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Abstract

Solving sophisticated mathematical problems often requires
algebraic algorithms and theorems. However, there are no
environments integrating theorem provers and computer al-
gebra systems which consistently provide the inference capa-
bilities of the first and the powerful arithmetic of the latter
systems.

As an example for such a mechanized mathematics envi-
ronment we describe a prototype implementation of an inter-
face between Isabelle and Maple. It is achieved by extending
the simplifier of Isabelle through the introduction of a new
class of simplification rules called evaluation rules in order
to make selected operations of Maple available, and without
any modification to the computer algebra system. Addition-
aly, we specify syntax translations for the concrete syntax
of Maple which enables the communication between both
systems illustrated by some examples that can be solved by
theorems and algorithms.

1 Introduction

Problem solving in mathematics often requires the appli-
cation of both procedural algebraic knowledge (algorithms)
and deductive knowledge (theorems). The advantages of
combining both strategies have been recognized by both
communities: symbolic computation and analytical reason-
ing. Some of these advantages concern the introduction of
mathematical theories and arithmetics, in particular real
numbers, into provers, as well as providing logical languages
and justifications to symbolic calculators. Two aspects must
be further investigated: (i) the problem of combining algo-
rithms and theorems in one single system, (ii) the heteroge-
neous integration of several packages.

On the one hand classical computer algebra systems
(CAS), for example Maple [CHAR et al. 92] or Mathemat-
ica [WOLFRAM 91], usually offer a straightforward program-
ming language with ad-hoc implementations of rewriting.
One of the most promising approaches towards introduc-
ing theorem proving into CAS is an extension of Analyt-
ica [CLARKE & ZHAO 94], a Mathematica package to prove

In ALH .M. Levelt (Ed.),

Proceedings of International Symposium on Sym-
bolic and Algebraic Computation, ISSAC’95,
Montréal, Canada, ACM Press, pp. 150-157, 1995

150

theorems in elementary analysis. It is able to deal with the
internal mathematical knowledge of Mathematica and guar-
antees the correctness of certain operations, e.g. prevents
division by zero. The package can solve an extensive collec-
tion of nontrivial mathematical problems.

On the other hand theorem proving has shown to be an
important field interfacing artificial intelligence and math-
ematics. [t attempts to perform symbolic calculations of
mathematical proofs by computers. Some classical theo-
rem provers (TP) were extended by techniques of symbolic
computing, e.g. Otter [McCUNE 94] allows to call exter-
nal algorithms out of proofs. Specialized prover packages
have been developed which are capable of performing sym-
bolic mathematical computations. For example, the inter-
active theorem proving project [UEBERBERG 94] developed
a program for the use of CAS to support mathematicians in
proving theorems in incidence geometry. However, there are
no environments integrating theorem provers and computer
algebra systems which consistently provide the inference ca-
pabilities of the first and the powerful arithmetic of the latter
systems.

Another aspect is the integration of several systems
in a common environment. Different possibilities to inte-
grate symbolic calculators and theorem provers are given
in [HoMANN & CALMET 94]. Since it is doubtful that one
single system can satisfy the multitude and divergency of
requests and problems the goal of this research is to a cer-
tain extent heterogeneous in the sense of integrating diverse
systems. Ideally, such an open mechanized mathematics en-
vironment should be easily extensible and should provide
interfaces to the existing widespread CAS and TP.

Some works exist to integrate different TP or CAS re-
spectively. [GIUNCHIGLIA et al. 94] introduces an architec-
ture for open mechanized reasoning systems which consists
of a reasoning theory as well as a control and an interac-
tion component. The long term goal is a methodology to
construct complex systems as a composition of several rea-
soning systems. CAS/#x [KAJLER 92] is a powerful system-
independent graphical user interface to some CAS (Maple,
Sisyphe, Ulysse). It was designed so that expert users can
set up connections to alternative CAS easily and at runtime.

[HarRRIsON & THERY 93] describes a bridge between the
theorem prover HOL and CAS. The CAS are used as an ora-
cle guiding the proof which is still done rigorously in HOL. In
accordance to [HOMANN & CALMET 94] this interaction is
classified as a master-slave relation (HOL as master), with-
out a common knowledge representation, and with no trust
at all. The advantage of this architecture is that certain alge-
braic operations become available inside the prover without
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Figure 1: Schematic Link between Isabelle and Maple

jeopardizing the security of the results. However, the prover
must be able to verify the results of the symbolic calculator.
Another approach is given in [JACKSON 94] and presents an
interaction between Nuprl and the Weyl computer algebra
system. In this case, Nuprl provides abstract algebra in ex-
pressive type theory and acts as an algebraic oracle to Weyl.
Again, both systems behave like black boxes, Weyl as mas-
ter, without common representation, but trusting Nuprl.

The integration presented in this paper describes a
prototype implementation of an interface with Maple
[CHAR et al. 92] as a slave to the tactical theorem prover
Isabelle [PAULSON 94]. It is a first step towards the de-
velopment of an open heterogeneous environment for do-
ing mathematics. The interface is designed by extending
the simplifier of Isabelle without any modification of Maple.
Since we do not have to take into consideration any idiosyn-
crasies of Maple except its syntax, it is very easy to link
Isabelle to other CAS as well. Unfortunately, this approach
does not allow to easily exchange Isabelle by another the-
orem prover. We discuss a more general environment in
[CALMET & HOMANN 95].

The simplifier of Isabelle is extended by introducing a
new class of simplification rules called evaluation rules in
order to make selected operations of Maple available. Addi-
tionaly, we specify syntax translations for the concrete syn-
tax of Maple. They enable Isabelle to communicate with
the computer algebra system as illustrated in figure 1.

This paper is organized as follows. Section 2 introduces
the basic concepts of Isabelle, i.e. theories and proofs, as
deep as required to describe the interface to Maple and
its semantics. Section 3 presents this interface as an ex-
tension of Isabelle’s simplifier. Section 4 describes how to
link Maple to Isabelle by specifying syntax translations and
defining evaluation rules. Section 5 presents some examples.
Although elementary, they offer good insight into the prob-
lems which can be solved by theorems and algorithms. In
the last section, we summarize the results and discuss our
future work.

2 The tactical theorem prover Isabelle

We present an interface with Maple as a slave to the tac-
tical prover Isabelle acting as master and controlling the
proof search. The concept of a tactical theorem prover was
introduced by Robin Milner [MILNER 85]. Theorems are
modeled as an abstract data type with deduction rules as
operations. Proofs are programs in the meta-language (usu-
ally ML). The advantage of this approach is that the user
has the spectrum from doing manual proof steps to applying
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complex search strategies. This section introduces Isabelle
only as far as needed for our work. A more detailed introduc-
tion to ML and Isabelle is given in [MILNER & TOFTE 91]
and [PAULSON 94] respectively.

[sabelle implements a meta-logic. This is based upon
simply typed A-calculus and has the connectives = which
expresses entailment, the meta-quantifier /\ which expresses
generality in rules and axiom schemes, and the equality =.
The meta-logic also contains axioms like P = P and de-
duction rules.

2.1 Theories

The meta-logic is used to specify the object-logic. The
object-logic allows to model the domain to reason in. For-
tunately, one need not build one’s own object-logic from
scratch, but may extend one of the various already existing
logics for Isabelle. Object-logics are specified using theory
definitions (figure 2).

<theory> = <parent theories>
+ <type definitions>
+ <constant symbols>
+ <syntax translations>
+ <rules>

Figure 2: Structure of an Isabelle theory definition

Note that functions and quantifiers are constants of a
function type and therefore can be declared in the constants’
section. Syntax translations play an important role in our
implementation, because they are used to specify the con-
crete syntax of Maple. This syntax is taken over into Isabelle
and thus Isabelle’s parsing and pretty printing functions are
used for the communication with the computer algebra sys-
tem. Axioms are specified in the rules’ section of a theory.

2.2 Construction of backward proofs

Isabelle’s main deduction rule is the resolution rule

[ sm] =0 [¢1;...;60] = ¢ — .
([p1;-- 513915 ¥m; dig1s. .. dn] = ¢)s(¢s = dis).
In backward proofs a theorem [¢1;...;¢n] = @ is viewed

as a proof state with main goal ¢ and subgoals ¢1,..., dn.
A proof of a formula ¢ starts with the initial proof state

¢ = ¢.



In order to refine the i1th subgoal with a rule the following
resolution on the proof state is performed:

rule proof state

new proof state

The head of the rule is unified with the sth subgoal'. Func-
tions that operate on the proof states are called tactics. Is-
abelle also provides functions that combine tactics, called
tacticals. They can implement search strategies like depth
first search.

The proof state is managed by Isabelle’s subgoal module.
The following commands are used to control a proof?:

goal : theory -> string -> thm list
by : tactic -> unit
result : unit -> thm

goal theory formula; starts a new proof. theory identifies
the theory. The goal is given as a ML-string. goal
returns the premises of formula, which are needed in
the proof.

by tactic; applies the tactic tactic to the proof state.

result(); returns the proved theorem. The proof state
must therefore pass certain correctness tests.

The most important tactics are:

resolve_tac : thm list -> int -> tactic
res_inst_tac : (string * string) list -> thm
-> int -> tactic

assume_tac int -> tactic

resolve_tac thms i3 refines the proof state using the ob-
ject-rules thms. Resolution is applied to the ith sub-
goal with the first matching rule.

res_inst_tac insts thm i this resolution tactic is used to
apply rules like substitution and induction. Such rules
usually allow a huge number of unifiers. The tactic
takes a list of explicit instantiations of variables in the
rule.

assume_tac 75 attempts to solve subgoal ¢ by assumption.

3 The Interface

3.1 Computer algebra systems as term rewrite systems

Computer algebra systems contain equation solvers. It
would be desirable that they could be used as unification
procedures for algebraic equational theories. Unfortunately,
even polynomial expressions over integers that contain vari-
ables cannot be unified. This is a simple consequence of
Matiyasevié’s theorem stating that Hilbert’s tenth problem
is unsolvable.

We consider the computer algebra system as a term
rewrite system. As shown in figure 3 conditional rewrite
rules can be used to model all the calculations that are per-
formed by computer algebra systems®.

Premises in the rules are important to prevent the com-
puter algebra system from incorrect calculations. In the de-
sign of the hybrid system these premises have to be selected
carefully. Consider the following Maple session.

Hf the subgoal contains assumptions or bound variables, the rule
is lifted first. Details are given in [PAULSON 94].

2The colon is followed by the ML-type. -> denotes a function.

3This approach does not permit to declare new functions during a
proof session. But this is not a real restriction: functions have to be
declared while a theory is designed.
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o Reduction to normal forms:

(X?—X3)(a+X-X) — X*'-3X°4aX?-3aX
e Execution of algorithms:

solutions(( ;1 g )x:O,x) — [( _32 )]

e Conditional rewrite rules express premises and do-
main restrictions:
a
a0 = e 1

Figure 3: A computer algebra system as a rewrite system

> a = 0;
a=0
>||/a;

1 =0

The equation 1 = 0 is derived, which will lead to a contra-
diction when assuming that a field is the underlying domain!

3.2 Semantics of the hybrid system

The action of the computer algebra system is embedded into
the prover by the schematic formula

[Py, ..

Provided that the premises Pi,..., P, hold, the term ¢ is
transmitted to the computer algebra system and reduced
yielding ¢'. The computer algebra system may simplify only
distinct terms. Depending on the application it should not
(or cannot) reduce terms that contain logical connectives like
=, A,V etc. Isabelle’s many-sorted term system allows to
treat this conveniently. The notion consistency w.r.t. sig-
nature is defined. Let X be the signature of the object-logic
and A C X the subsignature that can be understood by the
computer algebra system.

SPal=t=t"

Definition 1 The term algebra Tx(X) is called consistent
w.r.t. the signature A, iff for all constant symbols f € A any
term f(ay,...,an) € T(X) already lies in Ta(X).

In a consistent term algebra all subterms of a term are in
the subsignature T'4(X), provided that the outermost con-
nective belongs to the subsignature A. It is thus easy to
recognize terms that can be passed to the computer algebra
system during simplification. It only has to be verified that
the outermost connective lies in A.

Closure w.r.t. signatures ensures that a term ¢’ returned
by the computer algebra system (viewed as an operator E)
does not contain unknown function symbols. This notion is
necessary because algorithms in computer algebra systems
are very powerful and thus may produce “unexpected” re-
sults, for instance use expressions that lie in larger domains
to express the result, as the following summation example
from Maple shows:

> sum( k/(k+1), k=0..n );
n+1-Psi(n + 2) - gamma

The result is a rational number but the application of the
polygamma function i and Euler’s constant v are not.
The following definition ensures that the results returned
by the computer algebra system are “meaningful” in the
sense that their signature lies in the object-logics signature.



Definition 2 Let A C B C X. Then the operator E :
Ta(X) — Tp(X) is closed w.rt. Aand B.

It is straightforward to give the semantics of an object-
logic that is extended by a link to a computer algebra sys-
tem. The semantics of an ordinary object-logic is defined by
its axioms and by the meta-logic. With an enriched object-
logic new axioms may be generated at run time from the
evaluation rules and the computer algebra system’s result.
The evaluation rules may increase the logical power of an
object-logic. In order to obtain the semantics for every eval-
uation rule all axioms that can be generated that way must
be added. Let A be the signature of terms that may be
passed to the computer algebra system, B the signature of
the terms that may be returned by the system, ¥ the sig-
nature of the object-logic, A C B C X, Tx(X) consistent
w.r.t. the signature A, and F the evaluation function of the
computer algebra system that is closed w.r.t. A and B. For
every evaluation rule with premises P, ..., P, that can be
applied to a term ¢ € T'4(X) the axiom

[Py, ..

has to be added to the object-logic.

The model of an enriched object-logic is obtained by
these (infinitely many) axioms. The designer of an enriched
object-logic has to make sure that the specified axioms and
the evaluation rules are not inconsistent.

S Pa] =t =E(t)

3.3 Extension of Isabelle’s simplifier

[sabelle’s generic simplifier can be set up for object-logics.
It works for the equality relation =, performs unconditional
and conditional rewriting, and uses contextual information
(“local assumptions”). Isabelle’s simplification tactics are
controlled by simpsets. These contain a collection of rewrite
rules. The simplifier automatically tries to solve conditions
that arise from conditional rules by recursive application of
the rewrite rules.

We extend this simplifier and introduce a new class of
simplification rules that control access to the computer al-
gebra system. These rules are the evaluation rules described
in the previous paragraph. They are represented as data-
structures which contain a list of premises, a term pattern,
and the name of a function which enables to call in the com-
puter algebra system. For example, the following evaluation
rules could be specified for the natural numbers:

premises term  call of Maple
— a+b eval_map
b<a a—b eval_map
— axb eval_map
bla, b#0 afb eval_map

Isabelle’s rewriting system is based on conversions®.
These are functions that take a (meta-)simpset and a term
as arguments and return a simplified term. The basic con-
version is rewritec prover. It applies one rewrite rule and
tries to solve conditions arising from the application of a
conditional rule using prover. subc recursively simplifies all
the subterms of a term. We introduce a new conversion
evalc that behaves like rewritec but applies an evaluation
rule rather than a rewrite rule to the term. Another differ-
ence is that evalc tries to prove the premises of conditional

*The following is a somewhat simplified description of Isabelle’s
internals, but it is a good framework to explain what we did. The
mechanism of conversions is explained in detail in [PAULSON 83].
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rules before it applies them. This prevents illegal calls of the
computer algebra system, e.g. division by zero. Our simpli-
fication procedure is outlined by the following pseudo-code.

fun botc mss t =
let val t1 = subc mss t
in case evalc prover mss tl of
None => (case rewritec prover mss tl of
None => t1
| Some(t2) => botc mss t2)
| Some(t2) => t2
end

After recursively rewriting all the subterms, evaluation
rules are tried first. If they are not successful, rewrite rules
are tried. Otherwise the result is returned. Contrary to the
application of an evaluation rule, simplification is started
again after the application of a rewrite rule. It is assumed
that the computer algebra system has already tried all pos-
sible reductions. This procedure can be refined further, e.g.
after trying to find maximal subterms the computer algebra
system can process them in one step without simplifying all
smaller subterms.

An appropriately chosen prover can derive premises of
evaluation rules automatically. This makes conveniently ac-
cess to the computer algebra system.

3.4 Interface of the extended simplifier

The signature of the extended simplifier is shown in figure 4.
Simpsets can be constructed using the operations empty_ss,
addsimps, addevals and addeqcongs. setsubgoaler selects
the prover, i.e. an arbitrary tactic.

Simplification is applied to the proof state using the
tactics simp_tac, asm_simp_tac and asm_full_simp_tac.
All three tactics expect a simpset and a subgoal number.
asm_simp_tac uses assumptions as additional rewrite rules
and asm_full_simp_tac simplifies these assumptions one by
one, using each assumption in the simplification of the fol-
lowing ones.

4 Linking Maple to Isabelle

Our system is a prototype implementation. As mentioned
previously, we are developing a heterogeneous environment
which enables to integrate many theorem provers and com-
puter algebra systems. We could have chosen another com-
puter algebra system instead of Maple.

Three simple functions make Maple available within Is-
abelle’s ML-environment.

start_maple : string -> unit
exit_maple : unit -> unit
eval_maple string -> string

start maple name; starts a Maple session (the pretty-
printing mode being turned off) and links it to the
MI-environment Isabelle is running in using simple
Unix-pipes. This function also passes the file name to
the computer algebra system. The file may contain
initialising Maple code, e.g. definitions of new proce-
dures.

exitmaple (); exits the Maple session.



infix addsimps addeqcongs addevals delsimps
setsolver setloop setmksimps setsubgoaler;

signature E_SIMPLIFIER =

-> int -> tactic

-> int -> tactic

-> int -> tactic

* thm list -> simpset

* thm list -> simpset

* thm list -> simpset

* (Sign.sg * string list * string * string #

(thm -> term -> thm)) list -> simpset

sig

type simpset

val simp_tac: simpset
val asm_simp_tac: simpset
val asm_full_simp_tac: simpset
val addeqcongs: simpset
val addsimps: simpset
val delsimps: simpset
val addevals: simpset
val empty_ss: simpset
val merge_ss: simpset
val strip_evals_ss: simpset
val setsolver: simpset *
val setloop: simpset *
val setmksimps: simpset *
val setsubgoaler: simpset *
val prems_of_ss: simpset
val rep_ss: simpset
val rep_evals: simpset

end;

* simpset -> simpset

-> simpset

(thm list -> int -> tactic) -> simpset

(int -> tactic) -> simpset

(thm -> thm list) -> simpset

(simpset -> int -> tactic) ->

-> thm list

-> {simps: thm list, congs: thm list}

-> (Sign.sg * string list * string * string *
(S8ign.sg —-> term -> term)) list

simpset

Figure 4: Signature of the extended simplifier

eval maple term; passes term to Maple. Semicolon and
linefeed are added to start evaluation. Maple’s result
is returned as a string. Very large expressions that are
cut into several lines by Maple are reconstructed by
this function and returned as a single string.

To integrate Maple within an Isabelle theory two steps need
to be done: specifying the concrete syntax of Maple and
defining evaluation rules in order to make selected opera-
tions of Maple available.

4.1 Specifying the concrete syntax

Functions and operations are specified in the constants’ sec-
tion of an Isabelle theory. Functions need a function type
as illustrated by the following two examples:

n[a, a] => an
"a => a"

iged
expand ::

We define a to be the type of all objects the computer al-
gebra system deals with. Infix operations are supported by
[sabelle. Syntax translations are generated automatically.
One has to choose precedence numbers that reflect Maple’s
precedences, e.g.:

Moyt
rgl

=> a"
=> bool"

"[a, al
"[a, al

(infixl 70)
(infixl 50)

The syntax of Maple’s higher order functions like sum(f,
1=k..l) can also be specified in Isabelle. In Isabelle’s type
theoretic framework this quantifier is declared

FinSum :: "[a => a, a, a] => a"
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as internal representation. The arguments of FinSum are
a function and the two boundaries of the summation. In
comparison Maple’s syntax specifies an expression and the
bound variable. This is

"@FinSum" :: "[a, idt, a, a] => a"

(" (4sum’ ( =_.._7))" 100)

- "=

where the string between parentheses specifies Maple’s
mixfix-syntax. The translation

"sum(f, j=k..1)" == "FinSum(%j.f, k, 1)"

converts between the two representations automatically
while printing and parsing. %j.f is the A-notation of the
function with argument j and body f.

4.2 The extended simpsets

It is not possible to model domains in Isabelle’s type sys-
tem, because it does not handle subtyping information like
Natural C Integer. Therefore, we model domains as sets
and, for example, define Nat to be the natural numbers. We
define the simpset Nat_ss. This contains rewrite rules pro-
viding typechecking information, and evaluation rules. The
latter specify that all terms with a connective of the natu-
ral numbers as outermost function symbol can be passed to
Maple.

Typechecking rules are axioms of our theory. Some ex-
amples are (the colon is Isabelle’s symbol for the member-
ship relation):

add_type "[| a: Nat; b: Nat |] ==> a + b : Nat"
sub_type "[| a: Nat; b: Nat;
b <=a |] ==>a - b : Nat"



sum_type "[| k: Nat; 1: Nat;
ALL i:Nat. k<=i & i<=1 --> £(i): Nat
==> FinSum(f, k, 1) : Nat"

1]

Evaluation rules are written as quintuples

(sign, [nPln,.”, nPnn], ”t”, ”tT”, €UCll)

where sign gives information for printing and parsing. The
second expression is the list of premises, the third is the term
to be matched, the fourth its type and the fifth the function
to be called.

For the above operations we have the corresponding eval-
uation rules:

(sign_of Decimal.thy,

[na: I\Iat", b I\Iat"], Ya + b”,
(sign_of Decimal.thy,

["a: Nat", "b: Nat'", "b::a <= a"], "a - b",
"a", eval_map)
(sign_of Decimal.thy,

["k: Nat", "1: Nat",

"ALL i:Nat. k<=1 & i<=1 --> f(i): Nat"],
"FinSum(f, k, 1)", "a", eval_map)

"a", eval_map)

The type of the expression to be matched is always a. The
evaluation function eval_map is composed of the function
eval_maple and Isabelle’s functions for printing and parsing.

The interaction between typechecking rules and evalua-
tion rules during simplification is illustrated by some exam-
ples in the next section.

5 Examples

The examples presented in this section use the computer
algebra component of our system for calculations on natural
numbers. They can be proved by Isabelle alone using Peano
arithmetic, but this approach has linear space complexity
for the representation of numbers, and is very inefficient if
“big” nmumbers occur. The benefit of calling Maple is its
efficient arithmetics.

5.1 Calculations with natural numbers

In this section we verify the equation 14+9x 11 = 100, trivial
to a human but not to a theorem prover! The internal repre-
sentation of numbers are lists of digits. One very inefficient
possibility is to give rewrite rules that perform addition and
multiplication on such lists. Paulson demonstrated this for
binary numbers and managed to derive the product out of
two ten-bit numbers within 14 seconds [PAULSON 94]!

Our proof starts with the goal command. (Input lines

are identified by a dash.)

- goal Decimal.thy "1 + 9 * 11 =
Level O

1+ 9 % 11 =100

1. 1+ 9 % 11 = 100

val it = [] : thm list

100";

[sabelle returns the proof level as well as the main goal and
all subgoals. At the beginning the main goal equals the only
subgoal. We start to solve it by simplification:

- by (simp_tac Nat_ss 1);

Checking premises for evaluation of:

[l 9 : Nat; 11 : Nat |] ==> 9 * 11 == 7CompAlgSys
Rewriting:
9 : Nat == True
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Rewriting:
11 : Nat == True
SUCCEEDED
9 % 11 == 99
Checking premises for evaluation of:
[l 1 : Nat; 99 : Nat |] ==> 1 + 99 == 7CompAlgSys
Rewriting:
1 : Nat == True
Rewriting:
99 : Nat == True
SUCCEEDED
1+ 99 == 100
Checking premises for evaluation of:

[l 100 : Nat; 100 : Nat |] ==> 100 = 100 ==
7CompAlgSys
Rewriting:
100 : Nat == True
Rewriting:
100 : Nat == True
SUCCEEDED
100 = 100 == True
Level 1
1+ 9 % 11 = 100
No subgoals!
val it = () : unit

In order to illustrate the intermediate steps and the interac-
tion between rewrite rules for typechecking and evaluation
rules, the trace mode of the simplifier was turned on. In
this proof Maple performs the rewrites 9 x 11 — 99 and
1499 — 100. Finally, it verifies the equation 100 = 100,
trivial for Isabelle too. One can get the result and bind it
to an identifier.

- val testl = result();

val testl ="1+ 9 % 11 = 100" : thm

5.2 A finite summation

Maple contains a collection of algorithms to handle finite
summation. Let us consider the following equation

k

> n+1)=(k+1)".

n=0

Although this can be proved in our system without an in-
duction, the proof is still cumbersome because we have to
establish the premise of the evaluation rule for summation,
stating that all items summed up are natural numbers. We
omit the three step proof that does not involve the computer
algebra system and give only the result as a lemma:

val lemma = "7k : Nat ==> ALL i:Nat.

0<=1&i<=%% -->2=x%1i+ 1 : Nat" : thm

The proof is straightforward:

- val [prem] = goal Decimal.thy "k: Nat ==
= sum(2*%n+1, n=0..k) = (k+1)"2";
Level O
sum(2 * n + 1, n=0..k) = (k + 1) ~ 2

1. sum(2 * n + 1, n=0..k) = (k + 1) ~ 2
val prem = "k : Nat [k : Nat]" : thm

The premise is bound to the identifier prem and used with
lemma as a rewrite rule in the proof.



- by (simp_tac (Nat_ss addsimps [prem, lemma]) 1);
Level 1

sum(2 * n + 1, n=0..k) = (k + 1) ~ 2

No subgoals!

val it = () : unit

- val test3 = result();

val test3 = "7k : Nat ==> sum(2 * n + 1, n=0..%k)
= (?k + 1) - 2" : thm

Isabelle has replaced the variable k by the schematic variable
?k. This makes it possible to use the theorem with any
instantiation for k.

5.3 An induction proof
Our last example gives a formal proof for
[n:Nat;5 <=n] = n" < 5"

The proof uses the induction rule

induct
"[| n: Nat; a: Nat;
P(a);
Mx., [l x: Nat; a <= x; P(x) |] ==> P(x + 1);

a<=mn|] =>Pm)"

and the two congruence properties for the <-relation:

le_add "[| a: Nat; b: Nat; c: Nat; d: Nat;
a<=b; c<=d|] =>a+c<=b+4d"

le_mult "[| a: Nat; b: Nat; c: Nat; d: Nat;
a<=b; c<=d|] ==>ax*xc<=b *x q"

Starting the proof and applying the induction rule leads to:

- val [n_nat, bound] = goal Decimal.thy
-

= [l n: Nat; 5 <=n |] ==>n -~ 5 <=5 ~ n";
Level O

n~5<=5"n

1. n " 5<=5"n

val n_nat = "n : Nat [n : Nat]" : thm
val bound = "5 <= n [5 <= n]" : thm

- TYPE_Nat_chks := Nat_typechecks @ [n_nat];

val it = () : unit

- by (TYPE_Nat (res_inst_tac

= [("a", "5"), ("n", "n")] Decimal.induct 1));
Level 1

n~5<=5"n
1.5 " 5<«x=5 "5

2. "x,. [l x : Nat; 5 <=x; x " 5<=5 " x |] ==
(x+1) " 5<=5" (x+1)

3. 5<=n

val it = () : unit

a was explicitly instantiated to 5 and the induction variable
is n. TYPE_Nat is a tactical we designed to solve subgoals
that provide typing information. In this case the first two
subgoals correspond to the first premises of the induction
rule. The first subgoal corresponds to the base of the induc-
tion, the second to the induction step and the third states
that the theorem is only valid for n greater or equal to the
base case. The following two steps of the proof solve this
boundary condition and the induction basis by the assump-
tion bound and the reflexivity of < respectively.

- by (rtac bound 3);
Level 2
n~5<=5"n
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1.5 °5<«x=5 "5

2. "x, [l x : Nat; 5 <=x; x ~5<=5 " x |] ==
(x+1) " 5<=5" (x+1)
val it = () : unit
- by (rtac le_refl 1);
Level 3
n~5<=5"n
1. "'x. [| x : Nat; 5 <=x; x ~ 65 <=5 "~ x |] ==
(x+1) " 5<=5" (x+1)
val it = () : unit

To expand both sides of the conclusion we introduce the
function symbol expand twice before Maple is called to ex-
pand the products.

- by (res_inst_tac
L¢P, "hy.y <=5 ~ (x + 1)")] expandE 1);

- by (res_inst_tac [("P",

= vy.expand((x + 1) ~ 5) <= y")] expandE 1);
Level 5

n~5<=5"n

1. "'x. [| x : Nat; 5 <=x; x ~ 65 <=5 "~ x |] ==
expand((x + 1) ~ 5) <= expand(5 ~ (x + 1))

val it = () : unit
- by (asm_simp_tac Nat_simplify_ss 1);
Level 6
n~5<=5"n

1. "'x. [| x : Nat; 5 <=x; x ~ 65 <=5 "~ x |] ==

x "5 +5%x "4+ 10 % x "~ 3 +
10 * x ~ 2+ 5 % x+1<=5=%5 " x

val it = () : unit

The following estimates, e.g. 5 * < 5%, are proved using
the assumption bound, the induction hypothesis, and the
rules le_add and lemult. Our manual proof takes many
additional steps to eliminate all subgoals. It can be found
in [BALLARIN 94]. A suitable search strategy could do this
automatically, for example by setting up Isabelle’s original
simplifier to use the extended simplifier.

6 Conclusion

We have outlined a methodology for linking algebraic algo-
rithms whose properties can be specified as axioms to the
theorem prover Isabelle. This enables the prover to access
these properties. Isabelle supports links to external systems
through easy formalization of the required “theories” in any
syntax, in this case the syntax of Maple. Additionally, Is-
abelle supports choosing granularity to automate the search
for complex proofs. The interface was designed as part of
an extended simplifier of the prover such that no additional
extensions of Isabelle’s kernel are required to link to another
computer algebra system.

Integrating algorithms in theorem proving is particularly
useful when handling complex expressions or numbers, es-
pecially in mathematics. The mathematical knowledge of
computer algebra systems offer a powerful tool, e.g. term
orders for associative and commutative equational theories.
Moreover, the given examples illustrate how CAS can be
used at the heuristic level of proof search.

The development of this interface is a prototype and
testbed for future efforts. It is part of our research project
Aeppa® for problem solving in mathematics based upon

5Learning Environment for Mathematics and Mathematical Appli-
cations



CAS, TP, knowledge representation systems, explanation-
based learning, and distributed Al. Beside the implementa-
tion of mathematical “theories” further directions must be
investigated:

e Type systems play a crucial part in modern computer
algebra systems which are more than only extensive
collections of algebraic algorithms. They are of par-
ticular importance in symbolic mathematical comput-
ing as they can contribute to guarantee correctness of
computations and proofs. Since no other CAS has a
powerful type system, the integration of Axiom ap-
pears to be promising. The developers of Isabelle have
been working on providing type classes to their prover
as well. However, the concept of subtyping is disre-
garded while being important to CAS.

o We classified different types of architectures to com-
bine theorem proving and symbolic mathematical com-
puting [HOMANN & CALMET 94]. The prototype pre-
sented in this paper corresponds to an architecture
consisting of a computer algebra system, a theorem
prover, and a common evaluator (bridge). The best
possible mutual benefit is achieved either by a common
knowledge representation or by standardized interfaces
between all systems for doing mathematics. The for-
mer requires redesign of present CAS and TP or de-
velopment of new systems. Such a development may
lead to a common and explicit representation of the
embedded mathematical knowledge, e.g. theorems, al-
gorithms and types. Moreover, representing theorems
corresponding to algebraic algorithms explicitly allows
the systems to reflect and explain their behaviour in-
stead of being black boxes. The design of the latter
demands to develop a common and general communi-
cation language and appropriate interfaces. The ca-
pability to connect such systems in a straightforward
manner is the main step towards an open mechanized
mathematics environment.
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