : BB � Iu ! Xn

Return : BB �M � data1 � : : : � datan ! X

Raise : BB �M � P ! X �M

Const : BB ! data

SymConst : BB ! Iu
SymConst : BB ! P

Sel : BB �M � P � Inu ! P

Call : BB �M � P � data1 � : : :� datan ! M �X � datan+1 � : : :� datan+m

Add : BB � num� num ! num

Add : BB � P � Is ! P

Add : BB � Is � P ! P

Sub : BB � num� num ! num

Sub : BB � P � Is ! P

Sub : BB � Is � P ! P

Sub : BB � P � P ! Is
Minus : BB � float ! float

Mul : BB � num� num ! num

Quot : BB �M � float� float ! M �X � float

DivMod : BB �M � num� num ! M �X � Is � Is
Div : BB �M � num� num ! M �X � Is
Mod : BB �M � num� num ! M �X � Is
Abs : BB � num ! num

And : BB � int� int ! int

Or : BB � int� int ! int

Eor : BB � int� int ! int

Not : BB � int ! int

Shl : BB � int� Iu ! int

Shr : BB � int� Iu ! int

Shrs : BB � int� Iu ! int

Rot : BB � int� Iu ! int

Cmp : BB � datab� datab ! b16

Conv : BB � datab1 ! datab2
Phi : BB � dataMn

! dataM

Load : BB �M � P ! M �X � data

Store : BB �M � P � data ! M �X

Alloc : BB �M � Iu ! M �X � P

Free : BB �M � P ! M

Sync : BB �Mn ! M

Table 2.1: Syntax of Firm operations. For resolution of generic modes data

etc. see Table 2.2.

CHAPTER 2. SYNTAX AND SEMANTICS 8

data; datai 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lu; C; Pg

datab; databi 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lu; C; P; bg

dataM 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lu; C; P;Mg

num;numi 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lug

int 2 fBs; Bu;Hs;Hu; Is; Iu; Ls; Lug

float 2 fF;D;Eg

Table 2.2: Generic modes of operations in Table 2.1

M1 2M M3

M4 M5

Opcode

Figure 2.1: Graphic representation of a Firm node Opcode :M1�M2�M3 !

M4 �M5

2.1.4 Further restrictions to Firm Graphs

We say, a node is in a Block, or, the Block contains the node if the Block is

an input of the node. We de�ne two classes of subgraphs of Firm Graphs.

De�nition 2.1.1 (control
ow graph) The control
ow graph, cfg, con-

sists only of Block nodes. Control
ow edges are edges between two Block

nodes A and B, if there is an execution edge between the Jmp/Cond or

other control
ow node in Block A and Block B.

De�nition 2.1.2 (intra-block graph) The intra-block graph, ibg, of a

Block B contains B and all its direct successors. Further it contains all

Firm edges between its nodes, except inputs to Phi nodes and the Block

node, even if their origin is within the ibg.

Further we can de�ne a subclass of all edges.

De�nition 2.1.3 (inter-block edge) An inter-block edge is an edge not

contained in any ibg.

CHAPTER 2. SYNTAX AND SEMANTICS 9

Based on these de�nitions, we can give the following restrictions to legal

Firm graphs.

� There exists a Block that contains a single Start node. This is the

only Start node in the Firm graph. This Block has no predecessors.

We call it the start block.

� There exists a Block that contains a single End node. This is the only

End node in the Firm graph. This Block has no successors. We call

it the end block.

� All Block nodes in a Firm graph have to be on a path in the cfg from

the start block to the end block.

� ibgs in Firm graphs are acyclic.

� Phi nodes have as many inputs as the Block they belong to.

� An inter-block edge from node a in Block A to node b in Block B, b

not a Phi node, is legal if there exists a path in the cfg from A to B.

� An inter-block edge from node a in Block A to the i-th input of a Phi

node b in Block B is legal if there exists a path in the cfg from A to

the i-th predecessor of B.

Further restrictions apply to edges of mode memory. These can not be

expressed as pure syntactic concepts, as they refer to the semantics of the

Firm graph. Therefore their discussion is delayed to Section 2.2.

2.2 Semantics of Firm modes and operations

A Firm graph represents a program. Its operations are operations of the

program, the operands and results represent data or control
ow depen-

dencies between these operations. The modes give the kind of dependency.

Firm operations are strict, i.e., they can only execute if all their operands

are available. Exceptions are the Block and Phi operations which execute

if only one of their operands is available.

2.2.1 Modes

Several di�erent kinds of Firm modes can be distinguished. Section 2.2.1.1

lists modes used to specify the control
ow in the program represented in

CHAPTER 2. SYNTAX AND SEMANTICS 10

Firm. Further there are modes labeling all data objects known by the pro-

gram represented by a Firm graph. These are separated into primitive value

modes for operands represented by Firm in SSA-Form (Section 2.2.1.2) and

data objects not representable by SSA (Section 2.2.1.3). SSA assumes in�-

nite resources, i.e., value numbers, so that false and anti dependencies are

removed from the representation. A later transformation, register alloca-

tion, remaps the in�nite representation to the �nite register set. Data ob-

jects stored in the heap can not be represented in SSA-form because some

language semantics require that a variable is always mapped to the same

memory location. In general dynamically created objects can not be value

numbered. Therefore Firm introduces a special mode Memory. Edges of

mode Memory represent all dependencies, i.e., true, false and anti, intro-

duced by data transfers not expressible in SSA.

2.2.1.1 Control
ow modes

There are two di�erent control
ow modes. The �rst, blockmode (BB),

speci�es the block structure as implicitly given by the source program1. In

traditional IRs, where operations are speci�ed in triple or quadruple form,

the order of the operations speci�es the separation into basic blocks. In

a graph based IR such as Firm it is not necessary to order instructions se-

quentially. Firm nodes can be executed as soon as their inputs are available.

Therefore the traditional de�nition of basic blocks is not applicable to Firm.

Still it must be guaranteed for some operations that they are executed be-

fore a distinguished control
ow altering instruction. This is expressed by

BB edges.

To represent the semantics of a program correctly it is not necessary

to link every operation to a basic block node. The data dependencies often

suÆce to �x the operation to several basic blocks where they can be executed

legally. A steady state of Firm though requires that all nodes (except Block

nodes) are attached to a Block node.

BB blockmode

X execution

Table 2.3: Control
ow modes

Control
ow can be altered explicitly by the program. An operation

1There is a mode `Block', also called blockmode and a node `Block '.

CHAPTER 2. SYNTAX AND SEMANTICS 11

mode signedness size alignment

F
oat { 32 bit 4

D double { 64 bit 4

E extended { 80 bit 4

B byte signed, unsigned 8 bit 1

H short integer signed, unsigned 16 bit 2

I integer signed, unsigned 32 bit 4

L long integer signed, unsigned 64 bit 4

C char { 8 bit 1

P pointer { 32 bit 4

b boolean { { {

Table 2.4: Primitive value modes

altering the control
ow produces a result of mode execution, X, which gives

the next basic block to execute. I.e., execution edges point form control
ow

operations to Block nodes. Conditional jumps produce two or more values

of mode X, one of which is `execute', the others are `do not execute'. Only

one control
ow operation can be attached to each Block.

The concept of exceptions in Firm involves that operations that can raise

exceptions have an output of mode X. These operations are not considered

as control
ow operations, several of them can be attached to a block. Firm

does not express the ordering constraints imposed by the exception seman-

tics as control
ow, see Section 2.3.

2.2.1.2 Primitive value modes

Table 2.4 lists the modes for primitive values. These are the modes corre-

sponding to data types as requested by the target of the compilation. A

value that is the operand or result of an operation has to be of the mode

speci�ed by the operation for that operand / result.

The mode boolean takes an extra role. It stands for the truth value

produced by compare operations. This is not a boolean variable as it might

be de�ned by the source language, and therefore can not be written to

memory. To save the outcome of the Cmp operation in a variable, it needs

to be converted to a data mode, e.g., byte. A Compare operation allows to

convert an integer mode to boolean.

CHAPTER 2. SYNTAX AND SEMANTICS 12

2.2.1.3 The Memory mode

M Memory

Table 2.5: Memory mode

Memory expresses dependencies through memory. It is de�ned as a

function from pointers P to primitive values V , where V is the union of all

primitive value modes, except boolean:

M : P ! V

V = F [D [E [Bs [Bu [Hs [Hu [Is [Iu [Ls [Lu [C [P

As most operations only depend on a part of the memory, we de�ne

Mi : Pi ! V

on a subset Pi of P . Any operation with a memory operand or result

needs only a part Mi of the full memory M as operand.

2.2.2 Operations

Each Operation is given as a Function from zero or more operands to zero or

more results. As all operations except Block have an operand of mode BB,

an the meaning of this operand is always the same, we leave out this mode.

This section describes which results an operation derives from its operands,

and how to use the operation.

2.2.2.1 Basic Blocks

Block : Xn ! BB

A Block operation groups operations to a basic block. All operations

consuming the result of the Block belong to this basic block. Operands rep-

resent control
ow from other basic blocks to this one. The Block operation

is not strict, i.e., it is executable if one of the operands is available.

A basic block in Firm has a completely di�erent concept than the tradi-

tional notion of a basic block, as there exists no total order on the operan-

tions of a Firm program. For a detailed discussion see section 2.2.1.1.

CHAPTER 2. SYNTAX AND SEMANTICS 13

Block operations are no real operations, as they are an auxiliary con-

struct to specify the control
ow. They are not performing an explicit

operation on any inputs. Block operations just transport the control
ow

from the predecessor operation of the basic block to the operations in the

basic block.

As all operations except the Block operation have an input of mode BB,

we implicitly assume it as zeroth input in the following paragraphs.

2.2.2.2 Control
ow operations

A control
ow operation has to be executed as the last operation in a basic

block. This is not expressed explicitly by dependencies between all other

operations in the basic block and the control
ow operation. This reduces

the number of operands in the graph considerably and simpli�es many op-

timizations. Only the code generation might need these dependencies, but

the code generator can compute them by �nding the control
ow operation

attached to a basic block.

Firm does not consider all operations producing a result of mode exe-

cution to be control
ow operations. Operations that can cause exceptions

have a result of mode execution consumed by the basic block with the excep-

tion handler. The result passed to the handler is usually `do not execute',

only if an exception is raised it is `execute'. These operations are not con-

sidered control
ow operations so that they do not end a basic block. This

would reduce the size of basic blocks and increase the number of basic blocks

which complicates data
ow analysis and reduces the e�ect of optimizations.

In general, the code generation will not generate branch instruction for this

control
ow as implicit exceptions are handled by hardware and the excep-

tion handler.

Start : ! X �M � P � P � T1 � : : :� Tn
where T1; : : : ; Tn 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lu; C; Pg

The Start operation belongs to a basic block that solely contains this

node. It marks the procedure entry. Its execution result indicates the �rst

basic block to be executed, i.e, is an operand of that block. The memory

result describes the state of the memory when the procedure is called. The

�rst pointer result gives the procedure's stack frame, i.e., it models the

stack pointer. Firm also could model the stack frame as part of the memory

by allocating it explicitly to the initial memory with an Alloc node. The

second result of mode pointer represents a pointer to the global memory of

CHAPTER 2. SYNTAX AND SEMANTICS 14

the program containing global objects as well as procedures, i.e., the heap

pointer. T1; : : : ; Tn are the parameters of the procedure. For details of the

implementation of the Start operation see section 2.2.2.8.

Firm represents all alias free variables and values as edges in a data
ow

graph. Therefore no representation of the stack frame location of atomic

local variables is needed. Unfortunately the stack frame still needs to be

modeled to contain statically allocated arrays and other compound data

types which can not be represented as a single operand.

End : !

The End operation models the end of the control
ow in this procedure.

It belongs to a basic block that solely contains this node. All results of

Return operations must be operands of the basic block containing the End

operation.

Jmp : ! X

Jmp is an unconditional branch to the basic block that has its result as

operand.

Cond : b! X �X

Cond : Iu ! Xn

Cond is the conditional branch. There are two versions of the Cond

operation. The result of the �rst are two control
ows, the �rst is taken

if the boolean operand is true, else the second is taken. Its input is the

result of a Comp operation, i.e., the truth value computed by a Comp, not

a boolean variable as it might be de�ned by the source language. The other

Cond operation models switch commands. If its operand is i, then control

ow will proceed along result xi. If its operandd is � n, control
ow will

proceed along result xn. A Cond has to be executed as the last operation

in a basic block. This is not expressed explicitly by dependencies between

all other operations in the basic block and the Cond operation, see section

2.2.2.2.

Return : M � T1 � : : :� Tn ! X

where T1; : : : ; Tn 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lu; C; Pg

CHAPTER 2. SYNTAX AND SEMANTICS 15

The operands of the Return operation are the results of the procedure

and the state of memory after execution of the procedure. The result of the

Return operation passes execution to the basic block of the procedure that

contains the End operation.

Raise : M � P ! X �M

Raise raises an explicit exception. The operands to the operation are

a pointer to an Except variable, as described in section 2.3 and the part

of the memory that contains this variable. The execution result gives the

exception handler handling the appropriate exception if it is de�ned within

this procedure. Else it points to the basic block of the procedure that

contains the End operation.

2.2.2.3 Constants

Consttv : ! T

where T 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lu; C; Pg

The Const operation returns a constant value of mode T . This value is

stored as a target value in the constant table, tv is an attribute that points

to the proper entry in a constant table.

SymConsttype : ! Iu
SymConstname : ! P

SymConst (symbolic constant) allows to delay decisions about the data

layout. It is used for values depending on the memory layout of data objects

which can be changed by optimizations. It also simpli�es �nding a clean

representation of type tags if several modules are linked together, as breaking

tags down to integers can be delayed until all tags are known. The attribute

type gives the type the symbolic information refers to. If SymConst stands

for a type tag, the attribute type gives the type the tag has to represent. If

it is a size it is the size of the type given in the attribute.

Further SymConsts can be used to represent symbolic information needed

for the linker. E.g., addresses of global variables are not known at compile

time. Information about these variables is communicated to the linker by

introducing explicit names. SymConsts representing such addresses have a

result of mode pointer and an attribute containing the explicit name. These

SymConsts should not be introduced by a frontend or before the major

optimizations. They are introduced by lowering Sel nodes.

CHAPTER 2. SYNTAX AND SEMANTICS 16

2.2.2.4 The Select node

Selent : M � P � Inu ! P

The Sel operation selects a single attribute out of an object. This object

can be the stack frame, a compound object or an array. Further Sel can

select a global variable from a virtual global frame that will be further

speci�ed by the linker. Its operands are the state of the memory, a pointer

to the object and eventually several indexes. The attribute to select is given

as an annotation. Sel returns a pointer to the attribute speci�ed by ent

in the given object. In case the owner of the ent is an array, it returns a

pointer to the array element given by the indexes.

Sel allows to hide the addressing mechanism within the object. This

restricts the parts of the program represented in Firm to the operations

intended by the user, enabling a compact representation and giving room

for optimizations of, e.g, the memory layout. The Sel operation for example

implements polymorphy, i.e., if ent labels a polymorphic method, a pointer

to the proper method is returned.

A lowering phase exposes this implicit functionality by generating the

addressing code, which now should be subject to further optimization. Low-

ering Sel nodes that select global variables generates SymConst nodes.

2.2.2.5 Arithmetic operations

The semantic of the arithmetic operations is the obvious one for a given

mode.

Calltype : M � P � T1 � : : :� Tn !M � T 0

1 � : : :� T 0

m

where T1; : : : ; Tn; T
0

1; : : : ; T
0

m 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lu; C; Pg

The memory state, a pointer to the procedure to be called and the proce-

dure parameters of modes T1; : : : ; Tn are operands to the Call operation. It

returns the results with the modes T 0

1; : : : ; T
0

m as computed by the procedure

called, and a changed memory state. The pointer to the procedure can be

the result of a Sel operation. The type attribute points to the entry for the

called procedure in the type table. For details about the implementation of

the Call operations in the Firm graph see 2.2.2.8.

Add : T � T ! T

where T 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lug,

CHAPTER 2. SYNTAX AND SEMANTICS 17

Add : P � Is ! P

Add : Is � P ! P

The Add operation has two operands for two data items, and a single

result for the result of the addition. In general the modes of the operands and

the result have to be identical, an exception is made for pointer arithmetic.

Sub : T � T ! T

where T 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lug,

Sub : P � Is ! P

Sub : Is � P ! P

Sub : P � P ! Is

The Sub operation takes two operands for two data items, and yields

the result of the subtraction. The second operand is subtracted from the

�rst one. In general the modes of the operands and the result have to be

identical, an exception is made for pointer arithmetic. The last typing allows

to compute sizes of the memory region between the two pointers.

Minus : T ! T

where T 2 fF;D;Eg,

The Minus operation additive inverts its operand. It is necessary as

an additive inversion of a
oating point value can not be modeled as a

subtraction from zero. This can cause rounding errors.

Mul : T � T ! T

where T 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lug

The result of the Mul operation is the multiplication of its two operands.

Quot : M � T � T !M �X � T

where T 2 fF;D;Eg

The Quot operation performs exact division. It has two operands for

two data items, and one result for the result of the division. It divides the

�rst operand by the second one. The memory operand and result are used

to model exceptions, see section 2.3.

CHAPTER 2. SYNTAX AND SEMANTICS 18

DivMod : M � T � T !M �X � Is � Is
where T 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lug

The DivMod operation has two operands for two data items, and two

results for the results of the operations integral division and integral re-

mainder. The �rst operand is divided by the second operand. The memory

operand and result are used to model exceptions, see section 2.3.

Div : M � T � T !M �X � Is
where T 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lug

The Div operation has two operands for two data items, and returns the

result of the integral division. The �rst operand is divided by the second

operand. The memory operand and result are used to model exceptions, see

section 2.3.

Mod : M � T � T !M �X � Is
where T 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lug

The Mod operation has two operands for two data items, and returns

the result of the integral remainder operation. The �rst operand is divided

by the second operand. The memory operand and result are used to model

exceptions, see section 2.3.

Abs : T ! T

where T 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lug

The Abs operation returns the absolute value of its single operand.

And : T � T ! T

where T 2 fBs; Bu;Hs;Hu; Is; Iu; Ls; Lug

The And operation performs bitwise and.

Or : T � T ! T

where T 2 fBs; Bu;Hs;Hu; Is; Iu; Ls; Lug

The Or operation performs bitwise or.

CHAPTER 2. SYNTAX AND SEMANTICS 19

Eor : T � T ! T

where T 2 fBs; Bu;Hs;Hu; Is; Iu; Ls; Lug

The Eor operation performs bitwise exclusive or.

Not : T ! T

where T 2 fBs; Bu;Hs;Hu; Is; Iu; Ls; Lug

The Not operation performs bitwise negation.

Shl : T � Iu ! T

where T 2 fBs; Bu;Hs;Hu; Is; Iu; Ls; Lug

The Shl operation shifts the �rst operand by as many bits as given by

the second operand to the left.

Shr : T � Iu ! T

where T 2 fBs; Bu;Hs;Hu; Is; Iu; Ls; Lug

The Shr operation shifts the �rst operand by as many bits as given by

the second operand to the right. It performs logical shifts, i.e. the result is

zero extended.

Shrs : T � Iu ! T

where T 2 fBs; Bu;Hs;Hu; Is; Iu; Ls; Lug

The Shrs operation shifts the �rst operand by as many bits as given by

the second operand to the right. It performs arithmetic shifts, i.e. the result

is sign extended.

Rotate : T � Iu ! T

where T 2 fBs; Bu;Hs;Hu; Is; Iu; Ls; Lug

The Rotate operation rotates its �rst operand by as many bits to the

left as the second operand speci�es.

Cmp : T � T ! b16

where T 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lu; C; P; bg

Compares are treated di�erently in various processor architectures. Firm

separates compares and branches by breaking up conditional branches to

CHAPTER 2. SYNTAX AND SEMANTICS 20

notation semantics

? > < =

False f f f f (always false)

Eq f f f t =

Lt f f t f <

Le f f t t �

Gt f t f f >

Ge f t f t �

Lg f t t f < or >

Leg f t t t ordered

Uo t f f f unordered

Ue t f f t unordered or =

Ul t f t f unordered or <

Ule t f t t unordered or �

Ug t t f f unordered or >

Uge t t f t unordered or �

Ne t t t f 6=

True t t t t (always true)

Table 2.6: Compare operations

achieve a straightforward representation that can be mapped to any imple-

mentation of compares in a processor. To avoid that optimizations separate

compares and branches, a special mode boolean is introduced whose values

can not be saved to memory. This simpli�es code generation.

The Cmp operation implements all compares simultaneously. It com-

pares its two operand values and produces sixteen boolean values as result,

one for each compare operation. Firm uses four orthogonal compare predi-

cates, equal, less, greater and unordered. The sixteen results are the possible

combinations of these predicates. They are illustrated in table 2.6. For an

example see section 2.4.

Conv : T1 ! T2
where T1; T2 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lu; C; P; bg

The Conv operation converts a value of mode T1 to a value of mode T2.

The conversion in Figure 2.2 and all transitive conversions are supported by

the implementation.

CHAPTER 2. SYNTAX AND SEMANTICS 21

Bs ! Hs ! Is ! Ls

Bu ! Hu ! Iu ! Lu

B ! H; H ! I; I ! L

F ! D ! E

C ! Hu

b! B

P ! Iu

Figure 2.2: Conversion between Primitive Value Modes. (If signedness is

omitted both are possible.)

2.2.2.6 The Phi operation

Phi : T n ! T

where T 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lu; C; P;Mg

A Phi operation is always attached to a basic block. It has one operand

for each control
ow predecessor of the basic block. The i-th operand is a

de�nition valid at the end of the i-th predecessor of the basic block. During

execution of the compiled program the basic block will have an unambiguous

predecessor. The operand of the Phi operation corresponding to this basic

block will be available when the operation is executed, and the Phi operation

returns this operand, i.e., if the Phi operation is reached through the i-th

predecessor block, it returns its i-th operand. The Phi operation is not

strict, it can execute if only one of its operands is available.

2.2.2.7 Operations to manage memory explicitly

The following operations model dependencies through memory explicitly by

specifying the memory touched by the operation. They all need an operator

of mode memory as operand and produce an eventually modi�ed memory

as result in addition to the standard operands and results.

To allow as precise information about the dependencies as possible par-

tial memory functions can be speci�ed. (See also Section 2.2.1.3.) These

include only those parts of the memory that actually might be touched by

the operation. A heap or alias analysis can sharpen this information.

CHAPTER 2. SYNTAX AND SEMANTICS 22

Load : M � P !M �X � T

where T 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lu; C; Pg

This operation reads a data item of mode T from the memory location

given as second operand. The result of mode memory is necessary to model

anti dependencies through memory. For the treatment of exceptions see

Section 2.3.

Store : M � P � T !M �X

where T 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lu; C; Pg

This operation writes a data item of mode T to the memory location

given as second parameter. The memory operand and result are used to

model memory dependencies. For the treatment of exceptions see Section

2.3.

Alloctype : M � Iu !M �X � P

The Alloc operation allocates memory for a variable. The size of the

memory needed is given by the second operand. The operation is annotated

with the type type for which the memory is allocated. This is a pointer to

the type information of the program representation. Alloc returns a new

memory expanded by the new location, and a pointer to this location. The

new memory location is not initialized. For the treatment of exceptions see

Section 2.3.

For many optimizations on Firm it is essential to know about memory

allocation. A frontend compiling languages as C should transform calls as

to malloc to an Alloc operation. Later the backend will lower these to a

funcion call again.

Freetype : M � P !M �X

The Free operation frees the memory of a variable. It is annotated with

the type type for which memory is freed. The memory returned no longer

contains space for this variable.

If Firm is used to translate a language with explicit memory deallocation,

Free operations can be generated by the frontend. For garbage collected

languages a static garbage collection can introduce free operations.

Representing allocation and deallocation as explicit operations allows

interesting optimizations, as, e.g., shown in Figure 2.3.

CHAPTER 2. SYNTAX AND SEMANTICS 23

Alloc

Free

Alloc

Free Free

Alloc

Alloc

Free

1. Move Alloc against control
ow out of loop.

2. Move Free with control
ow out of loop.

3. Merge adjacent Alloc Free pairs.

Figure 2.3: Moving allocation out of a loop.

Sync : Mn !M

The Sync operation uni�es several partial memory regions. These regions

have to be pairwise disjunct, or the values in common locations have to be

identical. This operation allows to specify all operations that eventually

need several partial memory regions as operand with a single entrance by

unifying these memories with a preceding Sync operation.

2.2.2.8 Special operations simplifying the representation

We want to implement edges in a Firm graph as pointers stored in the

nodes themselves to allow fast navigation. This means that an edge can

not point to a particular result of a predecessor in the graph, only to the

whole node. If all operations have only one result this implementation is

possible. Therefore we view nodes returning several values as nodes that

return a single value that is a tuple consisting of the individual values. We

introduce a special operation extracting particular values from these tuples

and a special mode, Tuple, that is used for operations that produce a tuple

as result. Figure 2.4 illustrates this concept.

T Tuple

Table 2.7: Auxiliary mode Tuple

Proji : T ! U

CHAPTER 2. SYNTAX AND SEMANTICS 24

Load

M

Op

Adr

Proj, 0 Proj, 1

M

(M,Op)

M Adr

M Op

Load
N N

M

AdrM

Op

Load

Figure 2.4: Conversion between one-exit and multi-exit representations

where U 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lu; C; P; b;M;X; Tg

This operator is used to extract a single value from a tuple. Its operand

is a tuple. The operation is annotated with the position i of the value to

extract from the operand tuple. It returns the extracted value. Figure 2.4

shows how a graphic representation with operations that have one exit can

be projected to a representation with several exits using the Proj operations.

Start and Call revisited

The operations Start and Call are implemented with nested tuples. Two

Proj operations are needed to extract a procedure parameter. An example

can be seen in Section 2.4, Figure 2.17.

Start : ! Tstart
where Tstart = X �M � P � P � Targs; Targs = data1 � : : : � datan

Calltype : M � P � T1 � : : :� Tn ! Tcall
where T1; : : : ; Tn 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lu; C; Pg;

Tcall =M �X � Tresults,

Tresults = data1 � : : :� datan.

2.2.2.9 Operations used to hold intermediate information during

optimization

Id : T ! T

where T 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lu; C; P; b;X;Mg

The Id operation is used to simplify the implementation of optimizations.

CHAPTER 2. SYNTAX AND SEMANTICS 25

It has no functionality, i.e., its results are the same as its operands. If an

optimization replaces an operation by other ones or removes it, an Id is

inserted taking the place of the original operation. (No new operation is

allocated, only the label of the operation is changed to Id.) This allows that

the references to the original operation need not be changed. Dead operation

elimination will later remove the Id operations. Figure 2.5 shows the use of

Id operations: The optimization iterated over the Firm graph looking for

opportunities for strength reduction. Arriving at the Mult node it decided

to replace the multiplication by two by an addition. The optimization has

no access to the users of the value produced by the Mult as the edges are

directed backwards. Therefore it turns the Mult into an Id node and inserts

the new Add before.

Add

.....

.....

.....

.....

Mul
IdMul

2 2

Figure 2.5: Transformation of Firm graph using Id.

Tuple : T1 � : : :� Tn ! N

where T1; : : : ; Tn 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lu; C; P; b;X;Mg

The Tuple operation combines single values into tuples. It is used to

transform Firm graphs. Optimizations that replace operations that produce

tuples as result by several operations use this operation to form a tuple

so that the proceeding Proj operations need not to be touched. (No new

operation is allocated, only the label of the operation is changed to Tuple.)

A later pass can fold the tuple and Proj operations.

Bad : ! T

where T 2 fBB;X;F;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lu; C; P; b;M; Tg

CHAPTER 2. SYNTAX AND SEMANTICS 26

The Bad node is used to represent dead values. An operand of a node

that is a Bad node indicates that this value will never be computed during

runtime of the program. If this is a strict operation this means that also this

operation will never be executed. If it is a Phi or Block node this means

that control will never reach this node by this edge.

Figure 2.6 shows how to use the Tuple and Bad operation. The optmiza-

tion decided that it can evaluate the Cond operation statically. Therefore

it replaces the Cond by a Tuple of two static control
ow operations: Bad

for the branch that is never taken, and Jmp for the branch that is always

taken. To replace the operation an Id is used. Further optimization steps

will remove the Tuple, Id and Proj nodes.

Proj 0 Proj 1 Proj 0 Proj 1

Tuple

Cond
Id

Bad Jmp Bad Jmp

Proj 0 Proj 1

Cond

True

Tuple

Bad Jmp

Figure 2.6:

Con�rm : T ! T

where T 2 fF;D;E;Bs; Bu;Hs;Hu; Is; Iu; Ls; Lu; C; P; b;Mg

Used to represent abstract knowledge about a value that is higher than no

information, i.e., the value can be anything allowed by the mode, and lower

than a constant value. This information can be derived from Cmp/Cond

operation combinations.

2.3 Exceptions

Exceptions pose two problems for optimizations. They complicate the con-

trol
ow, reducing the e�ect of optimizations that depend on large basic

CHAPTER 2. SYNTAX AND SEMANTICS 27

blocks. Further they slow down optimizations whose runtime depends on

the number of nodes in the control
ow graph. Exceptions also decrease

the preciseness of optimization algorithms that make conservative assump-

tions if information is incomplete. Therefore modeling exceptions eÆciently

is crucial for an intermediate representation as Firm, which is designed to

support aggressive optimization.

In traditional intermediate representations exceptions are modeled as

conditional branches, i.e., as control dependencies. An operation that can

raise an exception (a fragile operation) ends the basic block. The control
ow

branches to the exception code if this operation fails . If an optimization

shows that the fragile operation can not cause an exception, the control

ow edge to the exception code can be removed. This model sequentializes

all fragile operations, even if this is not enforced by the source language,

restricting optimizations severely.

Therefore Firm represents exceptions by data dependencies according

to the new approach developed by [Tra99]. It introduces an abstract vari-

able Except, which models dependencies between fragile operations through

memory.

At the beginning and end of a protected region the variable Except is

de�ned by two auxiliary operations. The fragile operations in the region use

and de�ne this variable | they all have an operand and result of mode M .

E.g., they might write information about the position of the instruction in

the source program to this variable. This guarantees that these operations

can not be moved out of the protected region, the de�nitions mark the

beginning and end of the protected region, but the operations within the

region are not ordered. Further restrictions by the source language on the

order of exceptions can be modeled by adding uses and de�nitions of Except

or by introducing additional abstract variables.

At the beginning of the exception code Firm introduces a Phi operation,

that merges the memory results of all fragile operations in the protected

region. The control
ow predecessors of the basic block with the exception

code are the fragile operations in the protected region. If there are several

fragile operations in a single region there are as many control
ow edges

to the block containing the exception code. With this concept the precise

memory state at the point where the exception was raised is known, so that

a program analysis has all information about the environment if it analyzes

the exception code. This reduces the loss of preciseness when the analysis

merges the information after the exception code with that after the basic

block containing the protected region.

CHAPTER 2. SYNTAX AND SEMANTICS 28

2.4 Examples

This section gives some examples of interesting Firm graph sections.

The example in �gure 2.7 to 2.9 illustrate how code for a basic blocks is

represented in Firm. Figure 2.7 gives a small basic block ended by a Jmp

operation. Figure 2.8 shows how the basic block is represented in Firm.

One can see that all arithmetic nodes are attached to the Block node. The

order of the arithmetic operations is relaxed. Figure 2.9 shows an alternative

drawing of the BB edges: aÆliation to a block is represented by grouping

the operations into a sqare box. This reduces the number of edges making

the graph better readable.

a = 2 + 1

b = a + 1

c = a - b

Jmp

Figure 2.7: Code of a basic block.

Add

Add

Block

Sub

Const 1Const 2

Jmp

Figure 2.8: A Firm graph of a basic block according to Figure 2.7 illustrating

the use of BB edges.

CHAPTER 2. SYNTAX AND SEMANTICS 29

Const Const

Add

Add

Sub

12

Block

Jmp

Figure 2.9: A di�erent representation of Block operations illustrated on the

basic block in �gure 2.7.

CHAPTER 2. SYNTAX AND SEMANTICS 30

The example in Figures 2.10 and 2.11 illustrates the representation of

control
ow and the use of Phi nodes.

a = a + 2

if (...) { a = a + 2 }

b = a + 2

Figure 2.10: An if statement with two reaching de�nitions.

Add

Phi
Block

Add

Const

Cond

Block

Add

Jmp

Block
2

Figure 2.11: SSA representation of several reaching de�nitions according to

example 2.10.

CHAPTER 2. SYNTAX AND SEMANTICS 31

Figures 2.12 and 2.13 demonstrate the use of memory edges to sequen-

tialize operations. The Alloc node allocates a piece of memory of the size

given by operator size. It adds the new piece of memory to the memory

passed as operand and returns the extended memory as well as a pointer to

the new location. The Load node now reads a value from this location. The

pointer passed as operand must point to a location in the memory passed.

The Load returns the unchanged memory and the loaded value. Arithmetic

operations now can change the value. Later the Store writes the new value

to the same location. The Store could as well receive the memory output

by the Alloc as this is the exact same one as returned by the Load. But by

consuming the Loads memory the sequentialization of the Store after the

Load is guaranteed. The Store returns a memory that contains the new

value at the location.

a = malloc(1)

*a = *a + 1

b = *a

Figure 2.12: An example with dynamic allocated variables. For sake of

brevity we ignore that the value *a is unde�ned.

CHAPTER 2. SYNTAX AND SEMANTICS 32

Alloc

Load

Store

Load

Add

Pointer

Memory

Memory Size

b

Const 1

Figure 2.13: Load and Store operations sequentialized by memory edges.

This graph implements the code in Figure 2.12.

CHAPTER 2. SYNTAX AND SEMANTICS 33

Figures 2.14 to 2.16 illustrate the use of the Sel and Call nodes. Figure

2.14 shows a code fragment that allocates an object, writes a �eld of the

object and calls a method of the object. Figure 2.15 illustrates how a Sel

node is used to generate the address of the �eld: The pointer to the object,

in this case a result of the Alloc node, is passed to the Sel node. The node

knows about the type X of the object as well as the entity a to select. It

returns the pointer to a. Figure 2.16 implements the same for the call.

class X {

int foo(int);

int a;

}

X x = new X();

x.a = 17;

x.foo(17);

Figure 2.14: Use of an object �eld a and a method foo().

Store

Memory Size

Sel X.a

Alloc

Pointer to x.a

Pointer to x

Const 17

Figure 2.15: Assignment to a �eld of an object. This graph implements the

assignment in the code in Figure 2.14.

CHAPTER 2. SYNTAX AND SEMANTICS 34

Call

Result

Memory Size

Sel X.foo

Pointer to x

Pointer to x.foo

Alloc

Const 17

Figure 2.16: Call to a method. An example for resolving polymorphy. This

graph implements the call in the code in Figure 2.14.

CHAPTER 2. SYNTAX AND SEMANTICS 35

X X

XX

XxX

N N

T T

N

B 16

B

B

a) b)

R R

(then) (else)

...

T T

...

X X

X X

B

(<) (False)(True)
B B B

R R

(then) (else)

BlockBlock

Proj 2

Proj 0 Proj 2

a b

a b

CondCond

Block Block

Cmp

Cmp

Figure 2.17: A Firm graph for the statement if (a<b) then ... else

.... This illustrates the representation of conditional branches with the

Cmp operation. a) shows the representation with multiple exits, b) with

single exits and Proj nodes.

CHAPTER 2. SYNTAX AND SEMANTICS 36

(X,M,(T1,...,Tn))

(T1,...,Tn)

T1 Tn

T1 Tn

b)a)

X M
X M

N N

...

NNN

...

Proj Proj

ProjProjProj

Start

Start

Figure 2.18: A Start node. a) shows the representation with multiple exits,

b) with single exits and Proj nodes.

Start

End

Global Store Frame Base

Initial Exec

Arguments

Proj 0
X

Proj 1
M

Proj 2
P

Proj 3
T

Block

Block

...

BlockEnd Block

Current Block

Start Block

...

Figure 2.19: Initial graph built by new ir graph()

Bibliography

[AvR96] Markus Armbruster and Christian von Roques. Entwurf und Re-

alisierung eines Sather-K �Ubersetzers. Master's thesis, Dept. of

Computer Science, University of Karlsruhe (TH), December 1996.

In German.

[GS96] Gerhard Goos and Heinz Schmidt. Sather-K the language. Tech-

nical report, Dept. of Computer Science, University of Karlsruhe

(TH), October 1996.

[Tra99] Martin Trapp. Optimierung Objektorientierter Programme. PhD

thesis, Dept. of Computer Science, University of Karlsruhe (TH),

December 1999. In German.

37

