
Dynamic Coupling of Binary Components and its Technical Support

Dirk Heuzeroth1 and Ralf H. Reussner2

1Institut für Programmstrukturen und Datenorganisation, Universit¨at Karlsruhe, Am Zirkel 2, 76128 Karlsruhe,
Germany

heuzer@ipd.info.uni-karlsruhe.de

2Lehrstuhl Informatik für Ingenieure und Naturwissenschaftler, Universit¨at Karlsruhe, Am Fasanengarten 5,
76128 Karlsruhe, Germany

reussner@ira.uka.de

Abstract

The aim of todays software development is to build applications by the reuse of binary compo-
nents. This requires the composition of components and as special cases component enhancement
as well as adaption. We demonstrate how to deal with these cases by furnishing components with
a type consisting of twoprotocols — a call and a use protocol. We model these protocols by finite
automata and show how those reflect component enhancement and adaption. This mechanism allows
for automatic adaption of components in changing environments.

In order to obtain binary components we have to compile corresponding sources. In view of the
required features of the binary components and with the problems of compiling generic classes in
mind, we describe an approach to generate suchpre-compiled components by appropriate compiler
extensions.

1 Introduction
The aim of software-engineering in general is to support the efficient development of high-quality
software products in such a way, that success is repeatable. Motivations for doing this are increasing
quality, reducing time-to-market and, as a consequence lowering development costs. The reuse of
approved work is one techique to reach this goal [MJ97][BP89]. Several reuse techniques have been
proposed and employed. None of them has been satisfying, mainly because units of reuse have not
been easily adaptable to several specific application contexts (or only with an enormous effort).

The development of complex applications can only be accomplished by composing, and thus
reusing, approved parts. This composition requires, that reuse units must only have explicit external
dependencies. To reuse components in assembling an application, they have to be adapted to the
specific requirements. For the sake of an easy composition, adaptions should take place automatically.

When a system is enhanced by new components, or components are replaced, we want to avoid
halting or recompiling the system, for the sake of convenience. Thus, we have to compose the system
dynamically.

Existing source code reuse techniques do not offer the required flexibility, are highly complex
and require an enormous effort of understanding a unit of reuse in order to really reuse it. To reduce
the effort of understanding a reuse unit, it should only have explicitly specified dependencies. No
look into the source code should be necessary in order to reuse it. Therefore it should be delivered in
binary form.

The above argumentation motivates why we focus on binary reuse units satisfying the above
requirements. We call these unitsbinary components and give a more precise definition of this notion
in section 2 (fundamentals). This reuse technique may thus be described asgrey box reuse opposed to
black and white box reuse. Although the idea of grey box reuse is not new (see for example [Pae96]),

1

many details of how it should work are still unknown. Even the idea ofsoftware components is not
new [McI69]. But its precise definition is still concern of debates.

In the sequel we first introduce the fundamental terms for understanding the rest of the paper
(section 2). In section 3 we discuss current problems of component technology. Section 4 contains
an application scenario, showing todays technologies insufficiencies, and the problems we tackle. In
section 5 we explain our solution to the dynamic coupling problem by introducing a type system
for software components. Section 5.3 describes the meta-protocol we use to couple components.
In section 6 we present an approach to solve the pre-compilation problem already mentioned in the
abstract. We finish by giving an overview of related work in section 7 and draw our conclusions in
section 8.

2 Fundamentals
In this section we define the basic terms used in this paper.

software-component: The most important term is that of asoftware component. Unfortunatley there
is still no commonly agreed definition of this term. But some properties seem to be character-
istic:

’A software component is a unit of composition with contractually specified interfaces and
explicit context dependencies only. A software component can be deployed indepently and is
subject to composition by third parties.’ ([Szy98]) No look onto the sources of a component
should be necessary to reuse it, i.e., composing it with other components.

Dynamic composition requires components in a binary form. To avoid misunderstandings, for
us binary just means a non-source-code form of a component, which need not necessarily be
the machine code of a ceratin hardware processor. As an example, we consider a component in
JAVA byte code also as binary.

To be applicable in several infrastructures, a component has to be easily adaptable or should
even adapt itself automatically.

functionality: The functionality of a component does not only consist of the functions it offers,
but also of the protocol to use them. For example, certain services are only available after
initialization, some services may exclude others, etc. More concrete: functionality = functions
+ the protocol to use them.

component type: The type of a component describes the applicability of the component [Nie93].
Information of the applicability of a component is represented by its interface.

component interface: The interface of a component represents its applicability, i.e., it consists of
the offered functions with theircall protocol (the functionality) and the used functions with
theiruse protocol.

call protocol: The protocol specifying the allowed call sequences of the functions offered by a com-
ponent.

use protocol: The protocol specifying how a component wants to call the functions offered by an-
other component.

3 Current problems of component technology
Software component technology is becoming increasingly popular, since it is considered to be a can-
didate to accomplish the expected benefits of reuse. [Szy98][ND95]. But despite of the advantages

2

of binary component technology, the extensive usage of binary components is impeded by several
problems:

pre-compilation problem: Currently many important portions of frameworks have to be delivered
as source code, since they leave many aspects open for the sake of flexibility and thus cannot
yet be compiled into a binary form. The use of generic classes is an example realization of
leaving aspects open, which generally prohibits the pre-compilation of frameworks. Frame-
work developers however would prefer to hide their sources and deliver the framework as a
binary component. The application programmer using a binary framework then “only” has to
plug in his own binary components. To do this comfortably, i.e. so that he can watch how sys-
tem behavior changes by the plugged-in components, system composition should be possible
dynamically.

automatic adaption problem: Components often have to be adapted or enhanced before being ready
for reuse. Even in component based software development adaptions and enhancements will be
necessary, because

1. not all functionality of a component can be anticipated during development — e.g., pro-
cessing of future file formats — and

2. a component has to be deployable in various contexts, where each context may offer a
different infrastructure the component has to adapt to during coupling.

Especially point 2 is important for a component market, because adding functionality to a com-
ponent will widen its range of potential customers, although usually a single customer will not
need the whole functionality. Unfortunately, a large functionality often implies strong depen-
dencies of a component to its infrastructure. But most customers will not be willing to invest
in such a powerful infrastructure, especially, when it supports component functions they do not
need. Hence, a large functionality often complicates or even impedes the widespread use of a
component.

When a component is able to adapt its functionality according to its infrastructure, a component
manufacturer can add new functionality — and thus requirements to the infrastructure of the
component — without restricting the set of potential customers. When binary components are
coupled dynamically these adaptions and enhancements have to be done automatically. Support
for this automatic dynamic coupling is still very weak. Especially errors due to coupling non-
fitting components are not detected as early as possible, that is during coupling-time. This is
because component interfaces do not specify how to use the component.

missing uniform component model: Due to the absence of a commonly accepted, precisely defined
software component model, difficulties in combining several vendors’ components arise. Cur-
rent software component models leave too many details of interaction open or define them dif-
ferently. Since one defining property of components is their reusability in various contexts (e.g.,
[Szy98]), a component model has to specify a standardized meta-level protocol for retrieving
the interface information1 of a component.

4 Coupling binary components

4.1 Our Approach
In this paper we describe our approach to support run-time coupling of binary components. We think
that the problems mentioned in section 3 arise from the missing of a definition of a component type.

1More precisely we should talk of the applicability information.

3

According to Nierstrasz a type should describe the typed entity’s applicability [Nie93]. This means
the type of a component depends on its applicability.

One aspect of a component’s applicability is theavailability of services it offers to the applications
it is used by. Two conditions of service availability are:

1. Another service has been called before — e.g., calling an initialization routine is a prerequisite
for using other services.

2. Services form certain other components are available.
Point 1 specifies the protocol of allowed calls (the’call protocol’) of a component A. To handle
condition 2 we additionally have to know how a component B uses a component A (’use protocol’).
With both protocols together one can check, whether two components can work together or not.
Basically the two protocols form the interface of a component and thus itstype.

This type systems allows pre-compilation because unknown parts of a framework component can
be described by a typed interface. The information given to the compiler by this interface is sufficient
to do pre-compilation.

When coupling components, certain classes of errors can be detected immediately by matching
the use protocol and the call protocol of the components to be coupled. Actually, this is a type check.
A unique feature of our system is the automatic adaption of the call protocol of a component, in case
the infrastructure does not support all services exactly as required by the component. The extension
of component functionality by plug-ins can also easily be described by these types.

In order to perform these type-checks, adaptions, and extensions we require a certain run-time
support, which is controled by a meta-protocol.

4.2 Scenario
In this section we demonstrate by an example scenario which issues in component composition are
not possible today but are supported by our type system.

Consider a framework for a mail user agent with a text-reader, a sound-player, and a video-player
as pre-compiled components. These components should be added dynamically (i.e., at run-time) to
the mail user agent component. Note, that the framework component, i.e. the mail user agent, should
not need to know in advance which kinds of mails it has to handle, so it leaves this aspect open. But
nevertheless, we want it in compiled form, because the user should not need to recompile the mail user
agent only because he receives an unknown kind of mail he wants to perceive. The current solution
of MIME-types is not satisfying, because the functionality of the required components (plug-ins) for
handling the different MIME-types is not properly integrated into the mail user agent.

Figure 1 shows an UML class diagram of our mail user agent example. Note that the exact
function signatures are omitted, for the sake of brevity.

On a first glance, the introduction of a common superclass for all mail types seems reasonable. So
we could have intoduced a classMailwith subclassesTextMail,SoundMail, andVideoMail.
Mail could be used byMailUserAgent to represent all kinds of mails. The problem with this
solution is, that we do not know all kinds of mails in advance. The superclassMail could only
contain methods and attributes common to all mail types. We even have to check dynamically the
type of a concreteMail object in order to use all its features. But this implies that we have to know
all kinds of mails in advance. In contrast to this, in our approach neither the user nor the developer
has to know all types of mails in advance, i.e., the mail types are not restricted.

In a concrete example the user receives a video mail, which is then listed in the inbox like the
other mails. This video mail knows which sound players and video players could be used to show
or more precisely play the mail. When the user selects the video mail, it uses the run-time system to
get the actual paths to required players. In case they are not available, the run-time system may be
able to automatically down-load them via the internet and install them. But for our example imagine
the computer has no hardware support for sound, and the required sound player is missing. So the

4

GUI

*
1

MUA
*

show_inbox()
reread_inbox()
select_mail()
quit()

*

Mail

type
sender
recipient
subject

1

1 1 1

Textdata
Component

viewer

TextViewer

show_text()
scoll_up()
scoll_down()
quit()

Sounddata
Component

viewer

SoundPlayer

load()
play()
volume_up()
volume_down()
pause()
stop()

Videodata
Component

viewer

VideoPlayer

load()
play()
pause()
stop()
brightness_up()
brightness_down()
contrast_up()
contrast_down()
speed_up()
speed_down()
save_to_file()

1 0..1

content

*

*

*

* *

*

Figure 1: Class Diagram of the Mail User Agent Example

run-time system only returns the path to the video player. The video mail couples with this player
component and adapts its functionality so that it can play videos but has no ability to play and control
the sound of the mail. This functionality is integrated into the mail user agent. The mail user agent
shows this new functionality in the menu and automatically starts playing the mail. The user can use
the interface of the mail user agent to pause or to abort the video. Even the whole video player can be
controlled by the mail user agent.

5 Dynamic Types for Software Components
There are two reasons for adding types to a programming language: (a) to ease memory layout during
compilation, and (b) to add information to the program, which allows the compiler to detect certain
errors statically, i.e., before the execution of the program. Our type system for software components

5

play stop

volume_up, volume_down, brightness_up,
brightness_down, contrast_up, contrast_down,
speed_up, speed_down

pauseplay

brightness_up, brightness_down, contrast_up, contrast_down,
speed_up, speed_down, save_to_file

C-Aut
VideoMail

Figure 2: C-Automaton of the VideoMail component

F-Aut
VideoMail::play

VideoPlayer::play SoundPlayer::play

Figure 3: F-Automaton of the play-function of the VideoMail component

makes the compilation of generic components possible and provides enough information to check
for certain errors during the coupling of components. Here, we concentrate on protocol errors due
to coupling non-fitting components, or installing a component in an insufficient infrastructure, etc.
These errors should be detected during the coupling of components. This coupling may happen during
compile-time (when it is statically known, which components will couple), or during installation
(when components are installed), or even at run-time (when components are added dynamically to a
running system). However, protocol errors are detected during a defined coupling time, when they
may be expected. This is superior to the occurance of errors at undefined later times, e.g., when the
user starts an operation which causes an error.

Our approach defines acomponent type as a tuple consisting of (a) aComponent-Automaton
(C-Automaton) and (b) a set ofFunction-Automata (F-Automata). The C-Automaton describes the
call-protocol of a component as a formal language, i.e., the set of all legal sequences of calls to
the functions the component offers. Each function of the component has a F-Automaton. This F-
Automaton describes the set of all possible sequences of calls to internal and external functions this
function could perform. The C-Automaton and the F-Automata together form theuse-protocol. This
interface describes all possible call sequences to external functions as a formal language.

All automata, C-Automaton and F-Automata, are deterministic finite automata, as described for
example in [Nel68]. Their alphabets consist of the function names of a component, respectively of
the names of the functions a component calls. Although not necessary in our example, we need some
extensions to finite automata, mainly to describe related calls like push and pop on a stack, and to
overcome other modeling problems with finite automata [All97].

It is important, that the added type information is no burden for the software developer. In our
type system the required interface description of the use protocol can be partially computed by the
compiler by control-flow analysis [Muc97]. The description of the call protocol can be given by
simple pre- and postconditions of functions and extend the idea of contracts [Mey92].

The VideoMail component of our example has the C-Automaton shown in figure 2. The function
play just uses theplay functions of theVideoPlayer and theSoundPlayer components, thus
only having a rather short F-Automaton, shown in figure 3.

The advantage of a finite automata based approach is the decidability of the equivalence prob-

6

C-Aut
VideoMail

play
...

...

play_start VideoPlayer::play

EC-Aut VideoMail

play_endSoundPlayer::play

Figure 4: Construction of a EC-Automaton out of the C-Automaton and the F-Automaton of figure 3.

lem and intersection problem (opposed to more expressive notations, such as push-down-automata
[Sch92]). Furtheron, elaborated theoretical results for finite automata [Nel68] and protocol valida-
tion [Hol91] are usable and it is possible to merge automata theoretic algorithms with graph theoretic
algorithms.

We distinguish two kinds of component composition,type adaption andtype extension, which are
described below.

5.1 Type Adaption
Type adaption is used when a component is inserted in a certain context. The automatic adaption
problem (cf. section 3) occurs when a component has to be adapted to offer its services using dif-
ferent infrastructures. Type adaption guarantees that the component can offer a (possibly restricted)
functionality in many different environments. If the environment does not offer all functionality re-
quired by the component, the component adapts correspondingly its offered functionality.

In terms of our type system, when the use interface of component A matches the call interface of
component B, component A can use component B. In cases of an inexact match, a new call protocol
of A is calculated, so that the new depending use interface of A matches exactly the call interface of
B.

The automaton of the use interface is built by plugging in the F-Automata into the C-Automaton,
whereby each transition of the C-Automaton is replaced by the F-Automaton of the function corre-
sponding to the transition, as shown in figure 4. Since the new automaton is an enhancement of the
C-Automaton, it is calledEnhanced-Component-Automaton (EC-Automaton). It describes all possi-
ble sequences of calls to external functions. Note that it is also possible to construct the C-Automaton
of a component, when only the EC-Automaton of the component is given.

As a finite automaton, each interface not only defines a protocol [Hol91], but also a regular lan-
guage [Sch92]. To match the use interface of A and the call interface of B, we build the intersection
of the languages defined by the EC-Automaton of A and the C-Automaton of B. This intersection
of languages corresponds to the construction of a so calledcross product automaton (CPA) [Sch92].
This CPA is the new EC-Automaton of the component created by coupling A and B, and it contains
the new C-AutomatonA�B . If B fulfills all requirements A posed, then the new C-AutomatonA�B

is equivalent to the old C-AutomatonA, otherwise it just describes a new call interface, which can
be offered by A when using B’s incomplete functionality. The space- and time-complexity of this
algorithm is determined by the complexity of the CPA construction, i.e., the product of the number of
states of the involved automata.

In our example the functionality of a certain type of mail (text mail, sound mail, or video mail)
adapts to the functionality of the corresponding viewers (the infrastructure). Opposed to type ex-
tension (described below) a video mail can know the most general functionality (including the use

7

play stop

brightness_up, brightness_down,
contrast_up, contrast_down,
speed_up, speed_down

C-Aut
VideoPlayer

pauseplay

Figure 5: Call interface of theVideoPlayer

play stop

brightness_up, brightness_down,
contrast_up, contrast_down,
speed_up, speed_down

pauseplay

C-Aut
VideoMail x VideoPlayer

Figure 6: New call interface ofVideoMail coupled withVideoPlayer.

protocol) of a video player during design, because it is clear what functionality a video player must
have to show a video mail. It is also clear which functionality of a video mail is still possible when a
sound player is missing. As a consequence the mail is coupled with its corresponding viewer/player
with type adaption.

Figure 2 shows the C-Automaton of theVideoMail component. Consider, thatVideoMail
needs aSoundPlayer component and aVideoPlayer component. This would be expressed in
its F-Automata, and hence in its EC-Automaton. They are omitted here. Imagine that theSound-
Player is missing in a concrete system, because of missing hardware sound support, and that the
call interface of theVideoPlayer is the one of figure 5.

Then the new call interface ofVideoMail coupled withVideoPlayer is given in figure 6.
Note, that not only the sound services are not available (which would not need a protocol to model),
but also the availability of the video control services (for brightness, contrast, and speed) also changes
(after pause pressed). To express these changes of avaliability protocol information is required.

5.2 Type Extension
Type extension is used when the functionality of a component cannot be foreseen during development.
In our example this is the ability of the mail user agent to handle several mail formats, which are pos-
sibly not known during design of the mail user agent. In this case, the functionality of a viewer/player
of this format is used to extend the functionality of the mail user agent at a defined point. The user
does not recognize which functionality belongs to which component. All functionality is integrated
in the user interface.

Figure 7 show the C-Automaton of theMailUserAgent component, before any extension.
In our example this C-Automaton is coupled with a GUI. Note the shaded state in the unextended

8

select_mailshow_inbox

reread_inbox

C-Aut
MailUserAgent

Figure 7: Unextended call interface of the MailUserAgent component.

select_mailshow_inbox

reread_inbox

stop

play pause

play

brightness_up,
brightness_down,
speed_up,
speed_down,
contrast_up,
contrast_down

C-Aut
MailUserAgent + (VideoMail x VideoPlayer)

Figure 8: Call interface of the MailUserAgent extended with VideoMail.

C-Automaton. This is thecoupling state. After the user selected a mail, the C-Automaton of the
corresponding mail component is plugged in the unextended C-Automaton ofMailUserAgent at
this state. Imagine the user selects a VideoMail (which has coupled withVideoPlayer before).
Then the C-Automaton ofVideoMail x VideoPlayer (as shown in figure 6) extends the C-
Automaton ofMailUserAgent. The resulting extended C-Automaton ofMailUserAgent is
shown in figure 8. The time complexity of this algorithms linearly depends on the number of coupling
states, when copying of the inserted automata can be avoided.

5.3 Meta-protocol
In this section we sketch a meta-protocol which supports the above type adaption and coupling. The
scenario of section 4.2 can be described in terms of our type system as follows.

1. An arrivedVideoMail asks the run-time system to couple with its supporting infrastructure
(i.e., SoundPlayer andVideoPlayer). TheVideoMail incluedes in this request also
URLs specifying where to get the required components. Additionally theVideoMail sends its
EC-Automaton to the run-time system.

2. The runtime-system contains a database of the installed components and a description of the
underlying system hardware. This description denies the installation of a sound player, since
our hardware system contains no sound support, as mentioned in section 4.2. We assume
that the requiredVideoPlayer is already installed. The run-time system retrieves its cur-
rent C-Automaton from its database, and performs the type adaption algorithm with the EC-
Automaton ofVideoMail and the C-Automaton ofVideoPlayer. The new C-Automaton
of VideoMail is extracted from the new EC-Automaton. Both (new C-Automaton and new
EC-Automaton) are stored in the database entry associated withVideoMail. The new C-
Automaton is returned toVideoMail. Note that this happens after the arrival ofVideoMail.
The user is not involved into these actions.

3. Later, the user starts theMailUserAgent via a GUI component. TheMailUserAgent
reads the inbox, and lists sender, subject, and type of each mail.

4. The user selects theVideoMail to view it.
5. TheMailUserAgent requests type extension withVideoMail from the run-time system. It

is not necessary, thatMailUserAgent sends its C-Automaton, since C-Automata of already

9

User GUI MUA VideoMail RTS DBMS

adapt_to_infrastr.

start MUA

start MUA

present INBOX

selects VM

selects VM

VP

SP

get C-Aut

get C-Aut

store EC-AutVM x VP

store C-Aut VM x VP

extend_with VM

C-Aut MUA + (VM x VP)

get C-Aut VM x VP

get C-Aut MUA

notify GUI

Legend:

DBMS DataBase-
 ManagementSystem
GUI Graphical
 User Interface

MUA MailUserAgent

RTS Run-Time-System
VM VideoMail
VP VideoPlayer

Figure 9: Event-trace diagram of the scenario

installed components are stored in the database.
6. The run-time system retrieves the C-Automaton ofVideoMail from the database and performs

the type extension algorithm with C-AutomatonMailUserAgent and
C-AutomatonV ideoMail�V ideoPlayer.
The resulting C-AutomatonMailUserAgent+(V ideoMail�V ideoPlayer) is returned toMailUser-
Agent.

7. TheMailUserAgent notifies the GUI about its new functionality.
8. The GUI presents this new functionality to the user.
9. The user starts viewing theVideoMail.

Figure 9 shows a corresponding event-trace diagram.
To realize this scenario additional meta-information is necessary. (a) Information how to present

the new functionality of theMailUserAgent in the GUI, and (b) information telling theMail-
UserAgent how to start theVideoMail. This information is not necessary to describe the above
algorithms, but also has to be included in the call interface of a component.

6 An approach to solving the pre-compliation problem
As we already mentioned in section 3, reuse units, which do not constitute a complete program and
contain generic parts, in general cannot be compiled into binary form. The reason for this problem is
a lack of information, i.e., the concrete application contexts, which correspond to the instantiation of
the generic parameters, are not or only vaguely known.

The solution to this problem is to generate code for the dynamic determination of the application
context. This code has to generate the appropriate instantiation code dynamically. As a consequence,

10

the code generating code constitutes a meta-program acting according to our meta-protocol for dy-
namic coupling. Since we deal with binary components, this meta-program has to query dynamically
for the actual (component) type, in order to accomplish the appropriate instantiation.

Some information may already be available at compile time, because we know the use interface of
the generic component. This tells us, how the generic component wants to use the currently unknown
(plug-in) component specified by the generic parameter. We can use this information to derive some
minimal requirements about the plug-in component.

Now, there are two possibilities to perform pre-compilation of generic components, which should
both be incorporated into our coupling and runtime system.

1. We compile as usually done by seperated compilation but additionally include coupling code for
the generic parts. This is similar to the dynamic dispatch code in conventional compilers for
object-oriented languages like C++. We thus obtain conventional (relocatable) object code. The
coupling code is in fact a meta-program obeying our meta-level protocol for coupling. It is thus
able to instantiate generic components. Unkown parts are realized by references to objects or
components, which are filled in at coupling time.

We call the points where a component can be inserted into another onecomposition points or
coupling points.

This approach prohibits global optimizations, but makes further compilation steps at coupling
time unnecessary.

2. We only perform as many analysis steps during compilation as possible without knowing the
concrete instantiations of generic parts. All information gained this way, we store in a database,
which is part of our compilation system as well as of our coupling and runtime system. This
means, we have fragments of a partially analysed and attributed abstract syntax tree, as well
as pieces of intermediate or maschine code stored in our database, for example. Instead of
demanding a database at the customer site, the corresponding information may be stored in
object files. Retrieving information may then again be accomplished by an appropriate meta-
level protocol, using reflection for example.

When components are coupled and we thus know the concrete form of a generic parameter,
we perform a corresponding compilation step exploiting the new information. We thus compile
incrementally. This step may again be specified by a meta-program.

The advantages of this approach are

� the possibility for global optimizations,

� the possibility to reuse fine-grained information, and

� the uniform handling of aspect-oriented programming, meta-programming and other mod-
ern program development and manipulation techniques and paradigms, as will be shown in
[Heu].

To illustrate the approaches, we take a further look at our mail user agent example of section 4.2.
Suppose, the classMail is realized as shown in figure 10. We tag the type ofcontent to be

generic and thus define a composition point.
Following the seperated compilation approach 1, we compile this class as usual and implement

content as as reference to an unknown object. At coupling time, that is, when we know the concrete
type (and interface) ofT, our coupling mechanism recognizes, thatcontent has to be realized by
the mail content component of typeT offered for coupling. Our mechanism thus enhances the public
interface ofMail by the public functions of thecontent component and redirects every call to
these functions to the corresponding functions oncontent. In general, problems arise from name
conflicts, occuring when several components with non-disjoint function names are plugged into the
same other component. But the usual name conflict resolving techniques do a good job here, too.

11

class Mail
f

@generic T;

public MailParticipiant getSender();
public MailParticipiant getRecipient();
public String getSubject();
public abstract getContent();

private MailParticipant sender;
private MailParticipant recipient;
private String subject;
private T content;

g

Figure 10: Implementation of the classMail

Following the incremantal compilation approach 2, we finish compilation, when we know all
participating components. This complicates or even impedes “real” dynamic coupling, but it works
fine with “half-dynamic” coupling and allows for global optimizations.

7 Related work
Basically, the binary form of components may be seen as the major difference to the software modules
described in [Par72]. Language support for this modularization of source code, e.g., in MODULA-
2 [Wir85], can be seen as an early attempt of software reuse. Beside source code modules, other
approaches of software reuse recently gained attention[TC97]. Software architectures allow the reuse
of high-level software designs. They are relevant to software component technology, because they
focus on the connection of several components [GS93]. Similarly design patterns [GHJV95] package
lower level design information for reuse. Several benefits of design reuse are presented in the literature
[BMR+96] [Pre95] [GHJV95]. Despite of the well-known advantages of design reuse versus plain
code reuse [BP89] [Joh97], several problems occur, when design information is visible in the units
of reuse [GAO95]. One of the expected major benefits of software components is, that a software
component is deployable in several different design contexts. Therefore, design decisions have to be
encapsulated and hidden behind a component interface.

The COMPOST project[Aßm] uses another approach to adapt components to several contexts.
The idea is somewhat inverse to ours. In COMPOST the contexts of a component are defined by
the applications which want to use or reuse it. If a component does not fully satisfy these context
requirements, it is adapted appropriately. That is, the application composer develops and executes
a meta-program, which invasively modifies the component, adding code to fulfill the requirements.
The vision of COMPOST is, that components can automatically adapt themselves to different appli-
cation contexts, by enhancing or modifying themselves. Currently only source code modifications are
possible by this approach. Opposed to that, our adaption mechanism concerns dependencies from the
underlying infrastructure, that is the opposite direction as in COMPOST. Moreover, we do not add any
functionality to components that is not available in any of the underlying infrastructure components.

12

Frameworks are an attempt to reuse designs manifested in code. Frameworks are enhanced to a
specific application by providing specific modules which are plugged in certain defined interfaces of
the framework [Joh97]. Unfortunately, the interface descriptions do not contain enough information,
so that a compiler can translate an uninstantiated framework into binary code. As a consequence
most frameworks are delivered in source code. The relations between components and frameworks are
many fold. With an interface description allowing the compilation of frameworks, we can regard such
a binary framework as a component. The modules used to specialize a framework to an application
can be seen as components, too. Changing these components during run-time allows system adaption
and configuration. Furtheron, even the run-time system which supports the loading and coupling of
components can be seen as a general framework, with the components as plug-ins.

Todays technology allows a limited composability of binary components. Well-known are plug-
ins in internet browsers, such as special viewers. In principle, this is not a real composition to integrate
the functionality of the viewers into the one of the browser. Basically the browser just calls the viewers
with suitable parameters passing control to the respective viewer. Opposed to that, real composition
comprises the integration of the services of the viewers into the browser. Thus, another component
associated with the browser (e.g., a GUI) cannot distinguish the original browser functionality from
the ones integrated from the viewers. This integrating composition is much more flexible than todays
calling of plug-ins, because the latter usually is only useful when the functionality of the plug-ins can
be modeled byone rough granulated procedure call. Additionally, allowing each plug-in to open a
separated user interface limits the applicability and comfort of this approach.

Another technique of binary composition is the use of mobile objects [Nel99]. This approach is
based on object composition [ND95] well known from patterns and frameworks [GHJV95] [Pre95]
[Pre97]. Java objects in byte-code are used to configure other objects. While this composition is
surely important for component technology, the interface description of an object only specifies static
properties (such as the type of methods, and so on). Information concerning the dynamic coupling of
components are not described by the interface. This is why many errors due to coupling non-fitting
components cannot be checked by the compiler or the coupling system in advance.

8 Conclusions
We have presented our view on component technology and explained the properties and mechanisms
necessary to make it useful, easy and comfortably applicable. We outlined the problems of current
approaches and sketched our ideas to tackle those problems. We showed that dynamic coupling of
binary components is the method of choice for easy, efficient and high-quality reuse. To support this
method, we introduced a typing system for components, a meta-protocol for necessary adaptions and
sketched two ways to obtain binary components despite of the problems arising from genericity.

References
[All97] Robert J. Allen. A Formal Approach to Software Architecture. Ph.D. thesis, School of

Computer Science, Carnegie Mellon University, Pittsburgh, May 1997.

[Aßm] Uwe Aßmann. The COMPOST project main page. http://i44www.info.uni-
karlsruhe.de/~assmann/compost.html.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern-Oriented Software Architecture – A System of Patterns. John Wiley, New York,
1996.

[BP89] T. J. Biggerstaff and A. J. Perlis.Software Reusability, volume I & II. ACM Press
Addison-Wesley, Reading, MA, 1989.

13

[GAO95] David Garlan, Robert Allen, and John Ockerbloom. Architectural mismatch: Why reuse
is so hard.IEEE Software, 12(6):17–26, November 1995.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, Reading, MA, 1995.

[GS93] David Garlan and Mary Shaw. An introduction to software architecture. In V. Ambriola
and G. Tortora, editors,Advances in Software Engineering and Knowledge Engineering,
volume 1, pages 1–40. World Scientific Publishing Company, 1993.

[Heu] Dirk Heuzeroth. Eine Software-Architektur f¨ur flexible Übersetzer f¨ur Sprachen mit
modernen Programmierparadigmen. PhD thesis in preparation.

[Hol91] Gerald J. Holzmann.Design and Validation of Computer Protocols. Prentice Hall,
Englewood Cliffs, NJ, 1991.

[Joh97] Ralph E. Johnson. Frameworks = (components + patterns).Communications of the
ACM, 40(10):39–42, October 1997.

[McI69] M. D. McIlroy. “Mass produced” software components. In P. Naur and B. Randell, ed-
itors,Software Engineering, pages 138–155, Brussels, 1969. Scientific Affairs Division,
NATO.

[Mey92] Bertrand Meyer. Applying “design by contract”.Computer, 25(10):40–51, October
1992.

[MJ97] Stephen J. Mellor and Ralph Johnson. Why explore object methods, patterns, and archi-
tectures?IEEE Software, 14(1):27–30, January/February 1997.

[Muc97] Steven S. Muchnick.Advanced compiler design and implementation. Morgan Kaufmann
Publishers, San Mateo, CA, 1997.

[ND95] Oscar Nierstrasz and Laurent Dami. Component-oriented software technology. In
O. Nierstrasz and D. Tsichritzis, editors,Object-Oriented Software Composition, pages
3–28. Prentice Hall, 1995.

[Nel68] R. J. Nelson.Introduction to Automata. John Wiley & Sons, New York, NY, 1968.

[Nel99] Jeff Nelson.Programming Mobile Objects With Java. John Wiley & Sons, New York,
NY, 1999.

[Nie93] Oscar Nierstrasz. Regular types for active objects. InProceedings OOPSLA ’93, ACM
SIGPLAN Notices 28(10), pages 1–15, October 1993.

[Pae96] Andreas Paepcke. Open Implementations and Metaobject Protocols, 1996. Tutorial
Book.

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems into modules.Commu-
nications of the ACM, 15(12):1053–1058, December 1972.

[Pre95] Wolfgang Pree.Design Patterns for Object-Oriented Software Development. Addison
Wesley, Reading, MA, 1995.

[Pre97] Wolfgang Pree. Komponentenbasierte Softwareentwicklung mit Frameworks.
dpunkt.verlag, Heidelberg, 1997.

[Sch92] Uwe Sch¨oning. Theoretische Informatik kurz gefasst. Bibliographisches Institut
Mannheim, 1992.

[Szy98] Clemens Szyperski.Component Software: Beyond Object-Oriented Programming.
ACM Press and Addison-Wesley, Reading, MA, 1998.

[TC97] William M. Tepfenhart and James J. Cusick. A unified object topology.IEEE Software,
14(1):31–35, January/February 1997.

[Wir85] N. Wirth. Programming in MODULA-2. Springer-Verlag, 3rd Edition, 1985.

14

