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Abstract. An intelligent mathematical environment must enable sym-

bolic mathematical computation and sophisticated reasoning techniques

on the underlying mathematical laws. This paper disscusses di�erent
possible levels of interaction between a symbolic calculator based on

algebraic algorithms and a theorem prover. A high level of interaction

requires a common knowledge representation of the mathematical knowl-
edge of the two systems. We describe a model for such a knowledge base

mainly consisting of type and algorithm schemata, algebraic algorithms

and theorems.
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1 Introduction

The dream of \doing" mathematics on a computer is progressively becoming
true. Ideally, an intelligent assistant for doing mathematics will be a user friendly
interactive environment allowing to perform computations, to prove theorems
and to support formal reasoning and advanced tutoring. Such an environment
must thus rely on some sophisticated AI techniques, e.g. automated theorem
proving, machine learning and planning.

At present, two clases of mathematical computations can be e�ciently per-
formed. On one side, computer algebra systems (CAS) usually o�er a large
collection of powerful algebraic algorithms and a straightforward programming
language. In classical systems the mathematical knowledge, e.g. de�nitions of
mathematical structures, properties of operators of a domain, domains of com-

putation, range of algorithms and their mathematical speci�cation, is hidden in
the algebraic algorithms. Axiom [JeSu92] allows the de�nition of abstract data
types including operators and domains of computation. However, no AI methods
(e.g. automated theorem proving, learning) are provided. CAS are very e�cient
in computing symbolic solutions through given algorithms but cannot derive
new theorems or lemmas. On the other side, automated theorem provers (ATP)
have achieved remarkable results in proving non-trivial mathematical theorems.
But they lack embedded mathematical knowledge such as algebraic algorithms



or intelligible representations of proofs and they are di�cult to use. Moreover,
they require huge search spaces.

It is thus natural to integrate theorem proving and symbolic mathemati-
cal computing in a common environment. We report on such an environment,
�����1, which enables to compute with algebraic algorithms, to derive theorems,
to deal with vertical or inclusion polymorphisms, and to learn and apply equa-
tion schemata. The explicit formalization of mathematical dependencies provides
new possibilities to explain the solution steps.

This paper is structured as follows. Section 2 illustrates di�erent levels of
interaction between a symbolic calculator using algebraic algorithms and a the-
orem prover. A commonmathematical knowledge base stores the domain speci�c
problem solving knowledge and is described in section 3. An overview of �����
in section 4 is followed by some concluding remarks in the last section.

2 Mathematical Problem Solving by Algorithms and

Theorems

When solving problems, mathematicians follow a `Mathcycle' [VeVe94]: concep-
tion, naive formulation, exploration, tentative proof, formulation, proof, publi-
cation, education, and use. Many packages which aid mathematicians in some of
these steps have been developed, e.g. Am [LeBr84] for concept formulation, CAS
for application of algorithms, ATP for veri�cation and discovery of theorems,
speci�cation languages and knowledge representation. However, few mathemati-
cians use these systems as everyday tools, because of some severe drawbacks
which make them hard to use.

Classical CAS provide thousands of sophisticated algebraic algorithms which
are di�cult to handle by users. On the one hand, it is hard to select the appro-
priate algorithm from the amount of available algorithms, on the other hand, the
interpretation of the solution needs deep mathematical understanding. The user
doesn't receive any information about the solution steps from the system (Why
is the output the solution to the given problem, or how to �nd the solution to
a problem?). The mathematical knowledge is embedded implicitly in the algo-
rithms and is inaccessible to the user, e.g. commutativity of polynomial addition,
axioms of groups. However, the algorithmic encoding leads to high e�ciency.

In traditional theorem provers it is di�cult to specify axioms in the provers
language, usually a �rst-order language and a normal form. Therefore, the rep-

resentation of mathematical concepts (e.g. gcd, �nite �elds) is awkward and
unnatural. Provers usually lack embedded algebraic algorithms. Although Ot-

ter [McCu94] allows the declaration of user-de�ned functions together with
their corresponding argument and result types, the extension of the system by
new algorithms is very expensive, i.e. new implementation of the function and
recompilation of the whole system. ATP compute huge search spaces and are
ine�cient. Additionaly, long and complex proofs are di�cult to understand and
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should provide representations that point out the essential steps of the proof.
However, their success in proving hard mathematical theorems is impressing.
In contrast to algorithmic problem solvers, theorem provers provide proofs to
explain their solutions.

We propose the integration of CAS and ATP. This integration can be achieved
in di�erent ways as illustrated in �gure 1.
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Fig. 1. Forms of interaction between algorithms and theorems

a) In the simplest case of interaction the user interface only provides a link to a
CAS and an ATP, respectively. A user can access both systems and can apply
algorithms or theorems to solve a given problem, depending on the class of
the problem. Only this type of interaction allows the use of arbitrary CAS
and ATP. However, the systems do not interact directly and a user must be
familiar with both systems. Such an architecture combines the advantages,
but also the drawbacks.



Example:

CAS: adding 0 to a polynomial in a polynomial ring is done by a function.
ATP: tries to prove that a left neutral element is also right neutral in a
group.

b) Symbolic calculator (SC) and ATP can be extended by a common control
unit (evaluator). This evaluator controls the selection of the modules by
meta-knowledge on all functions and predicates. It also controls the applica-
tion of algebraic algorithms in the SC and of theorems. The mathematical
knowledge is represented separately in each module.

c) Algorithms often require type information about their arguments to be appli-
cable. This information can be derived by theorems assuming that both mod-
ules share a common knowledge representation. This mathematical knowl-
edge base also consists of meta-information on algorithms in form of algo-
rithm schemata (cf. next section, e.g. �gure 2).

Name gcd(?a; ?b) =?g

Signature ?A � ?A ! ?A

Constraints isa (?A, EuclideanRing)

De�nition (?gj?a) ^ (?gj?b) ^ (8c 2?A : (cj?a) ^ (cj?b)) (cj?g))

Subalgs

Theorems gcd(u; v) = gcd(v; u)

gcd(u; v) = gcd(v; u mod v)
gcd(u; 0) = u

Function

Fig. 2. Schema of algorithm gcd

Algebraic algorithms o�er no capabilities to explain their solutions. These
explanations can be generated using the theorem prover and the mathemat-
ical speci�cation of the algorithms. The knowledge representation of both
symbolic calculator and theorem prover must be adjusted to a common rep-
resentation. With this form of interaction, theorems are not available within
algorithms because the SC cannot access directly the ATP.

d) As mentioned in b), algorithms can be used for the e�cient computation of
predicates when proving theorems. However, the interaction in b) needs to
transfer all necessary knowledge and parameters to the SC. This is avoided
when a common knowledge base is used, and a direct link from SC to ATP
allows the immediate call of an algorithm out of a proof. New versions of
theorem provers (e.g. Otter 3.0) allow the introduction of user-de�ned
algorithms which must be identi�ed by a special character (e.g. $GCD).
The extension of the prover requires the recompilation of the whole system
and each algorithm has to be implemented in C. CAS provide an extensive
collection of very e�cient mathematical algorithms, thus reimplementation



is neither necessary nor meaningful. This kind of interaction would lead to
a strong improvement of the e�ciency of a theorem prover.

Example:

SC: various e�cient algorithms for gcd calculation.
ATP: Otter allows the de�nition of simple functions (e.g. gcd in �gure 3).
The performance can be increased strongly by calling instead the adequate
gcd algorithm of the SC.

gcd(x,y) = % greatest common divisor for nonnegative integers

$IF($EQ(x,0),

y,

$IF($EQ(y,0),

x,

$IF($LT(x,y),

gcd(x,$DIFF(y,x)),

gcd(y,$DIFF(x,y))))).

Fig. 3. De�nition of function gcd in Otter

e) The application of theorems is useful even when running algebraic algorithms
(e.g. veri�cation of conditions, properties of objects). This kind of integration
(same is true for f)) requires to redesign new algorithms to use the prover.
The advantage lies in using the powerful reasoning capabilities of the theorem
prover in the SC.

Example:

SC: ... if #IsNormal(G,H) then ... 2

ATP: tries to prove that all subgroups of index 2 are normal (�gure 4).

f) A complete integration of algorithms and theorems is achieved by combining
d) and e). At any step, arbitrary combinations of algorithms and theorems
can be applied to solve a given problem. This combines the advantages of a)
to e), but requires to �t SC and ATP to a commonknowledge representation.

Example:

SC: in Berlekamp algorithm ... if #SquareFree(p) then ...
ATP: 8f 2 Zp[x] : SquareFree(f) , $GCD(f; f 0) = 1 .
The SC can be used to compute the derivation of p and the gcd.

We have shown di�erent levels of interaction between SC and ATP. The
complete integration in f) requires the development of a new common semantics
of SC and ATP, the reengineering of some algorithms, and the common explicit

2 The special character # indicates a call to the theorem prover.



% existence of inverse

4 P(x,g(x),e).

% closure

5 P(x,y,f(x,y)).

% associative property

6 -P(x,y,u) | -P(y,z,v) | -P(u,z,w) | P(x,v,w).

7 -P(x,y,u) | -P(y,z,v) | -P(x,v,w) | P(u,z,w).

% the operation is well defined

10 -P(z,y,x) | -P(w,y,x) | EQUAL(z,w).

% Denial of the theorem

28 H(b).

29 P(b,g(a),c). PROOF:

30 P(a,c,d).

31 -H(d). 195 (29,7,4,5,37,33) P(c,a,b).

% demodulators 213 (195,7,30,5) P(d,a,f(a,b)).

33 EQUAL(f(x,e),x). 716 (213,6,5,4,38,39) P(d,g(b),e).

37 EQUAL(g(g(x)),x). 721 (716,10,4) EQUAL(d,b).

38 EQUAL(g(f(x,y)),f(g(x),g(y))). 722 (721) EQUAL(d,b).

39 EQUAL(f(x,f(g(x),y)),y). 729 (31,722,28) .

Fig. 4. Proof using hyperresolution and standard p-formulation of the theorem: all

subgroups of index 2 are normal.

representation of objects and mathematics in a mathematical knowledge base.
The construction of this memory is described in the next section.

3 The Mathematical Knowledge Base

The mathematical knowledge base consists of type schemata, algorithm schemata,
algebraic algorithms, theorems, symbol tables, and normal forms. In this paper,
we will not discuss the representation of algebraic algorithms and theorems, be-
cause they are exclusively used by the prover or CA engine. Thus, a unique
treatment, e.g. by de�ning theorem schemata, is desirable but does not improve
the collaboration of both systems. However, it would be required to verify algo-
rithms and generate theorems automatically.

The theory of algebraic speci�cation provides a good framework to design the

type system of a mathematical assistant. We adopt the speci�cation language
Formal-� [CaTj93] to represent the mathematical knowledge. It is well-suited
to specify mathematical domains of computations, e.g. �nite groups, polynomial
rings, which are inherently modular. An algebraic speci�cation introduces con-
stants, operators and properties in their intended interpretation, and enables the
reuse of subspeci�cations within a speci�cation in accordance with the depen-
dencies between particular speci�cation modules of an abstract computational
structure (ACS).



A type schema represents such a module and consists of:

{ Name, a unique identi�er
{ Based-on, a list of inherited ACS
{ Parameters, a list of ACS which are parameters
{ Sorts, a list of new sorts
{ Operators, declarations of new operators
{ InitialProps, initial properties.

Figure 5 shows the schemata of some selected ACS (more details may be found
in [CHT92]). These de�nitions build a based-on hierarchy of the mathematical
domains of computation (�gure 6).

Name Monoid

Based-On SemiGroup

Sorts Mo

ne 2 Elt

Operators

InitialProps 8x 2 Elt: ne f x = x

Name Group

Based-On Monoid

Sorts Gr

Operators inv :: Elt ! Elt

InitialProps 8x 2 Elt: inv(x) f x = ne

Name Ring

Based-On MultSemiGroup (rename: (f;�); (ne; 1))

AddAbelianGroup (rename: (f;+); (ne; 0); (inv;�))

Sorts Ri

Operators

InitialProps 8x; y; z 2 Elt: x� (y + z) = (x� y) + (x� z)

8x; y; z 2 Elt: (y + z)� x = (y� x) + (z � x)

Fig. 5. Type schemata for Monoid, Group, and Ring.

The user doesn't receive any information about the solution steps from the
system, e.g. why is the output the solution of the given problem, or how to
�nd the solution of a problem. Therefore, algorithms are represented in terms of
schemata. They allow the representation of meta-knowledge like:

{ Name, a unique identi�er of the schema with variable bindings
{ Signature, describes the types of input and output
{ Constraints, imposed on domain and range
{ De�nition, mathematical description of the output
{ Subalgs, list of subalgorithms describing the embedded subtasks
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Fig. 6. Hierarchy of type schemata

{ Theorems, describing properties of the algorithm
{ Function, name of the corresponding executable algebraic function to com-
pute the output.

Name gcd-primitive(?a;?b) =?g

Signature ?A � ?A ! ?A

Constraints isa (?A, UnivariatePolynomial(x; UFD))

De�nition

Subalgs primitive-part
pseudo-remainder

content

gcd
multiply

Theorems

Function GcdPrimitive

Fig. 7. Schema of algorithm gcd-primitive

Similarly to type and equation schemata, algorithm schemata build a hierar-
chy of specialized versions, and specializations inherit de�nitions and theorems
from more general algorithms. Examples of algorithm schemata are given in �g-
ures 2 & 7, �gure 8 describes parts of the hierarchy of algorithm schemata. New
properties of algorithms can be derived by the theorem prover.
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Fig. 8. Hierarchy of algorithm schemata

We introduced di�erent kinds of interactions between SC and ATP. The
mathematical knowledge is represented in a common knowledge base which con-
sists of symbol tables, normal forms, theorems, algebraic algorithms, type and
algorithm schemata. An environment corresponding to the interaction described
in �gure 1 f) is introduced in the next section.

4 An Intelligent Environment for Symbolic Mathematical

Computing

An environment for solving mathematical problems which integrates theorem
proving, symbolic computing, explanation-based learning and a knowledge repre-
sentation system is given in �gure 9. The schema-based representation of mathe-
matical structures and algorithms enables the representation of meta-knowledge,
e.g. constraints of parameters, dependencies of algorithms and theorems.

The user interface o�ers frames and graphs for handling schemata and dis-
plays the explanations about solutions of speci�c problems. An evaluator solves
these problems by using a theorem prover and a symbolic calculator, and ap-
plying equation schemata (learning subsystem). The knowledge base consists of
symbol tables, normal forms of the simpli�er, algebraic algorithms of the sym-
bolic calculator, algorithm schemata for the speci�cation of algorithms, type
schemata for abstract computational structures, as well as initial and derived
equation schemata for simplifying expressions.

Equation schemata consist of mathematical rewriting rules which model do-
main knowledge, and user de�ned laws. New equation schemata can be learned
by generalizing specialized solutions using explanation-based learning. Given



Simplifier

Evaluator

Symbolic
Calculator

Learning Subsystem

Problem Solver

Parser Display

GUI
User Interface

Mathematical
Knowledge Base

Normal Forms

Symbol Tables

Special Cases

General Schemata

Mathematical Schemata
Domain Knowledge

User Definitions

Explanation

Generalization

Initial Equation Schemata

Derived Equation Schemata

Theorem
Prover

Type Schemata Algorithm Schemata

Algebraic Algorithms
Theorems

Verifier

Fig. 9. Architecture of the intelligent environment for symbolic computing

problems are solved by applying schemata to eliminate obstacles [Shav90] in
the calculation of unknown properties of a variable. An explanation why this
is an appropriate solution to the problem is generated, the achieved schema is
generalized to solve other problems, and �nally, the knowledge base of equation
schemata is updated with the new generalized schema.

5 An Example

For the purpose of having prototype systems, we created two ad hoc interfaces
between theorem provers and CAS. These interfaces are controled by a common
evaluator and implemented in CLisp and C respectively, however, our aim is
to approach the integration at a higher level of interaction corresponding to
�gure 1 f).

The �rst prototype combines DTP [Gedd94], a simple �rst-order theorem
prover, and Magma [BoCa94], a CAS for computations in algebra and particu-
larly in group theory. The application of Magma algorithms is guided by DTP,
which can solve new problems, e.g. �nding elements with minimal index, and



prove di�cult properties by induction and applications of algorithms. Addition-
aly, the tremendous knowledge about groups represented inMagma is accessible
by the prover.

Another prototype combines Isabelle [Paul94], a generic theorem prover
supporting set theory, type theory, higher order logic ..., andMaple [Heck93], a
well known commercial CAS. Many domains of computation were de�ned in the
provers language (e.g. numbers, polynomials) and new theorems were proven by
the cooperation with Maple.

Example:

Proof of 8n � 5 : n5 � 5n

by using Isabelles induction theorem:

[| n: Nat; a: Nat; P(a);

!!x. [| x: Nat; a <= x; P(x) |] ==> P(x + 1);

a <= n |] ==> P(n)

start: 55 � 55, true by reexivity of �
step and new goal: n5 � 5n ) (n+ 1)5 � 5(n+1)

Maple is used to expand both sides:
n5 + 5 � n4 + 10 � n3 + 10 � n2 + 5 � n + 1 � 5 � 5n

and the prover is trying to prove the upper bounds:
n5 � 5n (1); 5 � n4 � n5 � 5n (2); 10 � n3 � n5 � 5n (3),
10 � n2 � n5 � 5n (4); 5 � n+ 1 � n5 � 5n (5):

Again, these bounds are proven by an interaction of both systems, e.g. the second
bound is derived by Isabelles rule

le_mult

[| a: Nat; b: Nat; c: Nat; d: Nat;

a <= b; c <= d |] ==> a * c <= b * d

and 5 � n (given) and n4 � n4 (reexivity). Finally, Maple transforms the
conclusion 5 � n4 � n � n4 to 5 � n4 � n5.

6 Conclusion

We have outlined several advantages of combining theorem proving and symbolic
mathematical computing. On the one hand, computer algebra systems pro�t
from theorem provers, e.g. by explanations of the solution of algorithms and
veri�cation of properties of mathematical objects. On the other hand, they o�er
an extensive collection of e�cient mathematical algorithms which can improve
the e�ciency of the theorem prover.

A high level of interaction requires a common representation of the mathe-
matical knowledge of the two systems. Such a knowledge base mainly consists of
type and algorithm schemata, algebraic algorithms and theorems. The adopted



speci�cation language for the speci�cation of type schemata provides executabil-
ity and o�ers a type system for both symbolic calculator and theorem prover.

Among the work in progress is the design of a \language" for the environment
whose semantics allows a consistent treatment of algorithms and theorems, tools
for the veri�cation of algorithm schemata, extraction and learning of theorems
out of algebraic algorithms, generation of algorithms from theorems, interac-
tion of the learning component and the theorem prover and applications of the
environment.
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