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1. Introduction

We showed in the previous article [35] of this series that many methods for the analysis
of systems with constraints can mathematically be identi�ed with completing the
equations of motion to an involutive system. In this article we specialize on systems
described by Lagrangians which are linear in the velocities.

Starting with an article by Floreanini and Jackiw [18] about the quantization of
self-dual �elds in two dimensions these systems have recently found some attention in
the literature. Especially their circumvention of the classical Dirac algorithm [14]
sparked some discussion [9, 12]. Faddeev and Jackiw explained this approach,
sometimes also called the symplectic formalism, in a later article [15] in more
detail. Actually it can already be found in the classical textbook of Sudarshan and
Mukunda [37]. Thus \Faddeev-Jackiw approach" is somewhat a misnomer, but we
stick to this name, as it is meanwhile widely used.

The main interest in these systems arises from the fact that they yield the Dirac
bracket [14] in a very simple way [21, 23]. Barcelos-Neto and Wotzasek [4, 5] showed
later how this property can be carried over to systems subject only to second class
constraints via an extension of the con�guration space.

Most of the present article will concentrate on this approach. Besides showing how
it appears from the point of view of the involution analysis, we will give a geometric
interpretation and show that the main idea lying behind it is transforming the second
class constraints into �rst class ones. We will also study the numerical properties of
this approach and show that the arising equations of motion are more stable than the
standard formulation and thus less a�ected by the discretization error of the numerical
approximation.

We assume in the sequel that the reader is familiar with the material presented in
Ref. [35] in order to avoid a tedious repetition. We also continue to use the notations
introduced there. The article is organized as follows: The next section presents the
Faddeev�Jackiw approach in the case of a regular system. Section 3 discusses the
techniques introduced by Barcelos-Neto and Wotzasek for second class constraints and
the following section contains a geometric interpretation of it. After some examples
in section 5 we study the implications of this approach for the numerical integration
of the equation of motions. Section 7 points out some problems in the application to
�eld theories. Finally, some conclusions are given.

2. First-Order Lagrangians

The symplectic formalism treats Lagrangians which are linear in the velocities:

L(qi; _qi) = ai(q) _q
i � V (q) : (1)

The corresponding Euler-Lagrange Equations are

R1 :

�
Aij _q

j �
@V

@qi
= 0 ; i = 1; : : : ; N (2)

where the matrix A is given by cross-derivatives of the ai

Aij =
@aj

@qi
�
@ai

@qj
: (3)
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Obviously,R1 is an involutive �rst-order equation provided this matrix is non-singular.
Hence from the formal point of view there is no need to consider any constraints; the
system is unconstrained.

If one follows the Dirac algorithm, one is forced to introduce N constraints, as
all canonically conjugate momenta are independent of the velocities. Mathematically,
this corresponds to insisting on treating (2) as a second-order di�erential equation.
Since R1 is involutive, its prolongation is involutive, too, and no secondary constraints
arise. Furthermore, all constraints are second class, for (2) represents a �nite-type
system [35].

The Faddeev�Jackiw approach is based on the observation that it is unnecessary
to introduce the canonically conjugate momenta, because (2) possesses already the
structure of a Hamiltonian system with Hamiltonian V provided we de�ne the Poisson
bracket by

�
qi; qj

	
= (A�1)ij : (4)

Hence the name symplectic formalism. This de�nition makes sense as long as the
matrix A is non-singular. Cronstr�om and Noga [13] demonstrated recently, how one
can explicitly construct the corresponding canonical coordinates.

We show later in the more general case of a system with second class constraints
that exactly the same bracket structure arises, if one eliminates the second class
constraints using Dirac brackets [14]. In the regular case this was already noted
by Govaerts [21] and much earlier by Hojman and Urrutia [23].

In the case of a singular matrix A, we have \true" constraints. Faddeev and
Jackiw [15] resort then to Darboux's theorem to eliminate them explicitly. If this
elimination is too complicated, they recommend to apply the usual Dirac algorithm.
At least for the construction of all constraints, there is no need for this. Since systems
of ordinary di�erential equations always possess involutive symbols, the completion
algorithm presented in Ref. [35] never raises the order of the system. Thus we can
always obtain an involutive �rst-order system as equations of motion.

The only point is that it is no longer possible to use the matrix A to de�ne
a symplectic structure. But even if one wants to follow Dirac's approach, it is
computationally much simpler to complete a �rst-order system and to prolong it
to second order afterwards than the other way round. The true constraints are
algebraic equations even in the Lagrangian formalism, and the other constraints are
just prolongations of them.

For counting the degrees of freedom we can employ the same approach as in
Ref. [35]. Independent of the existence of true constraints, our completion algorithm
applied to (2) terminates with a system of the following form

R
(s)
1 :

8<
:

_ql =  (qi; _qk) ; l = 1; : : : ; �N; k > �N; i = 1; : : :N

��(q
i) = 0 ; � = 1; : : : ; �M

(5)

where dim kerA = M � �M � �N � N and s denotes the number of iterations in the
algorithm. This yields a Cartan character �

(1)
1 = N � �N .

dimR
(s)
1 = 2N � �N � �M = N + �

(1)
1 � �M , as the dimension of the �rst-order

jet bundle is 2N . Arguing as in Ref. [35] we note that the general solution of our
equations of motion has this number of arbitrary Taylor coe�cients of zeroth and �rst

order. But it depends on �
(1)
1 arbitrary gauge functions, thus we must subtract this
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number to get the number of coe�cients describing an initial state. Since for di�erent
choices of the gauge functions the evolution of the same initial state will di�er, we

must subtract again �
(1)
1 .

We conclude that a physical state is described by �N � �M Taylor coe�cients of
zeroth and �rst order. This number is thus twice the number of degrees of freedom.

Expressing the numbers �N; �M by the intrinsically de�ned values dimR
(s)
1 and �

(1)
1

we �nd the same expression for the number of degrees of freedom as we derived in
Ref. [35] for the Hamiltonian equations of motion of a general system

F = dimR
(s)
1 � 2�

(1)
1 : (6)

It depends on the constraint structure whether one gains something by
transforming a general Lagrangian into a �rst-order one by extending the con�guration
space. This amounts essentially to transforming higher-order Euler-Lagrange
Equations into a �rst-order system. One obtains of course the same number of
degrees of freedom, since this reduction does not change the Cartan characters [30, 32].
Computationally one might save a few steps compared to the Dirac algorithm,
especially if second class constraints are present.

3. Second Class Constraints

For systems having only second class constraints one can use an idea of Barcelos-Neto
and Wotzasek [4, 5] to compute the Dirac brackets in a direct manner. Thus we
consider now the case that the matrix A has not maximal rank. Let a basis of its null
space be given by the vectors vi�, i.e.

vi�(q)Aij(q) = 0 ; � = 1; : : : ;M : (7)

This implies the existence of M \primary" constraintsy

�� = vi�
@V

@qi
= 0 : (8)

Introducing M additional coordinates �� and continuing with the modi�ed
Lagrangian

~L(qi; _qi; ��) =

�
ai + ��

@��

@qi

�
_qi � V (9)

we obtain new equations of motion

~R1 :

8>><
>>:

Aij _q
j +

@��

@qi
_�� �

@V

@qi
= 0 ;

@��

@qi
_qi = 0 :

(10)

Equivalently, we could write ~L = ai _q
i� _�����V , since this di�ers from (9) only by a

total derivative. This approach will be used in the case of �eld theories (cf. section 7).
Let us assume that the second set of equations in (10) is independent of the original

equations of motions (2), i.e. the prolongation of the constraints leads to new ones.

y It could of course happen, that M varies on the con�guration space. But we assume that it is
constant.
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(10) can be written again in the form of (2) on the enlarged con�guration space, if we
introduce the (N +M )� (N +M ) matrix ~A

~Aij =
@ai

@qj
�
@aj

@qi
;

~Ai� = � ~A�i =
@��

@qi
;

~A�� = 0 :

i; j = 1; : : : ; N ;

�; � = N + 1; : : : ; N +M ;
(11)

If the matrix ~A is regular, one can use it to de�ne a symplectic structure. Otherwise
one repeats the process. There are two possible outcomes: either one obtains after
a �nite number of iterations a regular matrix or the process stops, because the
constraints do not generate new ones. We concentrate on the �rst case and assume
for simplicity that already ~A has maximal rank.

From the point of view of formal theory this assumption implies that the modi�ed
Euler-Lagrange Equations ~R1 are involutive. Indeed they are now even normal, as
contraction of the �rst set of equations with the vectors vi� leads to the equations

vi�
@��

@qi
_�� � �� = 0 : (12)

The condition on the rank of ~A implies that the matrix

B�� = vi�
@��

@qi
(13)

has maximal rank. Thus we can obtain by a simple linear transformation the solved
form usually found in the standard existence and uniqueness theorems for ordinary
di�erential equations.

This implies further that we are dealing with a �nite type system. We have
already seen in Ref. [35] that this is characteristic for systems subject only to second
class constraints. The appearance of �rst class constraints is always connected with
gauge symmetries and thus with arbitrary functions in the general solution. However,
such functions cannot occur in the solution of a normal system of ordinary di�erential
equations.

To prove that the inverse of ~A yields indeed the correct Dirac brackets we compute
them in the standard way [14]. As already mentioned, there are N primary constraints

 i = pi � ai(q) = 0 : (14)

The total Hamiltonian of the system is given by

HT = V (q) + ui i : (15)

with some multipliers ui. The primary constraints lead to the consistency conditions

f i;HTg = Aiju
j �

@V

@qi
= 0 : (16)

They are identical with the Euler�Lagrange Equations (2), if we identify the
multipliers uj with the velocities _qj.

If the matrix A is non-singular, these secondary constraints can be used to
determine all multipliers ui and the Dirac algorithm stops here. In the case of a
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singular matrix we can solve only for some of them, as contraction with vi� yields the
\true" constraints ��. Their consistency conditions

f��;HTg = ui
@��

@qi
(17)

allow us to determine the remaining multipliers under the above assumptions. Thus
tertiary constraints do not appear.

To determine the Dirac bracket we must compute the structure constants of the
Poisson algebra generated by the constraints:

f i;  jg = Aij ;

f i; ��g = �
@��

@qi
;

f��; ��g = 0 :

(18)

The right hand sides are the entries of the matrix ~A de�ned above by the modi�ed
Lagrangian ~L. In order to see that this yields essentially the same symplectic structure
as the �rst-order approach we compute the Dirac brackets of the con�guration space
coordinates qi. Since the \true" constraints �� depend only on the qi, we �nd

�
qi; qj

	
�

= �
�
qi;  k

	
( ~A�1)kl

�
 l; q

j
	

= �ik(
~A�1)kl�jl = ( ~A�1)ij

(19)

in perfect agreement with (4). The generalization to the case that further extensions
of the con�guration space are necessary (i.e. tertiary and higher constraints appear in
the Dirac algorithm) is straightforward.

4. Geometric Interpretation

Barcelos-Neto and Wotzasek omit in their articles [4, 5] a discussion of the precise
relation between the equations of motion (2) derived from the original Lagrangian L
and those (10) obtained from the modi�ed one ~L. This is, however, quite important
for understanding the meaning of the multipliers ��.

For this purpose we introduce vectors wi
�, � = M + 1; : : : ; N such that fvi�; w

i
�g

form a linearly independent set. Under the above assumptions we �nd the following

local representation of the equation R
(1)
1 obtained from completing (2) consisting only

of independent equations

R
(1)
1 :

8>>>>>><
>>>>>>:

wi
�

�
Aij _q

j �
@V

@qi

�
= 0 ; � =M + 1; : : : ; N ;

@��

@qi
_qi = 0 ; � = 1; : : : ;M ;

�� = 0 ; � = 1; : : : ;M :

(20)

Similarly we obtain a local description of ~R1 containing under our assumptions only
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independent equations, too,

~R1 :

8>>>>>><
>>>>>>:

wi
�

�
Aij _q

j +
@��

@qi
_�� �

@V

@qi

�
= 0 ; � =M + 1; : : : ; N ;

@��

@qi
_qi = 0 ; � = 1; : : : ;M ;

B��
_�� + �� = 0 ; � = 1; : : : ;M :

(21)

Although both represent �nite type systems, note the crucial di�erence that ~R1

is normal and does not contain any algebraic equations. This entails especially a
relaxation of the found constraints: we do no longer require that �� = 0 but only

�� = const ! Furthermore, while the solution space of R
(1)
1 is (N �M )-dimensional,

dim ~R1 = N + M . But this discrepancy is removed as soon as we require that
��(t) � const, because then both systems are identical and possess of course the
same solutions.

This is best seen by considering the initial value problem for ~R1. If the initial data
(qi0; �

�
0 ) are chosen such that ��(q

i
0) = 0, then because of the regularity of B�� the

corresponding solution of ~R1 will always stay on the submanifold described by �� = ��0
and thus project on a solution of R

(1)
1 . The choice of the ��0 is unimportant, as ~R1 is

invariant under translations in ��.
The di�erential parts of both systems are almost identical. The only di�erence

lies in the additional term in the �rst set of equations in ~R1. Solving the third set
of equations for _��, we can write this term in the form �(B�1)����

@��
@qi

. Thus it
vanishes on the constraint manifold and it can be interpreted as the components of
a vector �eld normal to the constraint manifold. Its e�ect will be discussed in more
detail in section 6.

Geometrically, the approach of Barcelos-Neto and Wotzasek can be understood
as embedding of the original system into a larger one such that the second class
constraints become �rst class ones. Recall that the idea behind the de�nition of
the Dirac brackets is the introduction of a degenerate Poisson structure such that the
second class constraints become distinguished functions (sometimes also called Casimir
functions), i.e. the Dirac bracket of any functions with a second class constraint
vanishes strongly.

If we compute the Poisson bracket derived from ~A of any function F (qi; ��) de�ned
on the extended con�guration space with the constraints ��(q

i) we obtain using (11)

fF; ��g =
@F

@qi
@��

@qj
( ~A�1)ij +

@F

@��
@��

@qj
( ~A�1)�j =

@F

@��
: (22)

Thus as expected the Poisson bracket of any function independent of the multipliers ��

with a constraint vanishes. This implies especially that the Poisson bracket of two
constraints vanishes; they are now �rst class!

The above mentioned invariance under translations in �� represents therefore the
invariance under the gauge transformations generated by the constraints. Reduction
with respect to this gauge symmetry recovers the original con�guration space.

The interpretation becomes more complicated, if ~R1 is not yet involutive, i.e.
further multipliers must be introduced. Then we can no longer conclude that all
multipliers remain constant for initial values satisfying the constraints. One must
distinguish the prolongations of which constraints are taken as independent equations.
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For these the algorithm has terminated and the corresponding multipliers remain
constant. The others lead to further constraints (\the next generation") and their
multipliers satisfy more complicated equations of motion.

However, the transition of the constraints from second class to �rst class also
happens in this more general situation. The argument is exactly as above in (22).
The Poisson bracket of any observable F (qk) independent of the multipliers with any
of the constraints vanishes, since

fF (qk); ��(q
k)g =

@F

@qi
@��

@qj
( ~A�1)ij (23)

and one can easily see that even if �� is a \higher generation" constraint, one always
obtains @��=@q

i = ~Ai� and thus the expression on the right hand side is zero. But
the corresponding gauge transformations become more complicated.

We demonstrate this behaviour on an important class of constrained systems.
They are described by Lagrangians of the form

L2( _q
i; qi; ��) =

1

2
Mij(q

k) _qi _qj � V (qk) + ����(q
k) (24)

where Mij(q
k) is a symmetric, positive de�nite mass matrix. The holonomic

constraints ��(q
k) are introduced via the multipliers ��. Such systems occur

e.g. in multi-body dynamics, the modelling of robots etc. Introducing additional
coordinates vi we can rewrite L2 as an equivalent �rst-order Lagrangian

L1( _q
i; qi; vi; ��) =Mijv

i _qj �
1

2
Mijv

ivj � V + ���� : (25)

It is easy to see that the �rst step of the algorithm of section 3 leads simply
to replacing the multipliers �� with the derivatives of some new multipliers. For
simplicity, we continue to denote them with ��. Then we need a second step which
introduces the constraints on the velocities into the Lagrangian. After that the
algorithm stops with the Lagrangian

~L1( _q
i; qi; vi; _��; _��) =Mijv

i _qj �
1

2
Mijv

ivj � V + _���� + _��
@��

@qi
vi : (26)

The corresponding equations of motion are

Mij _v
j +

@Mij

@qk
vj _qk +

1

2

@Mkj

@qi
vkvj +

@V

@qi
� _��

@��

@qi
� _��

@2��

@qi@qj
vj = 0 ;

Mij

�
_qj � vj

�
+ _��

@��

@qi
= 0 ;

@��

@qi
_qi = 0 ;

@2��

@qi@qj
vi _qj +

@��

@qi
_vi = 0 :

(27)

By taking suitable linear combinations we can derive the following di�erential
equations for the multipliers ��

(M�1)ij
@��

@qi
@��

@qj
_�� =

@��

@qi
vi : (28)

The right hand side contains the velocity constraints. Thus as before �� remains
constant as long as the constraints are satis�ed. In contrast, �� will generally not
remain constant, but satis�es a rather complicated di�erential equation.
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5. Examples

We demonstrate these ideas on a simple system [3, 24] with a three-dimensional
con�guration space whose dynamics is determined by the Lagrangiany

L = (q2 + q3) _q1 + k _q3 +
1

2
(k2 � 2q2q3 � q23) (29)

where k is a constant. In the formal analysis we start with the Euler-Lagrange
Equations. After a trivial algebraic manipulation they can be written as

R1 :

8>><
>>:

_q2 + _q3 = 0 ;

_q1 � q3 = 0 ;

q2 = 0 :

(30)

Obviously this equation becomes involutive after one projection adding the
integrability condition _q2 = 0. It is also trivial to integrate it in closed form:

q1(t) = at+ b ; q2(t) = 0 ; q3(t) = a (31)

with two integration constants a; b.
For the Dirac analysis we need the canonically conjugate momenta

p1 = q2 + q3 ; p2 = 0 ; p3 = k : (32)

These are at the same time the primary constraints. The total Hamiltonian is

HT =
1

2
(q23 + 2q2q3 � k2) + u1(p1 � q2 � q3) + u2p2 + u3(p3 � k) : (33)

This leads to the secondary constraints u2 + u3 = 0, q3 = u1 and q2 = 0. Their
consistency conditions determine the multipliers u2 = u3 = 0. Hence we have four
second class constraints p2 = q2 = 0 and p3 = k; q3 = p1. By direct inspection one
sees that there is only one dynamical degree of freedom, namely (q1; p1), having as
Dirac bracket its standard Poisson bracket.

In the symplectic formalism one �nds in the �rst step the \true" constraint q2 = 0
and continues with the modi�ed Lagrangian ~L = L + � _q2. From it we derive the
matrix ~A

~A =

0
BB@

0 �1 �1 0
1 0 0 �1
1 0 0 0
0 1 0 0

1
CCA (34)

where the columns and rows are labeled by q1; q2; q3; �. This matrix is obviously
invertible and yields the correct bracket, if we identify q3 with the momentum p1.

If we compute, however, the equations of motion, we obtain after some trivial
manipulations

~R1 :

8>>>><
>>>>:

_q3 = 0 ;

_q2 = 0 ;

_q1 � q2 � q3 = 0 ;

_�� q2 = 0 :

(35)

y Note that the calculations in Ref. [24] are not correct!
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As expected the equation q2 = 0 is missing and the solution space is consequently
larger

q1(t) = (�a+ �c)t+ �b ; q2(t) = �c ; q3(t) = �a ; �(t) = �ct+ �d (36)

with four integration constants �a;�b; �c; �d. But as soon as we require that �(t) � const

we recover the correct solution, as this implies �c = 0 and �d appears only in �(t).
This example also serves well to demonstrate the di�erence between �rst- and

second-order formalism. Actually it stems from a slightly more complicated system
where k is not treated as constant but as an additional coordinate [22]. But the real
starting point is the following system of second-order equations

�x = � _y ; �y = �y : (37)

One can prove that these equations neither are nor can be transformed into the
Euler-Lagrange Equations of some Lagrangian [23]. But if we rewrite the system as a
�rst-order one

_x = z ; _y = w ; _z = �w ; _w = �y ; (38)

a Lagrangian exists, namely

L = (y + z) _x +w _z +
1

2
(w2 � 2yz � z2) : (39)

(Actually every �rst-order system of ordinary di�erential equations which is solved
for the derivatives can be derived from such a linear Lagrangian, as the corresponding
Helmholtz conditions are always (locally) solvable [23]).

A normal form can be obtained by setting

q1 = x ; q2 = z ; p1 = y + z ; p2 = w : (40)

Note, however, that we are now using as con�guration space coordinates x and _x,
if we compare with the original second-order system. In �rst-order systems the
distinction between con�guration and phase space begins to blur. This is the basis of
the symplectic formalism.

As a second example we consider the planar pendulum in Cartesian coordinates.
For simplicity, we set all constants like length, mass, gravitational acceleration, etc.
to 1. Its Lagrangian is

L2( _x; _y; x; y; �) =
1

2
( _x2 + _y2)� y +

�

2
(x2 + y2 � 1) : (41)

We can transform it to a �rst-order one as in section 4. We are thus lead to
compare the following two formulations of the equations of motion: The standard
approach yields after completion to involution the system

R1 :

8>>>>>>><
>>>>>>>:

_px = �x ; _py = �y ;

_x = px ; _y = py ;

x2 + y2 = 1 ; xpx + ypy = 0 ;

� = �
p2x + p2y � y

x2 + y2
:

(42)
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(27) applied to the Lagrangian (41) leads to the following formulation of the
equation of motion

~R1 :

8>>><
>>>:

_px � x _�� px _� = 0 ; _py � y _� � py _�+ g = 0 ;

_x� px + x _� = 0 ; _y � py + y _� = 0 ;

x _x+ y _y = 0 ; x _px + y _py + px _x+ py _y = 0 :

(43)

The multipliers �; � satisfy the di�erential equations

_� =
y � p2x � p2y

x2 + y2
;

_� =
xpx + ypy

x2 + y2
:

(44)

As predicted the right hand side of the equation for � vanishes as long as the velocity
constraint is not violated. The expression for _� is the same as one obtains in the Dirac
analysis of L2 for the multiplier � (cf. (42)). Thus we have indeed just replaced this
original � by the derivative of a new multiplier, also denoted by �.

Inverting the matrix ~A derived from the Lagrangian (41) yields the following
structure matrix for the symplectic structure (the columns and rows are labeled
px; py; x; y; �; �)

~A�1 =
1

x2 + y2

0
BBBBBBBBB@

0 xpy � ypx y2 �xy �px x

ypx � xpy 0 �xy x2 �py y

�y2 xy 0 0 x 0

xy �x2 0 0 y 0

px py �x �y 0 1

�x �y 0 0 �1 0

1
CCCCCCCCCA
: (45)

One can easily check that the upper left 4 � 4 sub-matrix contains indeed the Dirac
brackets of x; y; px; py as computed with the standard Dirac approach [16].

6. Some Numerical Considerations

In the language of numerical analysis, the equations of motion of a constrained model
form a di�erential-algebraic system [10]. Such systems are much harder to solve
numerically than normal systems. The \distance" of a di�erential-algebraic system to
a normal system is measured by the so-called (di�erentiation) index. In the language
of the formal theory, this index can be interpreted as the number of prolongations
which are needed to render the system involutive [25, 29].

The di�culty arises from the fact that although all analytical solutions lie on the
constraint manifold, the discretization error of any numerical method will lead to
approximations not on it. If one applies standard methods for ordinary di�erential
equations, one observes usually a signi�cant drift away from the constraint manifold
and obtains thus rapidly physically worthless solutions.

The construction presented in section 3 is an example of an index reduction or
constraint stabilization technique. Many di�erent approaches for this reduction can
be found in the literature (see e.g. [8, 19, 20, 26]), as most numerical methods cannot
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be applied reasonably to problems with an index higher than one or two. Most of
them di�erentiate the constraints and add the result at a suitable place with some
multipliers.

Usually this addition is done in an ad hoc manner at the level of the di�erential
equations. In contrast, the technique of section 3 performs the modi�cation at the
level of the Lagrangian. Thus one can speak of a symplectic index reduction, as one
obtains a normal system with a symplectic structure.

This entails that symplectic integrators [11, 31] can be applied for the numerical
solution. But usually these are constructed only for Darboux coordinates, i.e. they
assume that the standard Poisson bracket is used. Feng and Wang [17] showed how
symplectic integrators can also be derived in more general coordinates. However, their
construction requires essentially the transformation to Darboux coordinates, although
in an extended space.

Since the symplectic structure depends on the concrete Lagrangian under
consideration, it is necessary to derive a special integrator for each system. Thus
it seems doubtful whether one can numerically exploit the symplectic structure of the
�rst-order equations of motion with the presently known techniques.

Nevertheless, the approach of Barcelos-Neto and Wotzasek is of interest for the
numerical integration of constrained systems. In section 4 we mentioned already that
at the level of the di�erential equations this approach leads to the addition of a term
which represents a vector �eld normal to the constraint surface. We study now the
e�ect of this term on the numerical integration.

As long as the numerical solution remains on the constraint manifold this term
vanishes. But if the discretization error leads to a deviation from this manifold, there
are two possibilities: this term can either lead to an ampli�cation of the error, if it
points away from the manifold, or it tries to counter the error, if it points towards the
manifold.

Essentially the vector �eld represents a linear combination of the normal vector
�elds @��=@q

i. The coe�cients are of the form �(B�1)����. (8,13) imply that the
matrix B�� can be written

B�� = vi�v
j
�

@2V

@qi@qj
+ vi�

@vi�
@qi

@V

@qj
: (46)

In general, it is di�cult to make statements about this matrix; especially not
much is known about the eigenvectors vi�. But the situation is much simpler in the
neighborhood of a minimumof the potential V . There we can neglect the second term
in (46) and in the �rst term the Hessian of V is positive de�nite. In a suitably chosen
coordinate system, the eigenvectors can be taken as the unit vectors ei� = �i� (de�ne
some of the new coordinate as �q� = ��(q)). In these coordinates, B�� is also positive

de�nite.
A symmetric, positive de�nite matrix is diagonalizable with positive real

eigenvalues. Thus with a further change of coordinates we can transform it into
diagonal form with only positive entries. In this form the inverse can be readily
computed. Since its entries are also positive, we deduce that our vector �eld points
under the made assumptions towards the constraint manifold.

Although this derivation holds only in the neighborhood of minimaof the potential,
we conjecture that the formulation of the equation of motions obtained in section 3 is
numerically more stable than the standard formulation based on a simple completion
to an involutive system. As soon as a drift o� the constraint manifold occurs, an
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additional \force" drives the system back on this manifold.
We demonstrate this e�ect on a standard example in the theory of di�erential-

algebraic equations by considering again the planar pendulum in Cartesian
coordinates. To show the stabilizing e�ect we choose initial data consistent with the
constraints and integrate both sets of equations of motions (42) and (43), respectively,
numerically. Since we are only interested in the drift o� the constraint manifold, we
take only the di�erential part of (42) into account, i.e. we do not apply any special
method for di�erential-algebraic systems.

As discussed in section 4 our approach stabilizes mainly the velocity constraint.
But it is a well-known empirical fact in multi-body dynamics that this su�ces
to eliminate the essential source of instability. A theoretical explanation of this
observation was given by Alishenas [1, 2] using a perturbation analysis.

Both systems were numerically integrated over approximately three periods using
the standard fourth-order Runge-Kutta method with constant step size. Figures 1-
4 contain logarithmic representations of the integration error, the violation of energy
conservation and of the residuals of the position and velocity constraints, respectively.y
The calculation were done for the initial values x = 0; y = �1; px = 2; py = 0 using a
step size of h = 0:1.

One can see that after about two periods the integration breaks down, as the
integration error (estimated by comparing with the results for half the step size) is
of the same magnitude as the computed values.z With a step size of h = 0:01 it is
possible to integrate both formulation over three periods. With that value system (43)
could even be integrated over four periods.

It is interesting to note that although the di�erence in the integration error is not
that big (about half a power of ten), the physically relevant errors are one to two orders
of magnitude smaller. The outcome is especially striking for the position constraint
residual (�gure 3). Whereas in the standard formulation it grows approximately
proportional to t1:4, it remains almost constant in the stabilized formulation until
the breakdown of the integration.

The �gures show only the logarithms of the errors. It is quite instructive to study
the values with their signs. In the standard formulation the constraint residuals have
always the same sign after perhaps some initial oscillations. Usually one �nds a drift
to smaller and smaller values for the distance from the origin. In contrast, in the
stabilized formulation the trajectories oscillate around the constraint manifold under
the in
uence of this additional \force", it has become a kind of attractor.

Table 1 shows how the errors for both approaches depend on the step size. The
values are for t = 10. �I denotes the integration error; �E is the deviation from
the correct energy; �p;�v denote the position and velocity constraint residuals,
respectively. Obviously, the stabilizing e�ect occurs at any step size. Note the
signi�cant improvement for h = 0:01: the errors improved by up to �ve orders of
magnitude compared with h = 0:1!

y The solid line (labeled \inv") shows the values for the standard formulation, i.e. system (42); the
dashed line (labeled \fj") shows the outcome for system (43).
z The growth of the integration error depends strongly on the initial values. Alishenas [1] uses
x = 1; y = 0; px = py = 0 and reports a cubic growth. But �gure 1 shows for our initial values an
exponential growth!
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Table 1. Errors at t = 10 for di�erent step sizes

Involution Faddeev-Jackiw

h 0.1 0.05 0.01 0.1 0.05 0.01

�I 0:21 1:7� 10
�2

3:2� 10
�5

5:5� 10
�2

1:4� 10
�3

4:1� 10
�7

�E 2:5� 10
�4

1:8� 10
�5

2:9� 10
�8

2:4� 10
�5

6:2� 10
�7

1:3� 10
�7

�p 7:3� 10
�4

4:9� 10
�5

8:2� 10
�8

6:7� 10
�6

2:1� 10
�7

6:8� 10
�11

�v 3:9� 10
�5

2:6� 10
�6

4:4� 10
�9

4:6� 10
�6

4:3� 10
�7

8:5� 10
�10

7. Field Theory

Barcelos-Neto and Wotzasek [4] apply their method also to �eld theories. Then the
equations of motion are partial di�erential equations. We have shown in Ref. [35] that
even the classical Dirac approach may get problems, if the �eld equations are over-
determined. The reason for this e�ect is that some constraints may arise as purely
spatial integrability conditions, whereas Dirac considers only the temporal evolution
of the constraints. The approach presented in section 3 su�ers from exactly the same
problem.

As a simple example consider the following slight modi�cation of the class of linear
Lagrangian densities considered in Ref. [35]

L[�; �; �; �] = �@t�+ �[@x�� f(�)] + �[@y�� g(�)] : (47)

Obviously, �; �; � are just multipliers. The functions f; g are arbitrary but �xed. The
corresponding Euler-Lagrange Equations are

R1 :

8>>>><
>>>>:

@t� + @x� + @y� + �f 0(�) + �g0(�) = 0 ;

@t� = 0 ;

@x�� f(�) = 0 ;

@y�� g(�) = 0 :

(48)

It is straightforward to show that this system is involutive, if and only if the
functions f; g satisfy the integrability condition

f 0g � fg0 = 0 ; (49)

i.e. if f(�) = cg(�) for some constant c.
For the symplectic formalism we must �rst construct the matrix A. If we order

the �elds �; �; �; �, it is given by

A =

0
BB@

0 �1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

1
CCA : (50)

Thus there exist two eigenvectors and we obtain the two obvious constraints


1 = @x�� f(�) ; 
2 = @y�� g(�) : (51)

Following the same steps as in the �nite-dimensional case, we are lead to consider
the modi�ed Lagrangian density

~L = �@t�+ (� + @t�)[@x�� f(�)] + (�+ @t�)[@y�� g(�)] (52)
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where �; � are the new multipliers. But we gain nothing by this transformation, as the
new constraints represent the temporal prolongation of the original ones and vanish
due to the �eld equation �t = 0.

Thus the algorithmof Barcelos-Neto and Wotzasek terminates here without �nding
condition (49). Their conclusion would be that since no new constraints have occurred
but the matrix ~A is still singular, the system is subject to �rst class constraints. This is
of course indeed correct, as we have the obvious \gauge invariance" under translations
of the multipliers.

But this result is completely irrelevant, if f; g do not satisfy (49), because then the
�eld equations are inconsistent. In a more general situation even their conclusion of the
existence of �rst class constraints might be wrong, as the overlooked constraint could
lead to further ones such that the �nal system contains only second class constraints.

We must therefore conclude that this method does not ful�ll the �rst task of
any approach to constrained theories, namely checking the consistency of the �eld
equations. The reason for the failure of the algorithm of Barcelos-Neto and Wotzasek
lies in the fact that they use in the construction of the modi�ed Lagrangian only one
multiplier. By using D multipliers ��, if D denotes the dimension of space-time, and
adding a term of the form @��

�
 for each constraint 
, one can enforce the generation
of all integrability conditions.

In our example, one indeed produces the consistency condition (49) this way. The
price is, however, the introduction of six multipliers. They remain all arbitrary in the
�eld equations and correspond therefore to gauge symmetries. In order to construct
Dirac brackets these must be explicitly �xed.

8. Conclusion

As in our previous article [35] we have shown that the symplectic formalism can
be well understood by taking the point of view of the formal theory of di�erential
equations. At the level of point mechanics the identi�cation of the various approaches
to constrained systems with the completion of the equations of motion to an involutive
system may be of more theoretical interest than practical importance. But we have
shown that in the case of �eld theories it is sometimes di�cult to circumvent the
involution analysis.

We have seen that from the point of view of di�erential equations the idea behind
the approach of Barcelos-Neto and Wotzasek [4, 5] is rendering the equations of motion
normal by extending the con�guration space. This construction is only possible for
second class constraints, as a normal system of ordinary di�erential equations is of
�nite type, whereas in systems with gauge symmetries the general solution always
contains arbitrary functions [33, 34].

From a more physical point of view their approach can be understood as a
transformation of the second class constraints into �rst class ones in the extended
con�guration space. In the simplest case the corresponding gauge transformations are
just translations in the additional coordinates and the extended con�guration space
foliates in identical copies of the original one.

Such a \conversional approach" to second class constraints is not new. Batalin
and collaborators [7, (and references therein)] have developed an approach with the
same goal. There is, however, a number of signi�cant di�erences between the here
presented technique and that of Batalin et al .

They also introduce additional coordinates, so-called ghosts, but with a di�erent
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Grassmann parity. Thus their phase space is always a supermanifold. They construct
new constraints in form of a power series in the ghost variables, whereas we leave
the constraints unchanged and modify instead the symplectic structure. They can
also handle the case that �rst class constraints are present [6], which is currently not
possible in the Faddeev-Jackiw framework without an explicit gauge �xing.

Montani and Wotzasek [27, 28] have shown how one can construct the generators
of gauge symmetries from the null vectors of the symplectic matrix A in the case of
systems with �rst class constraints. Nevertheless, the only way to obtain the Dirac
brackets seems to be to completely �x the gauge and thus to render all constraints
second class. This is a considerable disadvantage of this approach for systems with
both types of constraints.

The symplectic formalism is sometimes computationally more e�ective than the
standard Dirac approach, even if one has to rewrite a higher-order Lagrangian as a
�rst-order one. For this reason it is currently fairly popular. However, we believe that
it has certain disadvantages in the case of �eld theories. Proving the consistency of
the �eld equations can become rather cumbersome and may lead to a proliferation of
multipliers. Furthermore, the formalism is not covariant, as it is based on the selection
of velocities and requires the �xing of all gauge symmetries.

We have shown that the method of Barcelos-Neto and Wotzasek has interesting
numerical properties and can be seen in the context of what numerical analysts call
constraint stabilization. In this language we can formulate the general idea as follows.
Physically, all dynamics happens on the constraint surface. The ambient space is an
artifact of the modelling and the dynamics is not uniquely de�ned there. Thus we can
change the system in the ambient space as we like as long as we take care that on the
constraint surface the same dynamics arise.

The problem is to �nd a change such that the arising equations of motion are
more stable against the drift o� the constraint manifold. Our modi�cation of the
Lagrangian makes this manifold to a kind of attractor for nearby trajectories. Since
it was guided by the idea to maintain a symplectic structure, it can unfortunately not
be generalized to arbitrary di�erential-algebraic systems.

A somewhat related approach was presented by Simeon [36]. He includes not
only the velocity constraints but also the constraints at acceleration level into the
Lagrangian (which is then second-order!). After a further transformation of the
equation of motions he obtains a system of di�erential equations containing an explicit
projection on the (velocity) constraint manifold.

The philosophy behind such approaches is rather to modify the di�erential
equations then using special techniques for di�erential-algebraic systems. A typical
method there is e.g. to perform after each step of the numerical integration a numerical

projection on the constraint manifold. We accomplish more or less the same e�ect via
an equivalent reformulation of the equations of motion.
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Figure 1. Estimation of integration error
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Figure 2. Energy conservation
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Figure 3. Position constraint residual
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Figure 4. Velocity constraint residual


