
Hierarchical Reinforcement Learning with Multi-step Actions

Ralf Schoknecht schokn@ira.uka.de

Institute of Logic, Complexity and Deduction Systems, University of Karlsruhe, 76128 Karlsruhe, Germany

Abstract

In recent years hierarchical concepts of tem-

poral abstraction have been integrated in the

reinforcement learning framework to improve

scalability. However, existing approaches are

limited to domains for which a decomposition

in subtasks is known a priori. In this paper

we propose the concept of multi-step actions

on di�erent time scales in one single action

set. It is suited for learning optimal policies

in unstructured domains where a decompo-

sition is not known in advance or does not

exist at all. At the same time this approach

enables learning at multiple levels of tempo-

ral abstraction. Thus, multi-step actions of-

fer the possibility to obtain faster learning

algorithms for unstructured domains.

1. Introduction

Standard Reinforcement Learning algorithms, like Q-

learning (Watkins, 1989), scale very badly with in-

creasing problem size, i.e. growing state space. One

intuitive reason for this is that according to the prob-

lem size the distance from the start state to the goal

state increases and this distance determines the cost

of learning because future rewards have to be prop-

agated backwards to learn the value function (Diet-

terich, 1999). In order to keep goal distances tractable

hierarchical approaches based on temporal abstraction

have been proposed. The main contributions are the

Option approach (Sutton et al., 1999), the Hierar-

chy of Abstract Machines (HAM) (Parr, 1998) and

the MAXQ approach (Dietterich, 1999). They are all

based on the notion that the whole task is decomposed

into subtasks each of which corresponds to a subgoal.

The existing hierarchical RL approaches are able to

solve problems of the following two types.

1. Abstract actions for achieving subgoals

given: Abstract actions are speci�ed fully or par-

tially in terms of actions that are lower in the hi-

erarchy. A solution to the problem can be found

with a sequence of abstract actions. Hence the ef-

fective state space is reduced and the distance to

the goal is shorter. The learning problem, there-

fore, becomes signi�cantly easier (Parr, 1998).

2. Subgoals given: The concrete realization of ab-

stract actions in terms of subordinate actions is

not known but a decomposition of the whole task

in subtasks is given. In this case abstract actions

can be learned by solving the subtasks. This can

signi�cantly speed up the solution of the whole

problem (Dietterich, 1999).

Thus, problems from technical process control, e.g.

cart-pole balancer, mountain car or acrobot, as well

as general navigation tasks cannot pro�t from the de-

scribed hierarchical RL approaches. The minimal re-

quirement for the application of existing hierarchical

RL algorithms is that subgoals are given, i.e. a de-

composition of the whole problem in subproblems is

known. In most decomposable problems one can ob-

serve that subproblems are weakly coupled to neigh-

bouring subproblems (Parr, 1998). This means that

few states connect the two subproblems. Doorways in

robot navigation tasks are examples of such weak cou-

plings. However, for many problems, e.g. the cart-pole

balancer, such coupling regions are not known in ad-

vance or do not exist at all. It is therefore a priori

not obvious how reasonable subgoals should be speci-

�ed. These considerations lead to a third category of

RL problems, namely problems for which no subgoals

are given. For RL problems of this type no eÆcient

algorithms are known to date.

In this paper we propose a new hierarchical approach

to RL that is suited for problems where no decompo-

sition in subproblems is known in advance. The main

idea is to combine several primitive actions to a multi-

step action (MSA) which is executed as a whole. This

is equivalent to a temporal abstraction because action

durations di�er according to the number of primitive

actions in a MSA. It is thus possible to learn at dif-

ferent time scales simultaneously. When controlling

the cart-pole balancer, for example, on the one hand



it is necessary to use a temporal resolution that is

�ne enough to provide the needed reactivity when a

switch of action is required. On the other hand be-

tween those action switches the same action will be

applied for several consecutive time steps. Hence the

temporal resolution could be coarser. This dilemma

cannot be resolved by existing RL approaches. There-

fore, we propose the new approach using MSAs.

The idea of combining several primitive actions to a

larger unit can be found in Perkins and Precup (1999)

and Riedmiller (1998). The crucial di�erence in the

MSA approach described here is that actions on dif-

ferent time scales are combined in one action set. In

this paper we examine what e�ects such heterogeneous

action sets have on the learning speed of optimal poli-

cies. The heterogeneous action set can be exploited

in a new version of the Q-learning algorithm (MSA-Q-

learning) described below. If the primitive actions are

included in the action set optimal asymptotic perfor-

mance can be guaranteed with this approach. Hence,

trading o� learning speed versus asymptotic perfor-

mance as in Perkins and Precup (1999) is not nec-

essary. The objective of the MSA approach is faster

learning of optimal policies.

2. The RL Problem

The objective of RL is to learn how to behave opti-

mally in unknown environments. The learning situa-

tion is modelled as a Markov Decision Process (MDP)

(Puterman, 1994). An agent interacts with the envi-

ronment by selecting an action a from the available

action set A and receiving feedback about the result-

ing immediate reward r. As a consequence of the ac-

tion the environment makes a transition from a state

s to a state s
0. Accumulated over time the obtained

rewards yield an evaluation of every state concerning

its long-term desirability. This value function is opti-

mised during learning and by greedy evaluation of the

value function an optimal policy can be derived.

The MSA approach described in this paper is appli-

cable independently of the concrete reward structure.

In the following we choose a special reward structure

for illustrative purposes. The agent receives a reward

of zero upon every transition except for transitions to

a designated goal state that yield a reward of one.

Additionally future rewards are discounted. This re-

ward structure is known as goal-reward representation

(Koenig & Simmons, 1993). An optimal policy in this

reward structure characterises shortest paths to the

goal. The objective of the agent is to �nd an opti-

mal policy from one �xed start state to the goal. This

is achieved by repeatedly performing trajectories from

the start state to the goal. The experience gathered is

used to update the value function.

3. Random Walks with Multi-step

Actions

Before investigating the problem of �nding a shortest

path from the start state to the goal state we con-

sider the easier problem of �nding an arbitrary path

to the goal. This is the task the agent faces upon

the very �rst trajectory of learning when the value

function is initialised to zero and the behaviour of the

agent, therefore, corresponds to a random walk. The

investigation of the random walk problem illustrates

why MSAs are useful to speed up learning.

On a random walk the agent selects all actions from

the action set with equal probability as it has no pref-

erence for a certain action. The average number of

primitive actions on such a random walk is a measure

for how diÆcult it is to �nd the goal. As it measures

the average time after which the goal is reached for

the �rst time it is also denoted as �rst passage time

(FPT). The distance from the start state to the goal

state in an MDP in
uences the FPT and also the com-

plexity of learning the shortest path. The larger this

distance the more decisions have to be made until the

goal state is reached. One way to reduce the number

of decisions needed to reach the goal is to de�ne ab-

stract actions that achieve speci�c subgoals. The deci-

sion to select this abstract action then takes the agent

all the way to the subgoal which would have needed

many decisions on the lowest-level time scale of prim-

itive actions. If there are no known subgoals abstract

actions cannot be de�ned in that way. In this paper

we propose an alternative approach to using abstract

actions and thereby enabling larger time steps. This

is done by realizing a coarser view on the time scale.

An abstract action is composed of a �xed sequence of

n times the same primitive action. This sequence of

actions is called a multi-step action (MSA). The next

decision is only made after the whole MSA has been

executed. Thus, the MSA has a time-dependent ter-

mination condition after n primitive time steps. In

the general option framework de�ned in Sutton et al.

(1999) MSAs can, therefore, be modelled as special

semi-Markov options1.

Consider, for instance, the rooms gridworld of Sutton

et al. (1999) depicted in Figure 1. We assume that

subgoals are not known for this task and, therefore,

abstract actions for achieving speci�c subgoals are not

1A Markov option would require a state-dependent ter-
mination condition



�����
�����
�����
�����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������G

S

z

x

y

Figure 1. Rooms gridworld

available. Here the available primitive actions are

\left", \right", \up" and \down", A(1) = fl; r; u; dg.
If an action takes the agent into the wall it stays at

the current cell otherwise it moves deterministically to

the corresponding neighbouring cell. Cell G represents

an absorbing goal state. Associated with every action

a is the degree �(a) which denotes the number of time

steps on the lowest-level time scale that are needed un-

til a is executed. For all actions a from the primitive

action set A(1) we have �(a) = 1.

The FPT for an agent starting in state S and per-

forming a random walk can be estimated by simulat-

ing many trajectories and averaging their lengths. For

the rooms gridworld the average over 10000 trajecto-

ries starting in state S yields a FPT of about 799:3

when A(1) is available, i.e. 799:3 primitive actions are

needed on the average until the agent reaches the goal.

As mentioned above the distance to the goal is one im-

portant factor that in
uences the complexity of learn-

ing. We introduce a distance metric d(s; s0) that de-

notes the minimal expected number of primitive ac-

tions that are necessary to reach s
0 from s. Then

Æ
(n)

A
(s) =

X

s0

P
(n)

A
(s; s0)d(s; s0) (1)

denotes the expected n-step distance of the action set

in state s, i.e. the expected distance between beginning

and end of a trajectory with n primitive steps that is

starting in s and generated by actions chosen randomly

from A. Hence, Æ
(n)

A
is a measure of how far an agent

can get on the average in a certain amount of time,

namely n primitive time steps, using action set A. It
is plausible that in many environments the FPT will be

smaller, i.e. the goal will be reached faster, if using an

action set with higher distance. The distances of di�er-

ent action sets can, therefore, be used as an indicator

how well they are suited for reaching the goal fast. The

formal de�nition of P
(n)

A
for action sets with actions

of di�erent degree is lengthy and technical. Therefore,

it is omitted here. Informally, P
(n)

A
(s; s0) denotes the

distance S x y z

Æ
(2)

A(1) (s) 0:875 1:5 1:25 1

Æ
(2)

A(1;2) (s) 0:9375 1:75 1:375 1

Table 1. Distances of di�erent action sets for selected

states in the rooms gridworld from Figure 1 computed ac-

cording to (1).

probability that the agent goes from state s to state s0

in n steps when using actions chosen randomly from

A. The two-step distance Æ
(2)

A(1) for selected states in

the rooms gridworld is listed in Table 1.

Until now only the primitive action set A(1) has been

considered. A MSA b of degree n is a sequence of n

times the same primitive action. We de�ne A(n) =

fanja 2 A(1)g and b = a
n denotes the MSA composed

of n times action a. Instead of using A(1) in order to

�nd the goal in the rooms gridworld we can now apply

action taken from A(2), for example. However, by us-

ing only this action set the agent might get trapped in

the lower left room. This means that the correspond-

ing FPT is 1.

The given example shows that in some parts of the

state space a high resolution of the time scale is neces-

sary in order to be able to reach the goal state. Thus,

the primitive actions cannot be discarded from the

action set. One possibility to incorporate the primi-

tive actions is simply to use the action set A(1;2) =

A(1) [ A(2). We will use this short-hand notation

throughout the paper, i.e. A(1;n) = A(1) [ A(n). The

two-step distance of A(1;2) for selected states in the

rooms gridworld is given in Table 1. It turns out that

Æ
(2)

A(1;2) � Æ
(2)

A(1) . Thus, in two primitive time steps the

action set A(1;2) on the average takes the agent further

away than action set A(1). The smaller distance of

A(1;2) also reduces the corresponding FPT of the ran-

dom walk starting in state S. An agent will need only

640:8 steps on the average when using A(1;2) instead

of 799:3 when using A(1) which is an improvement of

about 20%. This improvement is achieved only by us-

ing MSAs.

4. Q-Learning with Multi-step Actions

We have demonstrated that MSAs improve the length

of the very �rst trajectory of learning when the goal-

reward representation is used. Now, we examine if

MSAs are also suited to speed up the rest of the learn-

ing task. Therefore, we investigate how the concept

of MSAs can be integrated in learning algorithms like

Q-learning (Watkins, 1989).



4.1 Classical Q-Learning

The agent applies trajectory based Q-learning to esti-

mate the optimal Q-values. When executing action a
j

of degree j in a state s the agent goes to state s
0 and

updates the corresponding Q-value as follows

Q
k+1(s; aj)  (1� �)Qk(s; aj) + (2)

�[r(s; aj) + 

j max
a02A

Q
k(s0; a0)];

where j denotes the number of time steps elapsed be-

tween s and s
0 and � is the learning rate. r(s; aj)

denotes the reward received in state s upon action a
j .

It is obtained by accumulating the reward on the prim-

itive time scale when a
j is executed.

4.2 MSA-Q-Learning

Until now MSAs have been viewed as indivisible units.

We looked at each action only at the time scale at

which it was executed. Consider, for example, an ac-

tion a
n of degree n. When this action is selected in

st we obtain the transition (st; a
n) ! st+n together

with the reward r(st; a
n) =
P

t+n�1

�=t


��t

r(s� ; a). And

this information is used only for updating Q(st; a
n) ac-

cording to (2). The experience contained in the tran-

sition could be more eÆciently used when also looking

inside the MSA. When executing a
n all actions a

k,

k = 1; : : : ; n � 1, are executed implicitly. The transi-

tion (st; a
n)! st+n contains all information necessary

to update the Q-values for those lower-level actions at

all intermediate states. For ak with k < n, for exam-

ple, Q(st+i; a
k) can be updated for i = 0; : : : ; n � k.

It is convenient to carry out these updates in a back-

ward manner where the index i descends from n � k

to 0. This ensures a faster propagation of the cor-

rect values. The modi�ed Q-learning algorithm which

includes these update rules for all lower-level actions

in the action set is referred to as MSA-Q-learning.

It enables to extract more training examples from

the same experience. The idea resembles the intra-

option methods introduced in Sutton et al. (1999).

There, however, the intra-option Q-learning algorithm

was only applicable to Markov options. The MSA-Q-

learning algorithm we propose here is applicable to a

special kind of semi-Markov options, namely MSAs. In

the form presented here, we refer to the intra-option

method as intra-MSA method.

4.3 Results

We illustrate the behaviour of MSA-Q-learning using

the rooms gridworld in Figure 1. A goal-reward rep-

resentation is used for this task and the Q-values are

0

100

200

300

400

500

600

700

800

900

0 2000 4000 6000 8000 10000 12000 14000

#s
te

ps
 p

er
 te

st
 tr

aj
ec

to
ry

#training time steps

A^(1)
A^(1,2)
A^(1,3)

Figure 2. Learning curves for MSA-Q-learning in the

rooms gridworld for A(1) (solid), A(1;2) (dashed) and A(1;3)

(dotted).

initially all set to zero. The necessary discount factor


 is set to 0:9.

4.3.1 Deterministic State Transitions

First we deal with deterministic state transitions and

set � = 1:0 In order to provide enough exploration

actions are selected according to an �-greedy method

with � = 0:5 for the deterministic domain.

With these settings the following experiment is car-

ried out. On trajectories from the start state to the

goal MSA-Q-learning is performed after each selected

action. When a training trajectory is completed the

agent is set back to the start state and a test trajec-

tory without exploration is generated. This cycle of

training and testing is continued. The performance of

the learned policy is measured in number of steps per

test trajectory plotted against the accumulated num-

ber of training time steps. This is an adequate perfor-

mance measure to judge learning because it measures

the quality of the learned policy against the number of

training time steps that were necessary to accumulate

the corresponding experience.

In Figure 2 the curves for di�erent action sets are

depicted. The curves are averages of 10000 experi-

ments. The value of 16 for an optimal policy is only

reached asymptotically. In order to determine how

fast a good policy is learned we therefore examine

when the learning curves drop below a level of 17.6

which is 10% above the optimal value. Without MSAs

(A(1)) this level is reached only after 9287 training time

steps. With MSA-Q-learning a good policy is obtained

much faster. For the action set A(1;3) the 10% level is

reached after 5734 time steps and for action set A(1;2)

the level is already reached after 5289 time steps which

is an improvement of 43% compared to A(1). Hence,

the new MSA-Q-learning algorithm accelerates learn-

ing signi�cantly in deterministic domains.



0

100

200

300

400

500

600

700

800

900

0 2000 4000 6000 8000 10000 12000 14000

#s
te

ps
 p

er
 te

st
 tr

aj
ec

to
ry

#training time steps

1
1,2

1,4
1,8

1,16

1,32

Figure 3. Learning curves for MSA-Q-learning in the

stochastic rooms gridworld with di�erent action sets.

4.3.2 Stochastic State Transitions

In this section we show how MSA-Q-learning behaves

in a stochastic environment. With probability 2
3
the

agent moves in the intended direction and with prob-

ability 1
3
the agent moves in one of the other three

directions instead, each with probability 1
9
. Experi-

mentally, � = 0:25 was determined to be a good value

for the learning rate in the stochastic rooms gridworld.

For the �-greedy policy we set � = 0:1.

In a stochastic domain the application of actions leads

to more scattering than in a deterministic domain.

This e�ect is responsible for the fact that in stochastic

domains the actions do not carry the agent as far as in

deterministic domains. For the stochastic rooms grid-

world we therefore expect actions on larger time scales

to be more suitable for accelerating learning because

this retains the advantage of long distance moves. In

order to restrict exploration the random actions in the

�-greedy policy are only selected among the primitive

actions. Figure 3 shows the learning curves for MSA-

Q-learning. The best result is obtained with the action

set A(1;8). It represents a good compromise between

a fast dropping learning curve and one that quickly

reaches a low level. This result shows that MSAs can

signi�cantly speed up learning in stochastic domains.

5. Conclusions

We integrated the concept of multi-step actions

(MSAs) into the Q-learning algorithm. As for zero-

initialised Q-learning with goal-reward representation

the �rst trajectory is a random work, we �rst exam-

ined how MSAs in
uence the length of a random walk

from the start state to the goal. For this mere explo-

ration problem large improvements were observed for

a benchmark gridworld. The success of the MSAs is

due an implicit reduction of problem size. When us-

ing MSAs the agent acts on a larger time scale. Thus,

it makes larger steps and on the average needs less

decisions until reaching the goal.

For the learning task we extended Q-learning by incor-

porating MSAs together with the intra-MSA method.

The new MSA-Q-learning algorithm extracts more

training examples from the same experience. Thus,

learning is considerably accelerated for both deter-

ministic and stochastic transitions as we showed on

a benchmark domain.

Representing knowledge at multiple levels of temporal

abstraction is a key issue to speed up learning on large

problems. Until now, approaches for temporally ab-

stract learning have been proposed that are only suit-

able for tasks with a known decomposition in smaller

subtasks. The concept of MSAs described in this pa-

per o�ers a new approach of learning on multiple time

scales that can be especially applied to unstructured

domains for which a decomposition is not known in

advance or does not exist at all.

References

Dietterich, T. G. (1999). Hierarchical reinforcement

learning with the MAXQ value function decomposi-

tion. Journal of Arti�cial Intelligence Research.

Koenig, S., & Simmons, R. G. (1993). Complex-

ity analysis of real-time reinforcement learning ap-

plied to �nding shortest paths in deterministic do-

mains (Technical Report CMU-CS-93-106). School

of Computer Science, Carnegie Mellon University,

Pittsburgh, PA.

Parr, R. E. (1998). Hierarchical control and learning

for markov decision processes. Doctoral dissertation,

University of California, Berkeley, CA.

Perkins, T. J., & Precup, D. (1999). Using options for

knowledge transfer in reinforcement learning (Tech-

nical Report). Department of Computer Science,

University of Massachusetts, Amherst.

Puterman, M. L. (1994). Markov decision processes.

New York: Wiley.

Riedmiller, M. (1998). High quality thermostat con-

trol by reinforcement learning - a case study. Pro-

ceedings of the Conald Workshop 1998. Carnegie-

Mellon-University.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between

mdps and semi-mdps: A framework for temporal

abstraction in reinforcement learning. Arti�cial In-

telligence, 112, 181{211.

Watkins, C. J. (1989). Learning from delayed rewards.

Phd thesis, Cambridge University.


