
In M. Koppel, E. Shamir (Eds.), Proceedings of 4th Bar-Ilan Symposium on Foundations of Artificial Intelligence
(BISFAI’95), Ramat Gan and Jerusalem, pp. 222–230, 1995.

Distributed Mathematical Problem Solving

JACQUES CALMET KARSTEN HOMANN

University of Karlsruhe
Institute for Algorithms & Cognitive Systems

Am Fasanengarten 5 � 76131 Karlsruhe � Germany
fcalmet,homanng@ira.uka.de

Abstract

Coupling computer algebra systems and theorem provers enables to
extend the capabilities they have when standing alone. We report on
an ongoing research project whose long term goal is to provide an open
environment for doing mathematics including reasoners and symbolic
calculators. It is extensible by users which can construct complex systems
by combination and insertion of existing packages. These systems may
be based on different logics, formalisms, data structures, interfaces. A
result of this work is illustrated by a prototype implementation of an
interface between Isabelle and Maple.

Keywords: symbolic mathematical computing, theorem proving

1 Introduction

It has been said that Artificial Intelligence (AI) is exporting its successes. Two such
examples are computer algebra (CA) and theorem proving (TP). They are today
independent research fields. We are investigating how it is possible to integrate
them anew. It is not surprising that such a goal leads to rely on their original
“father”: AI. Coupling CA and TP enables to extend the capabilities they have when
standing alone. In particular, methods from learning become almost mandatory.
This is why the environment we are designing is called �����1. However, we report
here only on some basic design features of our approach and not on ����� as a
whole.

1Learning Environment for Mathematics and Mathematical Applications



One characteristic is that we are dealing with distributed problem solving in
mathematics. Nowadays two types of systems are available for solving mathemati-
cal problems: computer algebra systems (CAS) and theorem proving systems (TPS).
A straightforward integration is difficult for the following reasons: (1) many sys-
tems, especially CAS, are copyrighted and allow neither extension nor connection
to other software modules, (2) they were designed, implemented and validated as
stand-alone systems, (3) they are based upon particular internal representation for-
malisms and do not allow external access to the embedded knowledge, (4) usually,
no standards or languages for interfacing exist.

Typically, a given problem is transformed into the language of one system and
solved using algorithmic (CAS) or deductive (ATP) knowledge. When relying on
only one formalism possibly only subproblems can be solved. However, different
subproblems are described more naturally in different theories and logics, such as
higher-order logics, dynamic and temporal logics. Ad-hoc logics often enable an
efficient computation of solutions, what would not be possible with general provers.
The availability of several theories, logics, and their interconnections enable a natu-
ral and direct formulation of problems. Just as important is a common environment
which allows to interchange between theories. [6] describes an architecture for an
open mechanized reasoning system (OMRS) with different logics, models, vocabu-
laries, data structures, strategies, and interaction capabilities. Its goal is to provide
a framework and a methodology wich allow users to compose existing reasoning
modules or add new ones in a “plug and play” manner. However, they do not
discuss reasoning by symbolic computation in a model.

In symbolic mathematical computing there are several approaches to develop
common, portable, and extensible interfaces as well as restricted communication
mechanisms ([7] and figure 2). CAS/� [10] describes a graphical user interface
which allows communication with already existing CAS as well as with user de-
fined software packages. New tools can be added, connections between modules
can be specified, and the user interface (formulae editors, menus, visualization of
graphics) can be extended even during runtime. This is achieved by the translation
of the underlying system, programming and representation languages respectively.
Varying views of the mathematical objects, e.g. graphics, text, formulae in different
syntax, can be passed to the corresponding module. To provide the universal means
of communicating mathematical information between applications is aim of Open-
Math [11], a project to standardize the exchange of mathematical information. A
second goal of OpenMath is the development of an open distributed processing of
mathematical information. However, the systems are not intended to communicate
directly with each other to solve specific subproblems, they are still black boxes. Ad-
ditionally, no theorem provers can be included yet. To include TPS is an extension
of the OpenMath objectives.



The advantages of a possible combination of both approaches are twofold: (1)
improved expressive power, (2) more powerful inference capabilities. There are
several possible approaches to integrate theorem provers and computer algebra sys-
tems. On one hand classical CAS usually offer a straightforward programming
language with ad-hoc implementations of rewriting. One approach towards intro-
ducing theorem proving in CAS is an extension of Analytica [5], a Mathematica
package to prove theorems in elementary analysis which solves an extensive collec-
tion of nontrivial mathematical problems. On the other hand some classical TP were
extended by techniques of symbolic computing, e.g. Otter allows to call external
algorithms out of proofs. Specialized prover packages have been developed which
are capable of performing symbolic mathematical computations. However, there
are no environments integrating theorem provers and computer algebra systems
which consistently provide the inference capabilities of the former and the powerful
arithmetic of the latter systems.

We prove through an example, the integration of Maple and Isabelle, that we can
improve the capabilities of theorem proving systems. The disadvantage of this kind
of interaction lies in the black box behaviour of most CAS and TPS. No system can be
plugged into such an environment directly if it cannot explain its solution or provide
results and accept information incrementally. The ability to reflect its behaviour has
been addressed in the TP community but not in CA, although becoming increasingly
important.

The explicit representation of the embedded mathematical knowledge opens the
black boxes and allows reflection by explanations. The formalization of schemata
allows the environment to understand, control, and modify its behaviour.

To summarize, what is needed is a variety of particular logics, theories, packages,
CAS, TPS. Thus we work towards an environment and language for semantically
describing both CA and reasoning systems and efficient cooperation formalisms to
manage the interaction of several components for doing mathematics.

This paper is organized as follows. First we introduce the notion of an open mech-
anized mathematics environment and illustrate some kinds of interaction between
reasoning systems and symbolic calculators. Section 3 describes an interface be-
tween the tactical theorem prover Isabelle and the computer algebra system Maple.
Although the examples are elementary, they offer a good insight into problems
which can be solved by theorems and algorithms. Section 4 gives a contribution to
the discussion on how to implement reflection in algebraic engines. Those behave
like black boxes because the embedded mathematical knowledge is not represented
explicitly.



2 Specification and Combination of Components

Providing a high-level mechanism for component combination adequate for proto-
typing enables to adapt new modules by defining a formal external connection.
Reasoning structures [6, 14] represent provisional proof fragments in the construction
of derivations or proofs by different reasoning systems. Each proof can be described
by such structures. External access to reasoning structures is given by handles
[15] which represent local contexts, e.g. collections of known facts, constraints,
and assumptions. Open mechanized reasoning systems (OMRSs) can cooperate by
exchanging knowledge through handles. The unified interface allows to extend
reasoning environments easily by “plug and play”.

We extend the notion of reasoning structures and handles for additional inter-
action and cooperation with computer algebra systems. Such an open mechanized
mathematics environment (OMME) is defined to contain OMRSs and open mecha-
nized computation systems (OMCSs) leading to

Reasoning Theory = Sequents + Rules
Reasoning System = Reasoning Theory + Control

OMRS = Reasoning System + Interaction
OMCS = Symbolic Calculator + Interaction

OMME = OMRS� + OMCS�

An OMME is a collection of reasoning and computation systems which provide
interaction for cooperative problem solving. At this stage, several possible kinds of
interaction between a reasoning system (RS) of a OMRS and a symbolic calculator
(SC) of OMCS are available [9]. Three examples are given in figure 1.

SC

Evaluator

User Interface

RSSC

Evaluator

User Interface

RSSC

Evaluator

Knowledge Base

User Interface

RS

Figure 1: Interaction between Reasoning System and Symbolic Calculator

The first kind of interaction allows a direct cooperation of several systems with a
common knowledge representation. Due to the stand-alone character and copyright
of many systems, such an interaction is impracticable in most cases. However, the



environment should support the direct interoperationability of systems providing
such an interaction, for instance Mathematica and Analytica [5].

Secondly, a unidirectional link from one system to another one allows the imme-
diate call of algorithms out of proofs. It extends the capabilities of both providing
incremental problem solving. As an example, we have implemented an interface
between Isabelle and Maple illustrated in the next section.

Finally, in the case of bidirectional interaction arbitrary combinations of algo-
rithms and theorems can be applied. This interaction can be generalized to a
mathematics-software bus [7] as shown in figure 2. The generalization also includes
both previous cases: a common knowledge representation module can be connected
to the bus and some components may only provide unidirectional links. The bus
must provide a standardized protocol to exchange information between mathemat-
ical applications.

Maple Mathematica

IsabelleMagma

Matlab

Data Base

Knowledge Repr.

User Packages

Formula Editor

Printer, Plotter,
Monitor

Window/
Screen Manager

Formatter File System
Disk

. . . 

. . . 

Num. Math.
e.g. Nag Lib.

Prog. Languages

Nqthm

Figure 2: Mathematics-Software Bus

3 Interfacing Isabelle and Maple

As an example of combinig a reasoner and a computer algebra system we have
implemented an interface between Isabelle [13] and Maple [4]. This interface is
achieved by extending Isabelle’s simplifier, but without any modification of Maple.
Maple behaves as a black box in this cooperation, a disadvantage we discuss in the
following section.

The tactical theorem prover Isabelle implements a meta-logic which is used to
specify logics to be used for reasoning (object-logics). The computation of the CAS



is embedded into the prover as a schematic formula

��P1� � � � �Pn�� � t � t�

with P1� � � � � Pn premises, t� a term computed by Maple. The CAS may simplify only
distinct terms and cannot reduce terms containing logical connectives. Therefore,
we define a semantic by providing consistency with respect to a signature [1]. The
extension of Isabelle’s simplifier is done by defining simplification sets which control
the simplification tactics. We introduce a new class of rules we call evaluation rules
[1] which give access to the CAS. To integrate Maple within an Isabelle theory two
steps were required: specification of Maple’s concrete syntax and definition of these
evaluation rules. Figure 3 illustrates the achieved interaction.

User

Evaluator

Simplifier Symbolic
Calculator

Algebraic Algorithms,
Normal Forms, ...

Maple

Proof Manager

Reasoner

Isabelle

Meta
Logic

Syntax Transformations

Extended
Simplifier

Logics, Theories, Simpsets, ...

Figure 3: Schematic Link between Isabelle and Maple

The combination of both systems enables to prove new theorems by symbolic
computations and reasoning, e.g. arithmetics with numbers, finite and infinite
summations, and proofs by induction on polynomial expressions [1]. Examples
where efficiency is improved by external calls to Maple are 1�9�11 � 100 (trivial to
a human but not to a theorem prover) or

P
k

n�0 �2n � 1� � �k � 1�2. The application
of Maple avoids using the inefficiency and complexity of the Peano arithmetic.

An example of a theorem hard to prove by Isabelle alone is �n � 5 : n5 � 5n.
Maple can be used to expand the products in Isabelle’s proof by induction, e.g.
�n � 1�5 � n5 � 5n4 � 10n3 � 10n2 � 5n� 1.

4 Reflection, Black Boxes and Schemata

For the purpose of useful integration, mathematical components must be able to
interact with the other modules in sophisticated ways. Deciders and black boxes
which only provide their solution (yes, no, or result of algebraic algorithms) are not
adequate in general, because they neither do work incrementally nor accept ques-
tions about their internal knowledge. In the best case they query other components



for information about entities not in their domain of expertise. There has been some
work on an architecture for structuring and specifying integrable reasoning modules
[15, 6] which opens the black boxes.

Components for symbolic mathematical computing can be introduced by extend-
ing the notion of handles [15] only available in reasoning systems. They represent the
information contained in the local context of reasoning specialists, e.g., collections
of facts or assumptions.

The main problem when generalizing to CAS is that such handles are difficult to
introduce since a CAS is not reflective in the sense of [12]:

A reflective system is a system that has an internal representation of itself,
and the ability to use such a representation to understand, control, and
modify its own behavior.

One of the ideas of our approach is to introduce a schema-based representation
of mathematical structures and algorithms. Examples of such schemata are given
(see [9] for details) in figure 4. They can be represented in an extension of our hybrid
knowledge representation system Mantra [2].

Name Differentiate
Variables x� n� expr

Preconditions Number(x�
Equation d

dx
exprn � n expr d

dx
exprn�1

Name Group
Based-On Monoid
Sorts Gr
Operators inv :: Elt � Elt
InitialProps �x 	 Elt: inv�x� f x � ne

Name gcd-primitive�?a� ?b� �?g
Signature ?A 
 ?A � ?A
Constraints isa (?A, UniPoly�x�UFD�)
Definition
Subalgs primitive-part

pseudo-remainder
content
gcd
multiply

Theorems
Function GcdPrimitive

Figure 4: Examples of Equation, Type, and Algorithm Schemata

Moreover, the resulting components are able to extend their meta-knowledge
incrementally by explanation-based learning [8].

This explicit representation allows reflection by several kinds of explanation: (1)
Which algorithms were used? (2) Which parameters and types are required/ given?
(3) What is the mathematical meaning of the solution? (4) Why is the output the
solution?

The explicitly represented knowledge of a symbolic calculator (schemata) or
reasoning system is called a context. These contexts are a generalization of handles.



Let c1� c2� ��� range over such contexts. There is a pre-order c1 � c2 on contexts
expressing that c2 is reachable by c1 by adding new information. The relation is
transitive and reflexive and behaves consistent with � defined on handles [15].

Symbolic calculators must accept information incrementally and provide their
mathematical knowledge. The two important families of operations on contexts are
telling facts and asking questions. These primitives, called tell and ask, are also
the primitives of the logical level of our hybrid knowledge representation system.
Some example interrogations ask�c� q� of Mantra’s knowledge bases representing
contexts are: (1) is formula f of q entailed by c, (2) is attribute a of q computable
with context c, (3) solve q by computation with context c. The answer might be
four-valued fyes� no� unknown� externalg where external means c can try to solve
q by external call to another context c� perhaps requesting another OMRS or OMCS.
tell�c� k� tells a context new facts to give a new context with additional information k

(c� tell�c� k�). We also adopt formalisms for extraction and composition of contexts.

5 Conclusion

We report on an ongoing research project whose long term goal is to provide an
environment for doing mathematics including reasoners and symbolic calculators.
It is extensible by users which can construct complex systems by combination and
insertion of existing systems. These systems may be based on different logics,
formalisms, data structures, interfaces. A result of this work is to integrate CA and
TP. This is illustrated by a prototype implementation of an interface between Isabelle
and Maple. The work in progress consists of:

� One part of this project extends the concept of reasoning structures and rea-
soning theories to provide additional structuring and specification of symbolic
mathematical calculators. For this purpose, a complete characterization of both
reasoning systems and symbolic calculators must be developed.

� The mathematics-software bus is defined to have a primitive cooperation pro-
tocol. It is specified only for transfering messages to the bus. This bus and the
protocol have to be extended by a control unit and specification of communi-
cation and cooperation mechanisms.

Among the many questions arising from such a project are the following ones:
What must be specified to interconnect and integrate reasoning and calculation
devices? Is it possible to interact with systems which are not intended to be used
interactively? How can systems deal with information about entities not in their
domain of expertise? What mathematical concepts and structures are necessary to
establish a semantics for an open mechanized mathematics environment?



References

[1] C. Ballarin, K. Homann, J. Calmet, Theorems and Algorithms: An Interface between
Isabelle and Maple. In C. Traverso (Ed.), Proceedings of International Symposium
on Symbolic and Algebraic Computation (ISSAC’95), Montreal, Canada, ACM
Press, 1995, to appear.

[2] G. Bittencourt, J. Calmet, K. Homann, A. Lulay, MANTRA: A Multi-Level Hybrid
Knowldege Representation System. In T. Pequeno, F. Carvalho (Eds.), Proceedings
of the XI Brazilian Symposium on Artificial Intelligence, pp. 493–506, 1994.

[3] J. Calmet, J.A. Campbell, Artificial Intelligence and Symbolic Mathematical Com-
puting, Editors, Lecture Notes in Computer Science, Springer Verlag, 1994, to
appear.

[4] B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan, S.M. Watt,
Maple V Language Reference Manual, Springer Verlag, 1992.

[5] E. Clarke, X. Zhao, Analytica – An Experiment in Combining Theorem Proving
and Symbolic Computation, Technical Report CMU-CS-92-147, Carnegie Mellon
University, 1992.

[6] F. Giunchiglia, P. Pecchiari, C. Talcott, Reasoning Theories – Towards an Architec-
ture for Open Mechanized Reasoning Systems, 1994, to appear.

[7] G. Gonnet, Semantics and Purposes of OpenMath, slides of talk presented at Second
OpenMath Workshop, 1992.

[8] K. Homann, Integrating Explanation-Based Learning in Symbolic Computing. In
J.W. Brahan, G.E. Lasker (Eds.), Advances in Artificial Intelligence – Theory
and Application II, Volume II, pp. 130–135, 1994.

[9] K. Homann, J. Calmet, Combining Theorem Proving and Symbolic Mathematical
Computing. In [3].

[10] N. Kajler, CAS/PI: a Portable and Extensible Interface for Computer Algebra Sys-
tems. In Proceedings of International Symposium on Symbolic and Algebraic
Computation (ISSAC’92), pp. 376–386, ACM press, 1992.

[11] A. van Leeuwen, M. Roelofs, A. Strotmann, Objectives of OpenMath, draft version
0.8.3, 1995.

[12] P. Maes, Issues in computational reflection. In P. Maes, D. Nardi (Eds.), Meta-Level
Architectures and Reflection, pp. 21–35, North-Holland, 1988.

[13] L.C. Paulson, Isabelle — A Generic Theorem Prover, Lecture Notes in Computer
Science 828, Springer Verlag, 1994.

[14] C.L. Talcott, Towards a Framework for Specifying Components of Automated Reason-
ing Systems: A report on work in progress. In TTCP XTP-1 Workshop on Effective
Use of Automated Reasoning Technology in System Development (EUARTSD),
1992.

[15] C.L. Talcott, Reasoning Specialists Should be Logical Services, Not Black Boxes, Pro-
ceedings of CADE-12 Workshop on Theory Reasoning in Automated Deduc-
tion, pp. 1–6, 1994.


