
A case study on di�erent modeling approaches

based on model checking

- verifying numerous versions of the alternating

bit protocol with SMV

January 23, 1995

Armin Biere1� Alexander Kick2�

1Institut f�ur Logik, Komplexit�at und Deduktionssysteme,
2Lehrstuhl Informatik f�ur Ingenieure und Naturwissenschaftler,

Universit�at Karlsruhe, Am Fasanengarten 5,D-76128 Karlsruhe, Germany

Email: farmin,kickg@ira.uka.de

Abstract

Recently, outstanding results have been achieved in the formal veri�-

cation of concurrent systems by model checking techniques. In this paper

we report our experience with SMV, a symbolic model veri�er, applied to

a communication protocol, the alternating bit protocol. We investigated

di�erent approaches of modeling the alternating bit protocol in SMV. We

describe the problems encountered because of the restrictions of SMV. As a

consequence, we call for a more general language for model checking, which

both overcomes these disadvantages of SMV and enhances the possibility

of optimizations, and more speci�c input languages on top of it, easing the

application of model checking for the end user.

�Supported by DFG Vo 287/5-2

1

1 Introduction

Model checking [Clarke et al., 1993] has been successfully applied to the veri�-

cation of large and complex systems. This has been made possible mainly by

the introduction of OBDD based techniques [Bryant, 1986]. How model checking

functions in general is well explained in [Clarke et al., 1993] and [Zucker, 1993].

SMV is a tool for model checking.

SMV [McMillan, 1993] has been developed for sequential circuit veri�cation.

In order to evaluate the usefulness of SMV for protocol veri�cation (for other case

studies in symbolic model checking see [Gopalakrishnan et al., 1994]), to discover

other de�ciencies of SMV and to learn about the appropriateness of model check-

ing [Clarke et al., 1993] in general we tried to verify numerous versions of the

alternating bit protocol.

The major outcome of our investigation was the demand for a more general

language in which to describe Kripke models (implementations) and speci�ca-
tions. We claim that the �-calculus [Burch et al., 1990] is this appropriate lan-

guage and that more speci�c interfaces (languages such as SMV, state charts,
process algebras) should be built on top of the �-calculus model checker.

The rest of the paper is structured as follows. In Section 2 we show how the
boolean function representation of a reactive system can be composed from the
boolean function representation of its components. In Section 3 we describe some

peculiarities of the SMV system. In Section 4 we investigate di�erent possibilities
in verifying the alternating bit protocol: we verify it at di�erent levels of abstrac-
tions and di�erent ways of description for both the interleaving and synchronous
execution model. In Section 5 we draw some general conclusions about protocols.
Due to the de�ciencies of SMV in modeling protocols on a high level we not only

call for speci�c input languages, one of which is presented in Section 6, but go
even further and call for a more general description language, the �-calculus, into
which the speci�c input languages can be translated in Section 7.

2 Representing Kripke models as functions with

boolean range and component states as do-

main

As already mentioned, in SMV Kripke models are represented as boolean func-

tions, which have an e�cient data structure, the OBDDs. Below, we repeat how
this is done for boolean variables [Burch et al., 1994] and show how we can obtain

a similar representation for the case of components that have a �nite number of
states.

2

2.1 With boolean variables only

Components of sequential circuits have only two possible states: 0 or 1. The state

of the whole system can therefore be represented as boolean vectors f0; 1gn, the

transition relation R of the whole system as a boolean function f operating on

vectors of length 2n with the property

f(x0; : : : ; xn; x
0

0; : : : ; x
0

n
) = 1, (x0; : : : ; xn; x

0

0; : : : ; x
0

n
) 2 R

2.1.1 Representing R as a disjunction of conjuncts where each con-

junct represents an element of R

Thus, f can be constructed in a very simple way:

f(V; V
0

) =
_

(x0;::: ;xn;x
0

0
;::: ;x

0

n)2R

(
n^

i=0

(1 � xi):vi + xivi) ^ (
n^

i=0

(1� x
0

i
):v

0

i
+ x

0

i
v

0

i
)

Example 2.1

V = fv0; v1g; R = f(0; 0; 0; 1); (0; 1; 0; 1)g) f(v0; v1; v
0

0; v
0

1) = :v0 ^ :v1 ^ :v
0

0 ^

v
0

1 _ :v0 ^ v1 ^ :v
0

0 ^ v
0

1

2.1.2 Representing R as what changes and what does not change

Above we have constructed the boolean function from the transition relation of
the whole system. Below, we construct the boolean transition function for the
whole system from the boolean functions representing the transition relations of
the components (fi). The gi are boolean functions operating on V , the boolean

variables representing the components, which determine the output of component
i.

� synchronous circuits:
f(V; V

0

) =
^
fi(V; V

0

)

fi(V; V
0

) = v
0

i
, gi(V)

� asynchronous circuits:

f(V; V
0

) =
^
fi(V; V

0

)

fi(V; V
0

) = (v
0

i
, gi(V)) _ (v

0

i
, vi)

� interleaving:

f(V; V
0

) =
_
fi(V; V

0

)

fi(V; V
0

) = (v
0

i
, gi(V)) ^

^

j 6=i

(v
0

j
, vj)

Note that the last conjunct is very sensitive for BDDs without a special
variable ordering.

3

2.2 With variables with �nite domains (which can be rep-

resented as boolean vectors)

If we have a more abstract description of components of a system these compo-

nents can be automata with a small number of states. Variables (ci 2 Ci) repre-

sent independent components. The states of the whole system can be described as

tuples of the component states (x0; : : : ; xn) 2 C0�: : :�Cn, the transition relation

R (R � C0�: : :�Cn�C0�: : :�Cn) as a function f : C0�: : :�Cn�C0�: : :�Cn 7!

f0; 1g where

f(x0; : : : ; xn; x
0

0; : : : ; x
0

n
) = 1, (x0; : : : ; xn; x

0

0; : : : ; x
0

n
) 2 R

2.2.1 Representing R as a disjunction of conjuncts where each con-

junct represents an element of R

Let C be the set of variables fc0; : : : ; cng.
f can be constructed similarly to the boolean case:

f(C;C
0

) =
_

(x0;::: ;xn;x
0

0
;::: ;x

0

n
)2R

(
n^

i=0

ci = xi) ^ (
n^

i=0

c
0

i
= x

0

i
)

In the interleaving case this formula can be modi�ed as follows.

Non communicating components In this case the states of all other com-
ponents do not matter for the transition of one component. The above formula
simpli�es to

f(C;C
0

) =
n_

i=0

mi_

k=0

ci = xk1 ^ c
0

i
= xk2 ^

^

j 6=i

c
0

j
= cj

where the second or ranges over the number of states (mi) in which a compo-
nent can be.

Communicating components The future state of a component is determined
by the components with which it communicates. The communicating components
can change at the same time.

f(C;C
0

) =
n_

i=0

mi_

k=0

(ci = xk0 ^ ci0 = xk1 ^ : : : ^ cim = xkm+1

^c
0

i
= xkm+2

^ c
0

i0
= xkm+3

^ : : : ^ c
0

im
= xk2m+2

^
^

j 62fi;i0;:::img

c
0

j
= cj)

where cij are exactly the components with which ci communicates.
In such a description we do not have any problems in describing non-determinism

and communication actions (for each non-deterministic action just one more dis-
junct above) in contrast to SMV as we will see below.

4

2.2.2 Representing R as what changes and what does not change

In all three cases below
miV
j=0

gij (C) is a tautology and for �xed i all gij (C) are

mutually exclusive. The gij (C)s denote the preconditions for a change of a certain

component ci. To ensure that there is always a true precondition we can take

:
mi�1W
j=0

gij(C) as the last precondition for c
0

i
= ci.

For a given state and given component i (x0; : : : ; xn) exactly one gij delivers 1.

Always one, because the next state of a component is always determined by the

previous state of the system and c
0

i
would be left unspeci�ed in the next state,

i.e., it would be a random state, otherwise (As in [Clarke et al., 1993] we also

consider only Kripke models with total transition relation. Especially all runs

(paths) are considered to be in�nite.); not more than one because otherwise the

transition relation of the component would be false (empty). Nondeterminism

can be represented by a disjunct on the right side of !. If a state has several
ingoing arcs this state will appear on the right side of ! in several conjuncts.

� synchronous:

In a synchronous circuit all components proceed at the same time.

f(C;C
0

) =
^
fi(C;C

0

)

fi(C;C
0

) =
mi^

j=0

(gij (C)!
nj_

k=0

c
0

i
= xk)

� asynchronous:

f(C;C
0

) =
^
fi(C;C

0

) ^K(C;C
0

)

fi(C;C
0

) = (
mi^

j=0

(gij(C)!

nj_

k=0

c
0

i
= xk)) _ (c

0

i
= ci)

K(C;C
0

) =
^

possible

communications

(ca = xa1 ^ c
0
a
= xa2)$: : :$ (ce = xe1 ^ c0

e
= xe2)

When components communicate the participating components have to tran-
sition at the same time and not transition individually. K ensures that com-

munication transitions occur at the same time. E.g., (ca = xa1 ^ c0
a
= xa2)

5

in the de�nition of K is one transition of a component. The$ ensures that

the transitions participating in a communication occur only simultaneously.

This formula allows the description of non-deterministic choice for one ci
whose non-deterministic transition has to occur at the same time as the

transition of another component.

A direct description with a formula as in 2.2.1 is prohibitive: if there are

two components with n and m states we could possibly have n �m disjuncts.

The formula just presented is therefore more convenient.

� interleaving:

f(C;C
0

) =
_
fi(C;C

0

)

fi(C;C
0

) = (
mi^

j=0

(gij(C)!
nj_

k=0

c
0

i
= xk)) ^

^

j 6=i

(c
0

j
= cj)

This formula is similar to the boolean case. Note, however, that this formula
above can only be used if there are no communication transitions. Gener-
ally, in the interleaving case the direct description in 2.2.1 is therefore the
easiest.

3 The SMV tool

The SMV tool is well described in [McMillan, 1993] and [McMillan, 1992]. Here,

we just give a short overview over the internal functioning of SMV and consider
two points concerning the input language which attracted our attention.

3.1 Internal functioning of SMV

The next and init statements describing the transition relation of the various
modules are �rst translated into a tree like data structure. Vectors are trans-

lated into boolean variables. The tree representations of each module are then

translated into an OBDD representation for the transition relation of the product
automaton. Thus, SMV implements global model checking. The CTL speci�ca-

tion, �nally, is checked by �xpoint iterations on the OBDDs.

3.2 Non-determinism in SMV

Non-determinism can be represented in SMV by assigning a set of possible states

to the next state of a variable. To ensure fairness of such a nondeterministic

transition we have to put a fairness constraint into the SMV program. We could

6

put fairness on all the states between which there is a non-deterministic choice.

However, in general, it su�ces to put fairness on those states leaving a loop.

Even more: One fairness constraint on a state outside internal loops su�ces

(e.g. the start state of the sender is reached in�nitely often) since this fairness

constraint can only be ful�lled if all other nondeterministic transitions are fair

(FAIRNESS running is needed in addition, see below). Such a fairness constraint

ensures liveness at the same time. To ensure that the model we deal with is not

empty we always have to check that there exist in�nite paths (EG true in the

speci�cation).

However, we run into problems when we want to change the next states of

two variables in di�erent modules at the same time (This is only possible in the

strict synchronous mode.). The complicated SMV program where channels are

represented as modules is an example for this problem (see appendix A.4).

Note that putting fairness on all states allows to �nd non-reachable states in

the protocol (and thus allows the minimization of protocols).

3.3 Total case statement

In the case statement the cases always have to be complete. As a consequence
we almost always need the case 1 : state; as the last in a case statement.
Otherwise, SMV will not translate the program.

4 The alternating bit protocol as an example

We tested the advantages and disadvantages of SMV by performing a case study
on the alternating bit protocol. In this paper we refer to the description of
the alternating bit protocol as it is presented in [Baeten and Weijland, 1990] or
[Clarke et al., 1986].

We �rst describe shortly the alternating bit protocol (ABP), then we investi-
gate di�erent ways of description of the ABP in SMV and model it at di�erent
levels of abstractions in various models of execution and types of communication.

4.1 Description of the alternating bit protocol

The alternating bit protocol shall ensure that incoming data is delivered, but also
in the right order.

4.1.1 The con�guration

The con�guration of the six automata is as in Figure 1. SA and RA are sender

and receiver of the upper level, respectively. The lower level has to ensure via the
alternating bit protocol that the exact sequence of data sent by SA is correctly

delivered to RA, i.e. they have to manage the disturbances of the two channels.

7

SA

Sender Receiver

channel_s2r

channel_r2s

2 3

1 4

56

RA

Figure 1: The con�guration

4.1.2 The automata, processes

There are six automata: sender, receiver of the two levels, and 2 one-way channels,
as can be seen in Figures 2, 3, 4,5,6 and 7. In these �gures the transitions are
labeled with di�erent types of action. E.g., r1(d) stands for r(ead) data d at port
1. Synchronization is achieved by the fact that read and s(end) with the same

port number (e.g., r1(d) and s1(d)) have to occur simultaneously. The product
automaton for the whole alternating bit protocol has been constructed for the
interleaving semantics in Figure 8. In this �gure the states are described in the
form (state of sender in upper level, state of sender in lower level, channel from
sender in lower level to receiver in lower level, channel from receiver in lower level
to sender in lower level, state of the receiver in lower level, state of receiver in

upper level).

4.2 Di�erent ways of description of the ABP in SMV

There are two main ways of describing a model in SMV: with next and init

statements and with the TRANS statement. We consider both in this subsection.
This and the following subsection are explained in terms of the interleaving

model of the ABP.

4.2.1 Standard way of description in SMV

In the standard way of description recommended by the author of SMV the next

and init statements and modules are used.

8

s3

s1

s2 s4

s5

s0

s2(d0)r6(⊥)

r6(a0) r1(d)

s2(d1)

r6(a1)

r6(⊥)

sender

r1(d)

Figure 2: The sender

9

r3(⊥)

r1

r0

r4

r5

r3

r2r7

r6

r3(⊥)

r3(d0)

s5(a1)

s4(d)

s5(a0)r3(d1)

s5(a1)

s4(d)

s5(a0)

receiver

Figure 3: The receiver

10

s(d1)

s(d0)

r(d0)

r(d1)

1

2

0

Figure 4: The channel for messages from sender to receiver

r(ack0)

s(ack0)

r(ack1)

s(ack1)

0

1

2

Figure 5: The channel for acknowledgements from receiver to sender

sendd0 sendd1

Figure 6: The sender of the upper level

11

received0 received1

Figure 7: The receiver of the upper level

000000

110000

121000120010

120020

120200

120031 120141 130041

121041

120051

040041

052041

050061

050051

050141

050070050200

110041

SsklrR

040000

052000

050010

Figure 8: The product automaton of the alternating bit protocol in interleaving
semantics

12

There are two modules: one for the sender and one for the receiver. The

channels are modeled as global variables, also sender and receiver of the upper

level. As data is sent to the channel, the content of the channel changes at the

same time. This is modeled in our SMV program by the simultaneous change

of the state of the sender and the corresponding channel. The modeling of the

channels and the sender and receiver of the upper level as SMV variables (and not

as modules) is only possible because these processes change their state exactly

when sender or receiver of the lower level do.

Modeling the possible corruption of data and acknowledgements within the

receiver and sender modules is much easier and clearer than having a module for

each channel (compare appendix A.1 with A.4).

In the introducing SMV program (cf. appendix A.1) we are careful: There

are fairness conditions for every non-deterministic transition and also fairness

running.

The speci�cation The protocol has to ful�ll the following speci�cation:

� C1: All sent data arrives at the receiver.

� C2: Data is received in the order it was sent. All sequences are of the
form sd0:rd0:sd1:rd1:sd0 : : : , i.e. data with alternating bit 0 is sent by the
sender of the upper level, then data with alternating bit 0 is received by
the receiver of the upper layer, : : :

� C3: The sender can always send when it wants to.

The informal speci�cation for C2 can subsequently be transformed into a for-
mal CTL speci�cation:

C2
,

in the beginning nothing else can happen except the transition sd0 ^
after sd0 nothing else can happen except the transition rd0 ^

after rd0 nothing else can happen except the transition sd1 ^

after sd1 nothing else can happen except the transition rd1 ^
after rd1 nothing else can happen except the transition sd0

Note that the state of SA and RA after the observation path sd0.rd0.sd1.rd1
is the same as in the beginning. The �rst and last conjunct therefore collapse

into one when we translate the conjunction into CTL:

13

AG(sa = sendd0! A[sa = sendd0 U ra = received0]) ^

AG(ra = received0! A[ra = received0 U sa = sendd1]) ^

AG(sa = sendd1! A[sa = sendd1 U ra = received1]) ^

AG(ra = received1! A[ra = received1 U sa = sendd0])

This CTL formula is stronger than C2 because of the boundedness of the

Until operator in CTL semantics. Because of this property C1 is also captured.

Note that in the synchronous and asynchronous operational semantics we

need a di�erent speci�cation for C2. We need to replace the propositions after

the Until operator by conjuncts of the form ra = : : :^sa = : : : . This is necessary

because in contrast to interleaving semantics the states of sa and ra could change

at the same time in synchronous and asynchronous execution model. This would

violate the partial order of events.

AG(sa = sendd0! A[sa = sendd0 U ra = received0 ^ sa = sendd0]) ^

AG(ra = received0! A[ra = received0 U sa = sendd1 ^ ra = received0]) ^

AG(sa = sendd1! A[sa = sendd1 U ra = received1 ^ sa = sendd1]) ^

AG(ra = received1! A[ra = received1 U sa = sendd0 ^ ra = received1])

The CTL formula for C3 is:

AG((sa = sendd0! EFsa = sendd1) ^ (sa = sendd1! EFsa = sendd0))

The speci�cation strongly depends on the description of the implementation.
The same is true for the formulation of fairness. So, great care has to be taken in
formulating these. For example, the above speci�cation can be trivially ful�lled if

the protocol does not contain any paths ful�lling the fairness conditions. AG : : :

is also true if there are no paths at all. This situation easily occurs if the fairness
constraints are not ful�lled. Whether this is the case can be detected by checking

for the speci�cation EG true.

4.2.2 Representing each transition as conjunct - direct representation

with TRANS

Instead of using init and next statements we can encode the transition relation

directly as a boolean function as described in section 2.2.1 by using the TRANS

statement. The appropriate example program appears in appendix A.2.

4.3 Di�erent levels of abstraction

The alternating bit protocol can be modeled at di�erent abstraction levels:

14

� Sender and receiver of the upper level, sender, receiver of the lower level and

the 2 channels are modeled. As an example see the program in appendix

A.1.

� Receiver, sender of the lower level are modeled as modules, the 2 channels

as variables { sender and receiver of the upper level are not represented.

The program in appendix A.3, e.g., has this abstraction level.

The transitions of the sender and receiver in the upper level always occur

at the same time with the appropriate transitions of sender and receiver

in the lower level, respectively. So we do not need to represent sender and

receiver of the upper level.

In all interleaving programs except A.1 we reduced the number of fairness

conditions and speci�cation formulas to the ones really needed.

Executing a module which does not change any state when executed also
produces a path in SMV (e.g. r0:r0:r0 : : :). The fairness on s0 thus would
not be enough. In this case, the receiver could execute for ever without
changing any state, thus making the speci�cation false. This is why we
need FAIRNESS running for the sender. The fairness constraint on one

state of the sender (s0) su�ces to make all non-deterministic choices fair,
also that the receiver is executed in�nitely often.

These two fairness conditions also ensure that the sender continuously sends
new messages, thus making formula C2 true.

� Receiver, sender of the lower level and the 2 channels are modeled as mod-
ules (see appendix A.4).

4.4 Interleaving, asynchronous or synchronous descrip-

tion

4.4.1 Interleaving, synchronous and asynchronous models cause dif-

ferent veri�cation results!

The di�erence between synchronous and asynchronous and between synchronous
and interleaving execution model should be clear. We will therefore only look

into the di�erence between asynchronous and interleaving execution model.
If there is no interaction of the processes the reachable states of the asyn-

chronous and interleaving models are the same. Otherwise, this is not the case.
To see this, consider two processes P and Q, both having 2 states (p1,p2,q1,q2)

and both in�nitely alternating between their 2 states. If we allow P to go into

p2 only if it is in p1 and Q is in q1, and similar for Q, the states reachable in
the interleaving execution model are a strict subset of the reachable states in

15

the asynchronous execution model ((p2,q2) is never reached in the interleaving

model) { if checking for the state of the other process and its own action needs

an atomic time unit.

By re�nement there is no more such di�erence. Therefore, one has always to

bear in mind the interrelation between execution model and how �ne the actions

of the components are.

For process algebra interleaving is enough since there is no such dependence

between components.

4.4.2 Interleaving descriptions: conclusions, comparisons

Our interleaving descriptions in SMV have already been presented in previous

sections. Here we draw some conclusions with respect to the di�erent implemen-

tations.

The direct representation with variables might be error-prone and cumber-
some. The speci�cation where all processes are modules (channels too) has a
clear not justi�able overhead, is cumbersome and error-prone. The SMV pro-
gram where the channels are represented as variables and automata are described
with case and next statements is tedious as well because of the simultaneity of

transitions with the channels. The latter two representations also fair badly with
nondeterminism (because of simultaneity of communication actions, see above).
Of these three, the direct representation seems best.

The SMV programs also di�er in the time and BDD nodes needed to compute
the truth of the speci�cation (see di�erent outputs of SMV in appendix A).
Although programs A.2 and A.3 have the same number of variables program A.2

has half of the BDD nodes of program A.3. That the latter program needs two
additional variables running for each process in the internal representation and
that in program A.2 the transition relation contains only the transitions between
the reachable states are probably the reason. The case where channels are also
modules is even worse.

4.4.3 Synchronous description of the ABP

The above are all descriptions in the interleaving execution model. A synchronous
description of a communication protocol does not make sense since di�erent com-

puter stations do not need to have the same tact cycle and same global time.

Nevertheless, we tried to describe it in the SMV language to test its expressive-
ness.

Especially here we had to struggle with the restriction of SMV that no two
modules can write on a common variable in conjunction with synchronous pro-

cesses. Sender and receiver, however, never change the content of the channel
at the same time (because of exclusive preconditions (guards)). This, however,

16

should in fact be allowed, since in implementations mutual exclusion has to be

ensured only among di�erent writers!

The description is not di�cult if we have just one main module. Otherwise,

we need a module for each signal. The latter is a tedious description, making

things more complicated than the abstract functioning. I.e., we have to misuse

the SMV language to get it done.

We now describe in detail our synchronous formulation of the ABP. This

means that all proccesse are acting simultaneously { in contrast to interleaving

semantics. We already mentioned a problem that arises with this approach.

When two processes want to communicate, they have to do this via some global

instance which in its simplest form could be modeled by a global variable. But

that results in the common problem of shared resources. So there should be some

mechanism to ensure mutual exclusion.

The SMV-Language imposes a strong restriction to overcome this problem.

It does not allow that synchronous processes (modules) have a common writable
variable. But in the case of protocols one often needs the concept of a signal

that could be sent by one process to another. For example if we have a binary

signal request which can be communicated from process A to process B then
the simplest representation would be a global boolean variable Vreq. The sender
(A) wants to set Vreq and the receiver (B) wants to reset it. So it seems that
we run into the same problem that a global variable should be writable by two
di�erent processes. But there is a fundamental di�erence between this case and

other mutual exclusion problems. If we distinguish the occurrences of the writing
e�orts of the sender resp. the receiver by the value of Vreq then we get the following
cases:

A wants to write Vreq () Vreq = 0

B wants to write Vreq () Vreq = 1

So Vreq serves itself as a semaphore for enabling writing access to Vreq.

A has the privilege of writing () Vreq = 0

B has the privilege of writing () Vreq = 1

The conclusion of this discussion is that the SMV language is not very well

suited for describing signalling. It should however be mentioned that the concept
of describing a signal in this way can be translated into the SMV language { but

only with the drawback of loosing the module concept. In this case the protocol
has to be described in one module. So it can not syntactically be checked that

the transition relation is implementable by di�erent processes.y

yHowever this should be no problem if the SMV language is used as an intermediate language

into which descriptions of real implementations are translated and not the other way around.

So our synchronous descriptions of the ABP are hiding the danger that they do not represent

any implementation at all.

17

MODULE signal

VAR

sig : boolean;

set : boolean;

reset: boolean;

ASSIGN

init(sig) := 0;

next(sig) :=

case

! sig & set : 1;

sig & reset : 0;

1 : sig;

esac;

Figure 9: signal module

If we want to be sure that a synchronous description can lead to an im-
plementation we can use the module concept in combination with an additional

semaphore for each signal. This method has not only the disadvantage of increas-
ing the number of states but it also considerably complicates the description of
the modules. If we want to use such a mechanism, then �rst of all we should
describe a class of signal modules as it is shown in Figure 9.

If the sender wants to set the set bit then he must ensure that a previously
sent message is not lost. The best way to achieve this is that the sender waits

until the signal bit is released before he sets the set bit. Before he can carry
on he has to wait until the signal object has set the signal bit. On the other
hand if the receiver wants to reset the signal and has set its reset bit then he
must wait until this happens. So this scheme works as a 1 bit queue.

Such an implementation would be overloaded by instructions to handle correct

signalling. For an example of such an awkward description of the ABP see the
program in appendix B.4. It has not only an awkward description but it also
needs more states and thus results in a longer checking time (compare with table

1 for more details). After all, this approach does not seem appropriate.
One could think of a third method to communicate signals. In this case the

directly communicating processes investigate each others state to decide when a
signal has been sent (see appendix B.5). This results in some sort of a rendezvous

principle because both processes have to wait until the corresponding partner is
willing to send resp. to receive. One major drawback of this method is that it has

no implementation at all. The only advantage is that it gives the least number

of states.

If we do without modules, the signalling can be achieved by global boolean

variables. We distinguish the descriptions by the number of involved processes.
In the simple case there are only two processes: one for the sender and one for

18

semantic upper lower signal reachable checking

model layer layer data model states time in s

sync. no no yes investigation 136 < 1

sync. no no yes global vars 184 < 1

sync. no yes yes global vars 1220 3

sync. yes yes yes global vars 10246 ??(70)

sync. no no yes signal module 472 3

sync. yes yes yes signal module ?? ??

interl. no yes no global vars 22 < 1

interl. yes yes no global vars 22 < 1

interl. no yes no channel module 320 < 2

Table 1: Comparison of the di�erent descriptions of the ABP. All tests were run

on a Sparc 10 (50Mhz) with 64 MB main memory. SMV was always used with

options -r -f, i.e., the reachable states of our programs were always calculated
before model checking.

the receiver (appendix B.1). The complexity rises by inventing a lower layer,

consisting of two error producing channels (appendix B.2). The third version
additionally describes the higher layer that consists of two abstract users of the
o�ered protocol (appendix B.3). In all cases, the transported data consist of one
bit.

Because of the di�erent complexity it is not possible to give one speci�cation

that all versions have to ful�ll. On the contrary, the speci�cations had to be
reworked heavily in order to be correct. The question marks in Tabel 1 indicate
that there might be an error in the speci�cation formula or the model. We were
tired looking for the error. We include the two models with the question marks
in Table 1 nevertheless so that the reader can compare the number of reachable
states and include the corresponding global variables program in the appendix

so that the reader can get a feeling for how it is written. In the beginning of this
research we tried to implement the ABP with signal objects as described above
(last line of the synchronous models in Tabel 1). With this version we were not

able to generate any results (we could not check it nor generate any counterex-
amples) when we used a Sparc 10 with 64MB main memory (The program is not

included in the appendix.).
From Table 1 one can see that the number of states from the most simple to

the most complex description increases roughly by a factor of 10 at each level.

4.4.4 Asynchronous description

Circumventing the restriction of SMV that no two modules can write to a common

variable by signal modules does not help in making an asynchronous execution

model possible (The representation would be false.). The only way to do the

19

job is one big complicated module where it is di�cult to see that it actually

represents the implementation.

4.5 Synchronous or asynchronous send between sender

and receiver

With bu�ers sending is asynchronous.

But we can also have a synchronous send and receive between sender and

receiver, i.e., the receiver has to receive the message at the same time as the sender

sends the message. This is simply obtained by leaving out the channels. This

is modeled by Clarke in their CSP like description language for model checking

[Clarke et al., 1986]. This can also be described in SMV.

5 General conclusions about protocols

5.1 Similar structure

Since protocols have a similar structure they have a similar representation in
SMV. The translation of the communication structure into SMV is the same
(e.g. channels as variables), but also most of the speci�cation (E.g., that the
sequence of incoming messages is the same as the sequence of outgoing messages.).

As a consequence, a special input language for protocol veri�cation would be
advantageous.

5.2 The size of a channel

In some protocols it su�ces that the size of a channel is just 1, e.g., in the
alternating bit protocol. However, this is not a correct model for many other
protocols, e.g., sliding window protocols. In this case we may need induction
over the size of the channel or size of the sliding window.

When the sender always waits for an acknowledgement until the next data is

sent (i.e., sending and receiving alternate: s.r.s.r) then channel size 1 is enough.

5.3 Asynchrous models

For protocols, the asynchronous execution model is most appropriate. Unfortu-

nately, this model is also computationally most expensive and most di�cult to

represent in SMV.

20

6 Automatic translation of PA terms into a �-

calculus (or SMV) program

6.1 A special input language for PA speci�cations for

model checking

The translation of PA descriptions into SMV is cumbersome, as we have seen

above. Furthermore, to prove properties in PA cannot be recommended and is

di�cult for large descriptions. Therefore, we demand a special translation for PA

terms into CTL. The kind of input language we have in mind is of the following

form:

MODULE S

S = S0.S1.S

S0 = r1(d).s2(d0).T0
T0 = (r6(1) + r6(?)).S0 + r6(0)
S1 = r1(d).s2(d1).T1
T0 = (r6(0) + r6(?)).S1 + r6(1)

MODULE R
: : :

: : :

COMMUNICATION
(s2(d),r2(d))
(s3(d), r3(d))
: : :

SPECIFICATION
: : :

MODEL
asynchronous

The MODULEs are the process descriptions. The pairs below COMMUNICATION

represent the transitions which have to occur simultaneously. Such an input

language allows much simpler descriptions than SMV. In particular, this avoids
the hazzle we had with SMV to specify simultaneous transitions of e.g. receiver
and channel automaton.

In order to enable a speci�cation in CTL for a PA description one could

enhance the PA description with state points - or just using variables (describing

21

the state of a PA process) for speci�cation.

6.2 How to enable a translation of the above language into

the �-calculus or SMV and how to draw advantages

from such a translation

An easy way of producing an SMV program from a PA term is to �rst produce

the product automaton from the parallel components and the description of their

synchronous interaction (r(d), s(d)) and then to translate the product automaton

into a boolean function representation. Such a description would be simpler than

with init and next statements in SMV. Note that this is not recommendable since

the product automaton can be huge. We should therefore use a direct translation

of components with subsequent combination of the translated components by

OBDD operations.

The use of more general trees representing the transition relation where the
nodes are the components and the arcs to the successor nodes are labeled with

the possible values a state component can have should be investigated.

7 Summary

The SMV language was developed mainly for the purpose of veri�cation of se-

quential circuits. As a consequence, this poses problems for the application to
other veri�cation problems.

The main problems with the SMV language are:

� Di�culty in combining non-determinismwith simultaneous transitions (com-
munication) of modules.

Example: In the Amoeba protocol [Mulder, 1990] there is a state of the
server interface (TLSN) where there is a non-deterministic choice between
2 receipts and a timeout. Note that the appropriate channel has to be

emptied when a datum is received via a certain port. There is no direct
way to express (with ASSIGN), the non-deterministic choice between the 3

possibilities and at the same time the simultaneity of the emptying of the
channels. (It can be done by having an explicit choice variable for every

such kind of non-deterministic choice. This, however, would be extremely
cumbersome!)

� Several processes cannot write to shared variables. This is appropriate for
sequential circuits but not for protocols. This has also been considered as
disadvantageous by [Gopalakrishnan et al., 1994] and [Campos, 1993]. In

[Campos, 1993] it is stated that \support from the de�nition language in

de�ning and using shared variables would be very useful. The language

22

could generate the control modules for each variable declared shared, and

simplify the exchange of information."

� Di�culty in representing an asynchronous execution model. Well, this

could be achieved by making each transition non-deterministic, allowing

a component to stay in the same state. Another possibility is stuttering

[Campos, 1993] by which asynchronous behaviour can be introduced and

�ner granularity of time can be achieved.

All these disadvantages of SMV make the modeling of many protocols not

only notationally extremely tedious and complicated but can also increase the

size of the model considerably (see our synchronous examples).

[Gopalakrishnan et al., 1994] state that SMVmust be interfaced to design sys-

tems (They have developed a Petri-nets interface to SMV.). In [Campos, 1993]

it is believed that a \language with a syntax closer to that of a general program-
ming language could increase the e�ciency of the veri�cation of programs." We

go further and call for a more general description language, the �-calculus, and
more speci�c languages on top of it. The input language of SMV is one of these:
useful for the application to senquential circuit veri�cation. Other such speci�c
languages can be process algebra, state charts or other speci�cation languages
for the veri�cation of communication protocols.

This has several advantages:

� The underlying system is much more general and many more things can be
investigated. It can thus serve as a tool for experimentation.

� The system can be easily extended to other interfaces. Note that `misusing'
a language for purposes for which it was not de�ned can result in many spec-
i�cation errors since speci�cations become less understandable. This can
be easily seen in our synchronous speci�cations, but also in [Campos, 1993].
This is why it is important that speci�c interfaces for special purpose types

of veri�cation can be easily added. This will make veri�cation much more
convenient and - what is more - less error-prone.

� When translating into the �-calculus we can ensure the most concise repre-

sentation of the states and transition relation. Automatic abstraction and

many reductions can be performed on the �-calculus level such as auto-

matic reduction of the number of variables before the translation into the
BDD representation. E.g., the program in appendix A.1 could be trans-
formed into the program in appendix A.3, i.e., variables sa and ra could be

eliminated.

� Using the �-calculus as an intermediate language allows the following opti-

mizations. When a CTL formula has been translated into the �-calculus it

23

is possible to simplify it according to the semantics of the �-calculus. With

the SMV system such an optimization is di�cult because model checking is

done along the structure of CTL terms (the evaluation is syntax driven!).

On the other hand it is possible to enrich the �-calculus with operators

that preserve most of the information that allows SMV to apply special

purpose OBDD operations. One example are modal operators as in the

modal �-calculus in [Cleaveland, 1990]. These can be evaluated by spe-

cial purpose OBDD operations and correspond to a next state calculation

in a state space search (compare with the `collapse bdd'-function in the

SMV system). If the �-calculus is seen as functional program and not as

a logical term such a modal operator corresponds to a functional. So we

are looking for a �-calculus with higher types. These higher types can ex-

press information about a transition relation that can not be used by the

SMV system. We think that for some examples this approach will result

in an even faster model checking algorithm (we do not stress the possi-
bly greater expressivenes of such an enriched �-calculus as it is the case in
[Hungar, 1994]).

References

[Baeten and Weijland, 1990] J. C. M. Baeten and W. P. Weijland. Process Al-

gebra, volume 18 of Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, Cambridge, England, 1990.

[Bryant, 1986] R. E. Bryant. Graph-based algorithms for boolean function ma-

nipulation. IEEE Transactions on Computers, C-35(8), 1986.

[Burch et al., 1990] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and

L. J. Hwang. Symbolic model checking: 1020 states and beyond. In 5th Annual

IEEE Symposium on Logic in Computer Science, Philadelphia, pages 428 {
439, 1990.

[Burch et al., 1994] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and

D. L. Dill. Symbolic model checking for sequential circuit veri�cation. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,
13(4):401 { 424, April 1994.

[Campos, 1993] S. V. Campos. The priority inversion problem and real-time

symbolic model checking. Technical Report CMU-CS-93-125, Carnegie Mellon
University, April 1993.

[Clarke et al., 1986] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic

veri�cation of �nite-state concurrent systems using temporal logic speci�ca-

24

tions. ACM Transactions on Programming Languages and Systems, 8(2):244 {

263, April 1986.

[Clarke et al., 1993] E. Clarke, O. Grumberg, and D. Long. Veri�cation tools for

�nite-state concurrent systems. In de Bakker, editor, A Decade of Concurrency,

REX School/Symposium, volume 803 of LNCS, pages 124 { 175. Springer, 1993.

[Cleaveland, 1990] Rance Cleaveland. Tableau-based model checking in the

propositional mu-calculus. Acta Inf., 27:725{747, 1990.

[Gopalakrishnan et al., 1994] G. Gopalakrishnan, D. Khandekar, R. Kuramkote,

and R. Nalumasu. Case studies in symbolic model checking. Technical Report

UUCS-94-009, Department of Computer Science, University of Utah, 1994.

[Hungar, 1994] H. Hungar. Model checking of macro processes. In D. L. Dill,

editor, Comuter Aided Veri�cation, CAV'94, pages 169{181. Springer-Verlag,
1994.

[McMillan, 1992] K. L. McMillan. The SMV system. Technical report, Carnegie

Mellon University, 1992.

[McMillan, 1993] K. L. McMillan. Symbolic Model Checking. Kluwer Academic

Publishers, 1993.

[Mulder, 1990] J. C. Mulder. On the Amoeba protocol. In J. C. M. Baeten, editor,
Applications of Process Algebra, volume 17 of Cambridge Tracts in Theoretical

Computer Science, pages 147 { 172. Cambridge University Press, 1990.

[Zucker, 1993] J. Zucker. Propositional temporal logics and their use in model

checking. In P. E. Lauer, editor, Functional Programming, Concurrency, Simu-

lation and Automated Reasoning, pages 108{116. Springer-Verlag, Berlin, DE,
1993. Proceedings of International Lecture Series 1991-92, McMaster Univer-
sityLecture Notes in Computer Science 693.

25

A Interleaving model of ABP in SMV

A.1 Sender and receiver of the upper level, sender, re-

ceiver and the 2 channels

A.1.1 The SMV program

1 -- interleaving

2 --

3 -- sender and receiver of upper level: as variables

4 -- sender and receiver of lower level: as modules

5 -- channels: as variables

6 --

7 -- channel corruption modelled by non-determinism in sender and receiver of

8 -- lower level

9 --

10 -- fairness for all non-deterministic choices

11
12
13 MODULE sender(ch_s2r,ch_r2s,sa)

14
15 VAR

16 state : {s0,s1,s2,s3,s4,s5};

17
18 ASSIGN

19 init(state) := s0;

20 next(state) :=

21 case

22 state = s0 & sa = sendd0 : s1;

23 state = s1 & (ch_s2r = empty) : s2;

24 -- corrupted -> s1, right ack -> s3; nondeterminism represents channel

25 -- corruption

26 state = s2 & (ch_r2s = ack0) : {s1,s3};

27 -- wrong ack -> s1

28 state = s2 & (ch_r2s = ack1) : {s1};

29 state = s3 & sa = sendd1 : s4;

30 state = s4 & (ch_s2r = empty) : s5;

31 state = s5 & (ch_r2s = ack1): {s4,s0};

32 state = s5 & (ch_r2s = ack0): {s4};

33 1 : state;

34 esac;

35 next(ch_s2r) :=

36 case

37 ch_s2r = empty & state = s1 : data0;

38 ch_s2r = empty & state = s4 : data1;

39 1 : ch_s2r;

40 esac;

41 next(ch_r2s) :=

42 case

43 (ch_r2s in {ack0, ack1}) & (state = s2 | state = s5): empty;

44 1 : ch_r2s;

45 esac;

46 next(sa) :=

47 case

48 state = s0 & sa = sendd0 : sendd1;

49 state = s3 & sa = sendd1 : sendd0;

50 1 : sa;

51 esac;

52
53 FAIRNESS state = s3

54 FAIRNESS state = s0

55

26

56 FAIRNESS running

57
58
59
60
61 MODULE receiver(ch_s2r,ch_r2s,ra)

62
63 VAR

64 state : {r0,r1,r2,r3,r4,r5,r6,r7};

65
66 ASSIGN

67 init(state) := r0;

68 next(state) :=

69 case

70 -- non-determinism represents channel corruption

71 state = r0 & (ch_s2r = data0) : {r1,r2};

72 state = r0 & (ch_s2r = data1) : {r1};

73 state = r1 & (ch_r2s = empty) : r0;

74 state = r2 & ra = received0 : r3;

75 state = r3 & (ch_r2s = empty) : r4;

76 -- non-determinism represents channel corruption

77 state = r4 & (ch_s2r = data1): {r5,r6};

78 state = r4 & (ch_s2r = data0): {r5};

79 state = r5 & (ch_r2s = empty) : r4;

80 state = r6 & ra = received1 : r7;

81 state = r7 & (ch_r2s = empty) : r0;

82 1 : state;

83 esac;

84 next(ch_r2s) :=

85 case

86 ch_r2s = empty & (state in {r1,r7}): ack1;

87 ch_r2s = empty & (state in {r3,r5}): ack0;

88 1 : ch_r2s;

89 esac;

90 next(ch_s2r) :=

91 case

92 (ch_s2r in {data0,data1}) & (state = r0 | state = r4): empty;

93 1 : ch_s2r;

94 esac;

95 next(ra) :=

96 case

97 state = r2 & ra = received0 : received1;

98 state = r6 & ra = received1 : received0;

99 1 : ra;

100 esac;

101
102
103 FAIRNESS state = r2

104 FAIRNESS state = r6

105
106 FAIRNESS running

107
108
109 MODULE main

110
111 VAR

112 ch_s2r : {empty,data0,data1};

113 ch_r2s : {empty,ack0,ack1};

114 sen : process sender(ch_s2r,ch_r2s,sa);

115 rec : process receiver(ch_s2r,ch_r2s,ra);

116 sa : {sendd0, sendd1};

117 ra : {received0, received1};

118
119 ASSIGN

120 init(ch_s2r) := empty;

27

121 init(ch_r2s) := empty;

122 init(sa) := sendd0;

123 init(ra) := received0;

124
125
126 -- no deadlock, there are paths fulfilling the fairness conditions

127 SPEC

128 EG 1

129
130 -- sender can always send if it wants to

131 SPEC

132 AG ((sa = sendd0 -> EF sa = sendd1) & (sa = sendd1 -> EF sa = sendd0))

133
134 -- data is transmitted in right order

135 SPEC

136 AG (sa = sendd1 -> A [sa = sendd1 U ra = received1]) &

137 AG (ra = received1 -> A [ra = received1 U sa = sendd0]) &

138 AG (sa = sendd0 -> A [sa = sendd0 U ra = received0]) &

139 AG (ra = received0 -> A [ra = received0 U sa = sendd1])

A.1.2 The performance

i90s11:~/public/bin>smvo -f -r smvd/examples/own/abp/correct/ulcaf.smv

-- specification EG 1 is true

-- specification AG ((sa = sendd0 -> EF sa = sendd1) & (s... is true

-- specification AG (sa = sendd1 -> A(sa = sendd1 U ra = ... is true

resources used:

user time: 1.21667 s, system time: 0.466667 s

BDD nodes allocated: 4209

Bytes allocated: 917504

BDD nodes representing transition relation: 330 + 1

reachable states: 22 (2^4.45943) out of 1728 (2^10.7549)

A.2 Direct representation of the transition relation, no

sender and receiver in the upper level

A.2.1 The SMV program

1 -- interleaving

2 --

3 -- direct representation of global transition relation as formula

4 --

5 -- sender and receiver of upper level: none

6 -- sender and receiver of lower level

7 -- channels

8 --

9 -- channel corruption modelled by non-determinism in sender and receiver of

10 -- lower level

11 --

12 -- fairness only for state s0

13
14
15 MODULE main

16
17 VAR

18 s2r : {empty,data0,data1};

19 r2s : {empty,ack0,ack1};

20 s : {s0,s1,s2,s3,s4,s5};

21 r : {r0,r1,r2,r3,r4,r5,r6,r7};

28

22
23 INIT

24 s = s0 & r = r0 & s2r = empty & r2s = empty

25
26 TRANS

27 s = s0 &

28 next(s) = s1 & next(s2r) = s2r & next(r2s) = r2s & next(r) = r |

29 s = s1 & (s2r = empty) &

30 (next(s) = s2) & (next(s2r) = data0) & next(r2s) = r2s & next(r) = r |

31 s = s2 & r2s = ack0 &

32 (next(s) = s1 | next(s) = s3) &

33 next(s2r) = s2r & next(r2s) = empty & next(r) = r |

34 s = s2 & (r2s = ack1) &

35 next(s) = s1 & next(s2r) = s2r & next(r2s) = empty & next(r) = r |

36 s = s3 &

37 next(s) = s4 & next(s2r) = s2r & next(r2s) = r2s & next(r) = r|

38 s = s4 & (s2r = empty) &

39 next(s) = s5 & next(s2r) = data1 & next(r2s) = r2s & next(r) = r |

40 s = s5 & (r2s = ack1) &

41 (next(s) = s4 | next(s) = s0) &

42 next(s2r) = s2r & next(r2s) = empty & next(r) = r |

43 s = s5 & (r2s = ack0) &

44 next(s) = s4 & next(s2r) = s2r & next(r2s) = empty & next(r) = r |

45
46 (r = r0 & (s2r = data0) &

47 (next(r) in {r1,r2}) & next(s2r) = empty & next(r2s) = r2s |

48 r = r0 & (s2r = data1) &

49 next(r) = r1 & next(s2r) = empty & next(r2s) = r2s |

50 r = r1 & (r2s = empty) &

51 next(r) = r0 & next(s2r) = s2r & next(r2s) = ack1 |

52 r = r2 &

53 next(r) = r3 & next(s2r) = s2r & next(r2s) = r2s |

54 r = r3 & (r2s = empty) &

55 next(r) = r4 & next(s2r) = s2r & next(r2s) = ack0 |

56 r = r4 & (s2r = data1) &

57 (next(r) in {r5,r6}) & next(s2r) = empty & next(r2s) = r2s |

58 r = r4 & (s2r = data0) &

59 next(r) = r5 & next(s2r) = empty & next(r2s) = r2s |

60 r = r5 & (r2s = empty) &

61 next(r) = r4 & next(s2r) = s2r & next(r2s) = ack0 |

62 r = r6 &

63 next(r) = r7 & next(s2r) = s2r & next(r2s) = r2s |

64 r = r7 & (r2s = empty) &

65 next(r) = r0 & next(s2r) = s2r & next(r2s) = ack1) & next(s) = s

66
67 FAIRNESS

68 s = s0

69
70 -- no deadlock, there are paths fulfilling the fairness conditions

71 SPEC

72 EG 1

73
74 -- data is transmitted in right order

75 SPEC

76 AG (r in {r0,r1} -> A [r in {r0,r1} U s = s2]) &

77 AG (s in {s1,s2} -> A [s in {s1,s2} U r = r4]) &

78 AG (r in {r4,r5} -> A [r in {r4,r5} U s = s5]) &

79 AG (s in {s4,s5} -> A [s in {s4,s5} U r = r0])

A.2.2 The performance

i90s11:~/public/bin>smvo -f -r smvd/examples/own/abp/correct/ulctsf.smv

-- specification EG 1 is true

-- specification AG (r in (r0 union r1) -> A(r in (r0 uni... is true

29

resources used:

user time: 0.583333 s, system time: 0.283333 s

BDD nodes allocated: 1756

Bytes allocated: 917504

BDD nodes representing transition relation: 152 + 1

reachable states: 22 (2^4.45943) out of 432 (2^8.75489)

A.3 Receiver, sender as modules, the 2 channels as vari-

ables

A.3.1 The SMV program

1 -- interleaving

2 --

3 -- sender and receiver of upper level: none

4 -- sender and receiver f lower level: as modules

5 -- channels: as variables

6 --

7 -- channel corruption modelled by non-determinism in sender and receiver of

8 -- lower level

9 --

10 -- fairness only for state s0 and running for sender of lower level

11
12
13 MODULE sender(ch_s2r,ch_r2s)

14
15 VAR

16 state : {s0,s1,s2,s3,s4,s5};

17
18 ASSIGN

19 init(state) := s0;

20 next(state) :=

21 case

22 state = s0 : s1;

23 state = s1 & (ch_s2r = empty) : s2;

24 -- corrupted -> s1, right ack -> s3; nondeterminism represents channel

25 -- corruption

26 state = s2 & (ch_r2s = ack0) : {s1,s3};

27 -- wrong ack -> s1

28 state = s2 & (ch_r2s = ack1) : {s1};

29 state = s3 : s4;

30 state = s4 & (ch_s2r = empty) : s5;

31 state = s5 & (ch_r2s = ack1): {s4,s0};

32 state = s5 & (ch_r2s = ack0): {s4};

33 1 : state;

34 esac;

35 next(ch_s2r) :=

36 case

37 ch_s2r = empty & state = s1 : data0;

38 ch_s2r = empty & state = s4 : data1;

39 1 : ch_s2r;

40 esac;

41 next(ch_r2s) :=

42 case

43 (ch_r2s in {ack0, ack1}) & (state = s2 | state = s5): empty;

44 1 : ch_r2s;

45 esac;

46
47 -- ensures that all nondeterministic choices in sender and receiver are fair

48 FAIRNESS state = s0

30

49
50 FAIRNESS running

51
52
53 MODULE receiver(ch_s2r,ch_r2s)

54
55 VAR

56 state : {r0,r1,r2,r3,r4,r5,r6,r7};

57
58 ASSIGN

59 init(state) := r0;

60 next(state) :=

61 case

62 -- non-determinism represents channel corruption

63 state = r0 & (ch_s2r = data0) : {r1,r2};

64 state = r0 & (ch_s2r = data1) : {r1};

65 state = r1 & (ch_r2s = empty) : r0;

66 state = r2 : r3;

67 state = r3 & (ch_r2s = empty) : r4;

68 -- non-determinism represents channel corruption

69 state = r4 & (ch_s2r = data1): {r5,r6};

70 state = r4 & (ch_s2r = data0): {r5};

71 state = r5 & (ch_r2s = empty) : r4;

72 state = r6 : r7;

73 state = r7 & (ch_r2s = empty) : r0;

74 1 : state;

75 esac;

76 next(ch_r2s) :=

77 case

78 ch_r2s = empty & (state in {r1,r7}): ack1;

79 ch_r2s = empty & (state in {r3,r5}): ack0;

80 1 : ch_r2s;

81 esac;

82 next(ch_s2r) :=

83 case

84 (ch_s2r in {data0,data1}) & (state = r0 | state = r4): empty;

85 1 : ch_s2r;

86 esac;

87
88
89
90 MODULE main

91
92 VAR

93 ch_s2r : {empty,data0,data1};

94 ch_r2s : {empty,ack0,ack1};

95 sen : process sender(ch_s2r,ch_r2s);

96 rec : process receiver(ch_s2r,ch_r2s);

97
98 ASSIGN

99 init(ch_s2r) := empty;

100 init(ch_r2s) := empty;

101
102
103
104 -- no deadlock, there are paths fulfilling the fairness conditions

105 SPEC

106 EG 1

107
108 -- data is transmitted in right order

109 SPEC

110 AG (rec.state in {r0,r1} -> A [rec.state in {r0,r1} U sen.state = s2]) &

111 AG (sen.state in {s1,s2} -> A [sen.state in {s1,s2} U rec.state = r4]) &

112 AG (rec.state in {r4,r5} -> A [rec.state in {r4,r5} U sen.state = s5]) &

113 AG (sen.state in {s4,s5} -> A [sen.state in {s4,s5} U rec.state = r0])

31

A.3.2 The performance

� With just two fairness conditions as described above

i90s11:~/public/bin>smvo -f -r smvd/examples/own/abp/correct/lcsf.smv

-- specification EG 1 is true

-- specification AG (rec.state in (r0 union r1) -> A(rec.... is true

resources used:

user time: 0.916667 s, system time: 0.216667 s

BDD nodes allocated: 2739

Bytes allocated: 917504

BDD nodes representing transition relation: 243 + 1

reachable states: 22 (2^4.45943) out of 432 (2^8.75489)

� With additional super
uous fairness conditions on s0, s3, r0, r4,

running on both receiver and sender

i90s11:~/public/bin>smvo -f -r smvd/examples/own/abp/correct/lcaf.smv

-- specification EG 1 is true

-- specification AG (rec.state in (r0 union r1) -> A(rec.... is true

resources used:

user time: 1.03333 s, system time: 0.383333 s

BDD nodes allocated: 3455

Bytes allocated: 917504

BDD nodes representing transition relation: 243 + 1

reachable states: 22 (2^4.45943) out of 432 (2^8.75489)

A.4 Receiver, sender, and the 2 channels as modules

A.4.1 The SMV program

1 -- interleaving

2 --

3 -- sender and receiver of upper level: none

4 -- sender and receiver of lower level: as modules

5 -- channels: as modules

6 --

7 -- channel corruption modelled by non-determinism in the channel modules

8 --

9 -- fairness only for state s0 and running for sender of lower level

10 -- additional fairness in order to forbid an infinite sequence of channel

11 -- corruptions

12
13
14 MODULE sender(cs2r,cr2s,s2rnew)

15
16 VAR

17 state : {s0,s1,s2,s3,s4,s5};

18
19 ASSIGN

20 init(state) := s0;

21 next(state) :=

22 case

23 state = s0 : s1;

24 state = s1 & (cs2r = empty) : s2;

32

25 state = s2 & cr2s = ack0 : s3;

26 state = s2 & (cr2s in {ack1,cor_ack}) : s1;

27 state = s3 : s4;

28 state = s4 & (cs2r = empty) : s5;

29 state = s5 & (cr2s = ack1): s0;

30 state = s5 & (cr2s in {ack0,cor_ack}): s4;

31 1 : state;

32 esac;

33 next(cs2r) :=

34 case

35 cs2r = empty & state = s1 : data0;

36 cs2r = empty & state = s4 : data1;

37 1 : cs2r;

38 esac;

39 next(s2rnew) :=

40 case

41 cs2r = empty & state = s1 : 1;

42 cs2r = empty & state = s4 : 1;

43 1 : s2rnew;

44 esac;

45 next(cr2s) :=

46 case

47 state = s2 & cr2s = ack0 : empty;

48 state = s2 & (cr2s in {ack1,cor_ack}) : empty;

49 state = s5 & (cr2s = ack1): empty;

50 state = s5 & (cr2s in {ack0,cor_ack}): empty;

51 1 : cr2s;

52 esac;

53
54 FAIRNESS state = s0

55
56 FAIRNESS running

57
58
59 MODULE receiver(cs2r,cr2s,r2snew)

60
61 VAR

62 state : {r0,r1,r2,r3,r4,r5,r6,r7};

63
64 ASSIGN

65 init(state) := r0;

66 next(state) :=

67 case

68 state = r0 & (cs2r = data0) : r2;

69 state = r0 & (cs2r in {data1,cor_data}) : r1;

70 state = r1 & (cr2s = empty) : r0;

71 state = r2 : r3;

72 state = r3 & (cr2s = empty) : r4;

73 state = r4 & (cs2r = data1): r6;

74 state = r4 & (cs2r in {data0,cor_data}): r5;

75 state = r5 & (cr2s = empty) : r4;

76 state = r6 : r7;

77 state = r7 & (cr2s = empty) : r0;

78 1 : state;

79 esac;

80 next(cr2s) :=

81 case

82 state = r1 & (cr2s = empty) : ack1;

83 state = r3 & (cr2s = empty) : ack0;

84 state = r5 & (cr2s = empty) : ack0;

85 state = r7 & (cr2s = empty) : ack1;

86 1 : cr2s;

87 esac;

88 next(r2snew) :=

89 case

33

90 state = r1 & (cr2s = empty) : 1;

91 state = r3 & (cr2s = empty) : 1;

92 state = r5 & (cr2s = empty) : 1;

93 state = r7 & (cr2s = empty) : 1;

94 1 : r2snew;

95 esac;

96 next(cs2r) :=

97 case

98 state = r0 & (cs2r = data0) : empty;

99 state = r0 & (cs2r in {data1,cor_data}) : empty;

100 state = r4 & (cs2r = data1): empty;

101 state = r4 & (cs2r in {data0,cor_data}): empty;

102 1 : cs2r;

103 esac;

104
105
106
107 MODULE ch_s2r

108
109 VAR

110 s : {empty,cor_data,data0,data1};

111 -- corr and new are necessary to make the use of the language

112 -- construct FAIRNESS possible

113 -- if corr could be changed more often than data is received then corr

114 -- could always be 0 when s is changed (corrupted)

115 corr : boolean;

116 new : boolean;

117
118 ASSIGN

119 init(s) := empty;

120 next(s) :=

121 case

122 (s = data0 | s = data1) & new & corr: cor_data;

123 s = data0 & new & !corr : data0;

124 s = data1 & new & !corr : data1;

125 1 : s;

126 esac;

127 next(new) :=

128 case

129 new : 0;

130 new = 0 : 0;

131 esac;

132 -- random decision always for each next datum (Zufallsentscheidung immer

133 -- f"ur das jeweils n"achste Datum)

134 next(corr) :=

135 case

136 new : {0,1};

137 1 : corr;

138 esac;

139
140 FAIRNESS corr = 0

141 -- we do not need a FAIRNESS running here since if this module is not

142 -- executed at all means that no corruption has occurred;

143 -- corr and new can be reset after the data has already been read

144 -- this is no problem with respect to the fairness of corr

145
146 MODULE ch_r2s

147
148 VAR

149 s : {empty,cor_ack,ack0,ack1};

150 corr : boolean;

151 new : boolean;

152
153 ASSIGN

154 init(s) := empty;

34

155 next(s) :=

156 case

157 (s = ack0 | s = ack1) & new & corr: cor_ack;

158 s = ack0 & new & !corr : ack0;

159 s = ack1 & new & !corr : ack1;

160 1 : s;

161 esac;

162 next(new) :=

163 case

164 new : 0;

165 new = 0 : 0;

166 esac;

167 -- random decision always for each next datum

168 next(corr) :=

169 case

170 new : {0,1};

171 1 : corr;

172 esac;

173
174 FAIRNESS corr = 0

175
176
177 MODULE main

178
179 VAR

180 sen : process sender(s2r.s,r2s.s,s2r.new);

181 rec : process receiver(s2r.s,r2s.s,r2s.new);

182 s2r : process ch_s2r;

183 r2s : process ch_r2s;

184
185
186
187 -- no deadlock, there are paths fulfilling the fairness conditions

188 SPEC

189 EG 1

190
191 -- data is transmitted in right order

192 SPEC

193 AG (rec.state in {r0,r1} -> A [rec.state in {r0,r1} U sen.state = s2]) &

194 AG (sen.state in {s1,s2} -> A [sen.state in {s1,s2} U rec.state = r4]) &

195 AG (rec.state in {r4,r5} -> A [rec.state in {r4,r5} U sen.state = s5]) &

196 AG (sen.state in {s4,s5} -> A [sen.state in {s4,s5} U rec.state = r0])

A.4.2 The performance

i90s11:~/public/bin>smvo -f -r smvd/examples/own/abp/correct/lcmaf.smv

-- specification EG 1 is true

-- specification AG (rec.state in (r0 union r1) -> A(rec.... is true

resources used:

user time: 6.13333 s, system time: 0.383333 s

BDD nodes allocated: 10115

Bytes allocated: 983040

BDD nodes representing transition relation: 407 + 1

reachable states: 320 (2^8.32193) out of 12288 (2^13.585)

35

B Synchronous model of ABP in SMV

B.1 Global variables, no medium, no users

1
2 -- NAME: ABP_NM_NU.ni.gv.smv

3 -- AUTHOR: Armin Biere (armin@ira.uka.de)

4
5 -- ABP Alternating Bit Protocol

6 -- NM No Media modelled

7 -- NU No users modelled

8 -- ni non interleaving

9 -- gv synchronize via global variables

10
11 -- This is the alternating Bit Protokoll as described in:

12 -- Automatic Verification of Finite-State Concurrent Systems Using

13 -- Temporal Logic Specifications, by E.M. Clarke, E.A. Emerson

14 -- and A.P. Sistla, in ACM Transactions on Programming Languages

15 -- and Systems. Volume 8. No.2. April 1986. Pages 244--263.

16
17 -- No lower or higher media is simulated.

18 -- But we do include the transmission of the data.

19
20 -- The main difference between this description of the Alternating

21 -- Bit Protocol and that mentioned above is that no interleaving

22 -- semantic is used. Because the smv system restricts multiple

23 -- assignement of a variable in different modules we can't use

24 -- global variables to exchanges signals between modules.

25
26 -- ***

27 -- This time we don't use modules at all. So we can use the global

28 -- variable approach to synchronize sender and receiver. This is

29 -- possible since the sender of a signal only wants to write a signal

30 -- if it is zero and the receiver vice versa.

31 -- ***

32
33 MODULE main

34
35 VAR

36 snd : boolean; -- signal from sender to receiver:

37 -- set by the sender and reset by the receiver

38 rcv : boolean; -- signal from receiver to sender:

39 -- set by the receiver and reset by the sender

40
41 SNDstate : {

42 prepareSend, -- there must be an extra state to generate the

43 -- the data we want to transmit

44 send, -- send data and control bit (see data)

45 receive, -- receive acknowledgement of the receiver

46 transmitted -- we got the right acknowledgement

47 };

48 Smsg : boolean; -- what will be transmitted

49 SNDdata : { dm00, dm01, dm10, dm11, err };

50 SNDcontrol : boolean;

51
52
53 RCVstate : {

54 receive, -- wait for data to receive

55 prepareAck, -- generate an acknowledgement according

56 -- to the control bit and the received data.

57 -- Also it is possible to generate an error.

58 send, -- send the acknowledgement to the sender.

59 received -- got data with the right control bit.

60 };

36

61 Rmsg : boolean;

62 RCVcontrol : boolean;

63 RCVdata : { am0, am1, err };

64
65
66 ASSIGN

67 -- **

68 -- the manipulation of rcv and snd are the only global operations

69 -- **

70 init(snd) := 0;

71 next(snd) :=

72 case

73 SNDstate = send & ! snd : 1;

74 RCVstate = receive & snd : 0;

75 1 : snd;

76 esac;

77 init(rcv) := 0;

78 next(rcv) :=

79 case

80 SNDstate = receive & rcv : 0;

81 RCVstate = send & ! rcv : 1;

82 1 : rcv;

83 esac;

84
85 -- ******************

86 -- this is the sender

87 -- ******************

88 next(SNDdata) :=

89 case

90 SNDstate = prepareSend & Smsg & ! SNDcontrol : { err, dm10 };

91 SNDstate = prepareSend & ! Smsg & ! SNDcontrol : { err, dm00 };

92 SNDstate = prepareSend & Smsg & SNDcontrol : { err, dm11 };

93 SNDstate = prepareSend & ! Smsg & SNDcontrol : { err, dm01 };

94 1 : SNDdata;

95 esac;

96 next(Smsg) :=

97 case

98 SNDstate = transmitted : { 0, 1}; -- generate new data to send

99 1 : Smsg; -- keep it the same so that

100 -- the receiver gets the

101 -- right one. We don't have

102 -- buffer for the data!

103 esac;

104 init(SNDcontrol) := 0;

105 next(SNDcontrol) :=

106 case

107 SNDstate = transmitted : ! SNDcontrol;

108 1 : SNDcontrol;

109 esac;

110 init(SNDstate) := prepareSend;

111 next(SNDstate) :=

112 case

113 SNDstate = prepareSend : send;

114 SNDstate = send & ! snd : receive;

115 SNDstate = receive & rcv :

116 case

117 SNDcontrol :

118 case

119 RCVdata = am1 : transmitted;

120 RCVdata = am0 | -- we got a wrong ack:

121 RCVdata = err : send; -- send again

122 esac;

123 ! SNDcontrol :

124 case

125 RCVdata = am0 : transmitted;

37

126 RCVdata = am1 | -- we got a wrong ack:

127 RCVdata = err : send; -- send again

128 esac;

129 esac;

130 SNDstate = transmitted : prepareSend;

131 1 : SNDstate;

132 esac;

133
134 -- ***************************************

135 -- the description of the receiver follows

136 -- ***************************************

137 init(RCVcontrol) := 0;

138 next(RCVcontrol) :=

139 case

140 RCVstate = received : ! RCVcontrol;

141 1 : RCVcontrol;

142 esac;

143 next(RCVdata) :=

144 case

145 RCVstate = prepareAck :

146 case

147 RCVcontrol :

148 case

149 SNDdata in { dm11, dm01 } : { am1, err };

150 SNDdata = err : err;

151 1 : { am0, err };

152 esac;

153 ! RCVcontrol :

154 case

155 SNDdata in { dm10, dm00 } : { am0, err };

156 SNDdata = err : err;

157 1 : { am1, err };

158 esac;

159 esac;

160 1 : RCVdata;

161 esac;

162 next(Rmsg) :=

163 case

164 RCVstate = receive & snd :

165 case

166 SNDdata in { dm10, dm11 } : 1;

167 SNDdata in { dm00, dm01 } : 0;

168 esac;

169 1 : Rmsg;

170 esac;

171 init(RCVstate) := receive;

172 next(RCVstate) :=

173 case

174 RCVstate = receive & snd : prepareAck;

175 RCVstate = prepareAck : send;

176 RCVstate = send & ! rcv :

177 case

178 RCVcontrol :

179 case -- the receiver has choosen nondeterministically

180 -- to generate an error or not. This means we have

181 -- to check our own data that we have prepared for

182 -- acknowledging.

183 RCVdata = am1 : received;

184 1 : receive; -- receive again

185 esac;

186 ! RCVcontrol :

187 case

188 RCVdata = am0 : received;

189 1 : receive; -- receive again

190 esac;

38

191 esac;

192 RCVstate = received : receive;

193 1 : RCVstate;

194 esac;

195
196 FAIRNESS

197 ! SNDdata = err

198 FAIRNESS

199 ! RCVdata = err

200
201 -- first of all liveness specifications

202 SPEC -- ensure that the transition relation is not empty

203 EF SNDstate = transmitted

204 SPEC

205 AG AF SNDstate = transmitted

206 SPEC

207 AG AF SNDstate = send

208
209 -- correct transmission of a one bit

210 -- this means that when the sender sends a one bit the

211 -- receiver does not enter his received state without

212 -- having received one bit:

213 SPEC --

214 AG ((SNDstate = send & Smsg) ->

215 A [(! RCVstate = received) U (RCVstate = received & Rmsg)])

216
217 SPEC -- correct transmission of a zero bit

218 AG ((SNDstate = send & ! Smsg) ->

219 A [(! RCVstate = received) U (RCVstate = received & ! Rmsg)])

B.2 Global variables, no users

1 -- NAME: ABP_M_NU.ni.gv.smv

2 -- AUTHOR: Armin Biere (armin@ira.uka.de)

3
4 -- ABP Alternating Bit Protocol

5 -- M the medium is supported

6 -- NU No users modelled

7 -- ni non interleaving

8 -- gv synchronize via global variables

9
10 -- This is an *extended* version of the alternating Bit Protokoll

11 -- as described in

12 -- Automatic Verification of Finite-State Concurrent Systems Using

13 -- Temporal Logic Specifications, by E.M. Clarke, E.A. Emerson

14 -- and A.P. Sistla, in ACM Transactions on Programming Languages

15 -- and Systems. Volume 8. No.2. April 1986. Pages 244--263.

16
17 -- Only a lower Media is modeled but no users of the service.

18 -- In this version the data is realy transported between the

19 -- sender and the receiver. The lower medium can loose messages

20 -- and error detaction is performed. So this describes a transport

21 -- protocol over a loosy channel.

22
23 -- The main difference between this description of the Alternating

24 -- Bit Protocol and that mentioned above is that no interleaving

25 -- semantic is used. Because the smv system restricts multiple

26 -- assignement of a variable in different modules we can't use

27 -- global variables to exchanges signals between modules.

28
29 -- ***

30 -- This time we don't use modules at all. So we can use the global

31 -- variable approach to synchronize sender and receiver. This is

39

32 -- possible since the sender of a signal only wants to write a signal

33 -- if it is zero and the receiver vice versa.

34 -- ***

35
36 -- On the other hand we would like to ensure syntactically that

37 -- the sender and the receiver only comunicate via the medium and

38 -- dont't inspect the data or states of the partner.

39 -- With the SMV system this is only possible if we use a complicated

40 -- signaling approach which does't seem realy appropriate (compare

41 -- with the specific version using this mechanism)

42
43 MODULE main

44
45 VAR

46 sndReq : boolean; -- Request from the sender to the media

47 -- set by the sender and reset by the medium

48 sndAck : boolean; -- this is the acknowledge provided by the

49 -- lower medium when the receiver sends

50 -- a higher level acknowledge to the sender

51 -- it is set by the medium and reset by the

52 -- sender.

53 rcvRes : boolean; -- the receiver tells medium via this signal

54 -- that he wants to send an ackowledgement

55 rcvInd : boolean; -- the medium reports a data to the receiver

56
57 SNDstate : {

58 prepareSend, -- there must be an extra state to generate the

59 -- the data we want to transmit

60 send, -- send data and control bit (see data)

61 receive, -- receive acknowledgement of the receiver

62 transmitted -- we got the right acknowledgement

63 };

64 Smsg : boolean; -- what will be transmitted

65 SNDdata : { dm00, dm01, dm10, dm11 };

66 SNDcontrol : boolean;

67
68
69 RCVstate : {

70 receive, -- wait for data to receive

71 prepareAck, -- generate an acknowledgement according

72 -- to the control bit and the received data.

73 -- Also it is possible to generate an error.

74 send, -- send the acknowledgement to the sender.

75 received -- got data with the right control bit.

76 };

77 Rmsg : boolean;

78 RCVcontrol : boolean;

79 RCVdata : { am0, am1 };

80
81 SND2RCVdata : { dm00, dm01, dm10, dm11, err };

82 SND2RCVstate : {

83 receive,

84 error,

85 noerror,

86 send

87 };

88
89 RCV2SNDdata : { am0, am1, err };

90 RCV2SNDstate : {

91 receive,

92 error,

93 noerror,

94 send

95 };

96

40

97
98 ASSIGN

99 -- **

100 -- here we have to manage the seting and reseting of all signals

101 -- **

102 init(sndReq) := 0; -- Request from sender

103 next(sndReq) :=

104 case

105 SNDstate = send & ! sndReq : 1;

106 SND2RCVstate = receive & sndReq : 0;

107 1 : sndReq;

108 esac;

109 init(sndAck) := 0; -- Ackowledgement reached sender

110 next(sndAck) :=

111 case

112 SNDstate = receive & sndAck : 0;

113 RCV2SNDstate = send & ! sndAck : 1;

114 1 : sndAck;

115 esac;

116 init(rcvInd) := 0; -- Indication of request from sender

117 next(rcvInd) :=

118 case

119 RCVstate = receive & rcvInd : 0;

120 SND2RCVstate = send & ! rcvInd : 1;

121 1 : rcvInd;

122 esac;

123 init(rcvRes) := 0; -- response to sender from receiver

124 next(rcvRes) :=

125 case

126 RCVstate = send & ! rcvRes : 1;

127 RCV2SNDstate = receive & rcvRes : 0;

128 1 : rcvRes;

129 esac;

130
131 -- **

132 -- this is the channel from the sender to the receiver

133 -- **

134 init(SND2RCVstate) := receive;

135 next(SND2RCVstate) :=

136 case

137 SND2RCVstate = receive & sndReq : { error, noerror };

138 SND2RCVstate = error : send;

139 SND2RCVstate = noerror : send;

140 SND2RCVstate = send & ! rcvInd : receive;

141 1 : SND2RCVstate;

142 esac;

143 next(SND2RCVdata) :=

144 case

145 SND2RCVstate = receive & sndReq :

146 case

147 SNDdata = dm00 : dm00;

148 SNDdata = dm01 : dm01;

149 SNDdata = dm10 : dm10;

150 SNDdata = dm11 : dm11;

151 esac;

152 SND2RCVstate = error : err;

153 1 : SND2RCVdata;

154 esac;

155
156 -- ***

157 -- here comes the channel from the receiver to the sender

158 -- ***

159 init(RCV2SNDstate) := receive;

160 next(RCV2SNDstate) :=

161 case

41

162 RCV2SNDstate = receive & rcvRes : { error, noerror };

163 RCV2SNDstate = error : send;

164 RCV2SNDstate = noerror : send;

165 RCV2SNDstate = send : receive;

166 1 : RCV2SNDstate;

167 esac;

168 next(RCV2SNDdata) :=

169 case

170 RCV2SNDstate = receive & rcvRes :

171 case

172 RCVdata = am0 : am0;

173 RCVdata = am1 : am1;

174 esac;

175 RCV2SNDstate = error : err;

176 1 : RCV2SNDdata;

177 esac;

178
179 -- ******************

180 -- this is the sender

181 -- ******************

182 next(SNDdata) := -- here we don't have to generate errors

183 -- because the medium does it

184 case

185 SNDstate = prepareSend & Smsg & ! SNDcontrol : dm10;

186 SNDstate = prepareSend & ! Smsg & ! SNDcontrol : dm00;

187 SNDstate = prepareSend & Smsg & SNDcontrol : dm11;

188 SNDstate = prepareSend & ! Smsg & SNDcontrol : dm01;

189 1 : SNDdata;

190 esac;

191 next(Smsg) :=

192 case

193 SNDstate = transmitted : { 0, 1}; -- generate new data to send

194 1 : Smsg; -- keep it the same so that

195 -- the receiver gets the

196 -- right one. We don't have

197 -- buffer for the data!

198 esac;

199 init(SNDcontrol) := 0;

200 next(SNDcontrol) :=

201 case

202 SNDstate = transmitted : ! SNDcontrol;

203 1 : SNDcontrol;

204 esac;

205 init(SNDstate) := prepareSend;

206 next(SNDstate) :=

207 case

208 SNDstate = prepareSend : send;

209 SNDstate = send & ! sndReq : receive;

210 SNDstate = receive & sndAck :

211 case

212 SNDcontrol :

213 case

214 RCV2SNDdata = am1 : transmitted;

215 RCV2SNDdata = am0 | -- we got a wrong ack:

216 RCV2SNDdata = err : send; -- send again

217 esac;

218 ! SNDcontrol :

219 case

220 RCV2SNDdata = am0 : transmitted;

221 RCV2SNDdata = am1 | -- we got a wrong ack:

222 RCV2SNDdata = err : send; -- send again

223 esac;

224 esac;

225 SNDstate = transmitted : prepareSend;

226 1 : SNDstate;

42

227 esac;

228
229 -- ***************************************

230 -- the description of the receiver follows

231 -- ***************************************

232 init(RCVcontrol) := 0;

233 next(RCVcontrol) :=

234 case

235 RCVstate = received : ! RCVcontrol;

236 1 : RCVcontrol;

237 esac;

238 next(RCVdata) :=

239 case

240 RCVstate = prepareAck :

241 case

242 RCVcontrol :

243 case

244 SND2RCVdata in { dm11, dm01 } : am1;

245 1 : am0;

246 esac;

247 ! RCVcontrol :

248 case

249 SND2RCVdata in { dm10, dm00 } : am0;

250 1 : am1;

251 esac;

252 esac;

253 1 : RCVdata;

254 esac;

255 next(Rmsg) :=

256 case

257 RCVstate = receive & rcvInd :

258 case

259 SND2RCVdata in { dm10, dm11 } : 1;

260 SND2RCVdata in { dm00, dm01 } : 0;

261 1 : Rmsg;

262 esac;

263 1 : Rmsg;

264 esac;

265 init(RCVstate) := receive;

266 next(RCVstate) :=

267 case

268 RCVstate = receive & rcvInd : prepareAck;

269 RCVstate = prepareAck : send;

270 RCVstate = send & ! rcvRes :

271 case

272 RCVcontrol :

273 case -- the receiver has choosen nondeterministically

274 -- to generate an error or not. This means we have

275 -- to check our own data that we have prepared for

276 -- acknowledging.

277 RCVdata = am1 : received;

278 1 : receive; -- receive again

279 esac;

280 ! RCVcontrol :

281 case

282 RCVdata = am0 : received;

283 1 : receive; -- receive again

284 esac;

285 esac;

286 RCVstate = received : receive;

287 1 : RCVstate;

288 esac;

289
290 FAIRNESS

291 SND2RCVstate = noerror

43

292 FAIRNESS

293 RCV2SNDstate = noerror

294
295 -- first of all liveness specifications

296 SPEC -- ensure that the transition relation is not empty

297 EF SNDstate = transmitted

298 SPEC

299 AG AF SNDstate = transmitted

300 SPEC

301 AG AF SNDstate = send

302
303 SPEC --

304 AG ((SNDstate = prepareSend & Smsg) ->

305 A [(! RCVstate = received) U (RCVstate = received & Rmsg)])

306
307 SPEC -- correct transmission of a zero bit

308 AG ((SNDstate = prepareSend & ! Smsg) ->

309 A [(! RCVstate = received) U (RCVstate = received & ! Rmsg)])

B.3 Global variables

1 -- NAME: ABP_M_U.ni.gv.smv

2 -- AUTHOR: Armin Biere (armin@ira.uka.de)

3
4 -- ABP Alternating Bit Protocol

5 -- M the medium is supported

6 -- U users modelled

7 -- ni non interleaving

8 -- gv synchronize via global variables

9
10 -- This is an *extended* version of the alternating Bit Protokoll

11 -- as described in

12 -- Automatic Verification of Finite-State Concurrent Systems Using

13 -- Temporal Logic Specifications, by E.M. Clarke, E.A. Emerson

14 -- and A.P. Sistla, in ACM Transactions on Programming Languages

15 -- and Systems. Volume 8. No.2. April 1986. Pages 244--263.

16
17 -- Only a lower Media is modeled but no users of the service.

18 -- In this version the data is realy transported between the

19 -- sender and the receiver. The lower medium can loose messages

20 -- and error detaction is performed. So this describes a transport

21 -- protocol over a loosy channel.

22
23 -- The main difference between this description of the Alternating

24 -- Bit Protocol and that mentioned above is that no interleaving

25 -- semantic is used. Because the smv system restricts multiple

26 -- assignement of a variable in different modules we can't use

27 -- global variables to exchanges signals between modules.

28
29 -- ***

30 -- This time we don't use modules at all. So we can use the global

31 -- variable approach to synchronize sender and receiver. This is

32 -- possible since the sender of a signal only wants to write a signal

33 -- if it is zero and the receiver vice versa.

34 -- ***

35
36 -- On the other hand we would like to ensure syntactically that

37 -- the sender and the receiver only comunicate via the medium and

38 -- dont't inspect the data or states of the partner.

39 -- With the SMV system this is only possible if we use a complicated

40 -- signaling approach which does't seem realy appropriate (compare

41 -- with the specific version using this mechanism)

42

44

43 MODULE main

44
45 VAR

46 sndReq : boolean; -- Request from the sender to the media

47 -- set by the sender and reset by the medium

48 sndAck : boolean; -- this is the acknowledge provided by the

49 -- lower medium when the receiver sends

50 -- a higher level acknowledge to the sender

51 -- it is set by the medium and reset by the

52 -- sender.

53 rcvRes : boolean; -- the receiver tells medium via this signal

54 -- that he wants to send an ackowledgement

55 rcvInd : boolean; -- the medium reports a data to the receiver

56 usrAReq : boolean; -- The user A sends a request and the user

57 -- B gets an indication

58 usrBInd : boolean;

59
60 SNDstate : {

61 waitForReq, -- Wait for user request of a transmission

62 prepareSend, -- there must be an extra state to generate the

63 -- the data we want to transmit

64 send, -- send data and control bit (see data)

65 receive, -- receive acknowledgement of the receiver

66 transmitted -- we got the right acknowledgement

67 };

68 Smsg : boolean; -- what will be transmitted

69 SNDdata : { dm00, dm01, dm10, dm11 };

70 SNDcontrol : boolean;

71
72
73 RCVstate : {

74 receive,

75 prepareAck, -- generate an acknowledgement according

76 -- to the control bit and the received data.

77 send, -- send the acknowledgement to the sender.

78 received, -- got data with the right control bit.

79 sendInd -- send indication to the user

80 };

81 Rmsg : boolean;

82 RCVcontrol : boolean;

83 RCVdata : { am0, am1 };

84
85 SND2RCVdata : { dm00, dm01, dm10, dm11, err };

86 SND2RCVstate : {

87 receive,

88 error,

89 noerror,

90 send

91 };

92
93 RCV2SNDdata : { am0, am1, err };

94 RCV2SNDstate : {

95 receive,

96 error,

97 noerror,

98 send

99 };

100
101 USRAdata : boolean;

102 USRAstate : {

103 prepareData,

104 send

105 };

106
107 USRBdata : boolean;

45

108 USRBstate : {

109 receive,

110 processData

111 };

112
113 ASSIGN

114 -- **

115 -- communication between the lower medium and the service

116 -- **

117 init(sndReq) := 0; -- Request from sender

118 next(sndReq) :=

119 case

120 SNDstate = send & ! sndReq : 1;

121 SND2RCVstate = receive & sndReq : 0;

122 1 : sndReq;

123 esac;

124 init(sndAck) := 0; -- Ackowledgement reached sender

125 next(sndAck) :=

126 case

127 SNDstate = receive & sndAck : 0;

128 RCV2SNDstate = send & ! sndAck : 1;

129 1 : sndAck;

130 esac;

131 init(rcvInd) := 0; -- Indication of request from sender

132 next(rcvInd) :=

133 case

134 RCVstate = receive & rcvInd : 0;

135 SND2RCVstate = send & ! rcvInd : 1;

136 1 : rcvInd;

137 esac;

138 init(rcvRes) := 0; -- response to sender from receiver

139 next(rcvRes) :=

140 case

141 RCVstate = send & ! rcvRes : 1;

142 RCV2SNDstate = receive & rcvRes : 0;

143 1 : rcvRes;

144 esac;

145
146 -- **

147 -- communication between the medium and the user instances

148 -- **

149 init(usrAReq) := 0;

150 next(usrAReq) :=

151 case

152 USRAstate = send & ! usrAReq : 1;

153 SNDstate = waitForReq & usrAReq : 0;

154 1 : usrAReq;

155 esac;

156 init(usrBInd) := 0;

157 next(usrBInd) :=

158 case

159 RCVstate = sendInd & ! usrBInd : 1;

160 USRBstate = receive & usrBInd : 0;

161 1 : usrBInd;

162 esac;

163
164 -- **

165 -- this is the channel from the sender to the receiver

166 -- **

167 init(SND2RCVstate) := receive;

168 next(SND2RCVstate) :=

169 case

170 SND2RCVstate = receive & sndReq : { error, noerror };

171 SND2RCVstate = error : send;

172 SND2RCVstate = noerror : send;

46

173 SND2RCVstate = send & ! rcvInd : receive;

174 1 : SND2RCVstate;

175 esac;

176 next(SND2RCVdata) :=

177 case

178 SND2RCVstate = receive & sndReq :

179 case

180 SNDdata = dm00 : dm00;

181 SNDdata = dm01 : dm01;

182 SNDdata = dm10 : dm10;

183 SNDdata = dm11 : dm11;

184 esac;

185 SND2RCVstate = error : err;

186 1 : SND2RCVdata;

187 esac;

188
189 -- ***

190 -- here comes the channel from the receiver to the sender

191 -- ***

192 init(RCV2SNDstate) := receive;

193 next(RCV2SNDstate) :=

194 case

195 RCV2SNDstate = receive & rcvRes : { error, noerror };

196 RCV2SNDstate = error : send;

197 RCV2SNDstate = noerror : send;

198 RCV2SNDstate = send : receive;

199 1 : RCV2SNDstate;

200 esac;

201 next(RCV2SNDdata) :=

202 case

203 RCV2SNDstate = receive & rcvRes :

204 case

205 RCVdata = am0 : am0;

206 RCVdata = am1 : am1;

207 esac;

208 RCV2SNDstate = error : err;

209 1 : RCV2SNDdata;

210 esac;

211
212 -- ***

213 -- This is the user A who wants to send data to the user B

214 -- ***

215 init(USRAstate) := prepareData;

216 next(USRAstate) :=

217 case

218 USRAstate = prepareData : send;

219 USRAstate = send & ! usrAReq : prepareData;

220 1 : USRAstate;

221 esac;

222 next(USRAdata) :=

223 case

224 USRAstate = prepareData : { 1, 0 };

225 1 : USRAdata;

226 esac;

227
228 -- *****************

229 -- here comes user B

230 -- *****************

231 init(USRBstate) := receive;

232 next(USRBstate) :=

233 case

234 USRBstate = receive & usrBInd : processData;

235 USRBstate = processData : receive;

236 1 : USRBstate;

237 esac;

47

238 next(USRBdata) :=

239 case

240 USRBstate = receive & usrBInd : Rmsg;

241 1 : USRBdata;

242 esac;

243
244 -- ******************

245 -- this is the sender

246 -- ******************

247 next(SNDdata) := -- here we don't have to generate errors

248 -- because the medium does it

249 case

250 SNDstate = prepareSend & Smsg & ! SNDcontrol : dm10;

251 SNDstate = prepareSend & ! Smsg & ! SNDcontrol : dm00;

252 SNDstate = prepareSend & Smsg & SNDcontrol : dm11;

253 SNDstate = prepareSend & ! Smsg & SNDcontrol : dm01;

254 1 : SNDdata;

255 esac;

256 next(Smsg) :=

257 case

258 SNDstate = waitForReq & usrAReq : USRAdata;

259 1 : Smsg;

260 esac;

261 init(SNDcontrol) := 0;

262 next(SNDcontrol) :=

263 case

264 SNDstate = transmitted : ! SNDcontrol;

265 1 : SNDcontrol;

266 esac;

267 init(SNDstate) := waitForReq;

268 next(SNDstate) :=

269 case

270 SNDstate = waitForReq & usrAReq : prepareSend;

271 SNDstate = prepareSend : send;

272 SNDstate = send & ! sndReq : receive;

273 SNDstate = receive & sndAck :

274 case

275 SNDcontrol :

276 case

277 RCV2SNDdata = am1 : transmitted;

278 RCV2SNDdata = am0 | -- we got a wrong ack:

279 RCV2SNDdata = err : send; -- send again

280 esac;

281 ! SNDcontrol :

282 case

283 RCV2SNDdata = am0 : transmitted;

284 RCV2SNDdata = am1 | -- we got a wrong ack:

285 RCV2SNDdata = err : send; -- send again

286 esac;

287 esac;

288 SNDstate = transmitted : waitForReq;

289 1 : SNDstate;

290 esac;

291
292 -- ***************************************

293 -- the description of the receiver follows

294 -- ***************************************

295 init(RCVcontrol) := 0;

296 next(RCVcontrol) :=

297 case

298 RCVstate = received : ! RCVcontrol;

299 1 : RCVcontrol;

300 esac;

301 next(RCVdata) :=

302 case

48

303 RCVstate = prepareAck :

304 case

305 RCVcontrol :

306 case

307 SND2RCVdata in { dm11, dm01 } : am1;

308 1 : am0;

309 esac;

310 ! RCVcontrol :

311 case

312 SND2RCVdata in { dm10, dm00 } : am0;

313 1 : am1;

314 esac;

315 esac;

316 1 : RCVdata;

317 esac;

318 next(Rmsg) :=

319 case

320 RCVstate = receive & rcvInd :

321 case

322 SND2RCVdata in { dm10, dm11 } : 1;

323 SND2RCVdata in { dm00, dm01 } : 0;

324 1 : Rmsg;

325 esac;

326 1 : Rmsg;

327 esac;

328 init(RCVstate) := receive;

329 next(RCVstate) :=

330 case

331 RCVstate = receive & rcvInd : prepareAck;

332 RCVstate = prepareAck : send;

333 RCVstate = send & ! rcvRes :

334 case

335 RCVcontrol :

336 case

337 RCVdata = am1 : received;

338 1 : receive; -- receive again

339 esac;

340 ! RCVcontrol :

341 case

342 RCVdata = am0 : received;

343 1 : receive; -- receive again

344 esac;

345 esac;

346 RCVstate = received : sendInd;

347 RCVstate = sendInd &

348 ! usrBInd : receive;

349 1 : RCVstate;

350 esac;

351
352 FAIRNESS

353 SND2RCVstate = noerror

354 FAIRNESS

355 RCV2SNDstate = noerror

356
357 SPEC -- transition relation is not empty under the fairness constraints

358 EF USRBstate = processData

359 SPEC

360 AG AF USRBstate = processData

361
362 SPEC

363 AG ((USRAstate = send & USRAdata) ->

364 A [!USRBstate = processData U (USRBstate = processData & USRBdata)])

365 SPEC

366 AG ((USRAstate = send & ! USRAdata) ->

367 A [!USRBstate = processData U (USRBstate = processData & ! USRBdata)])

49

B.4 With signal modules

1 -- NAME: ABP_NM_NU.ni.sm.smv

2 -- AUTHOR: Armin Biere (armin@ira.uka.de)

3
4 -- ABP Alternating Bit Protocol

5 -- NM No Media modelled

6 -- NU No users modelled

7 -- ni non interleaving

8 -- sm synchronize via signal modules

9
10 -- This is the alternating Bit Protokoll as described in:

11 -- Automatic Verification of Finite-State Concurrent Systems Using

12 -- Temporal Logic Specifications, by E.M. Clarke, E.A. Emerson

13 -- and A.P. Sistla, in ACM Transactions on Programming Languages

14 -- and Systems. Volume 8. No.2. April 1986. Pages 244--263.

15
16 -- No lower or higher media is simulated.

17 -- But we do include the transmission of the data.

18
19 -- The main difference between this description of the Alternating

20 -- Bit Protocol and that mentioned above is that no interleaving

21 -- semantic is used. Because the smv system restricts multiple

22 -- assignement of a variable in different modules we can't use

23 -- global variables to exchanges signals between modules.

24
25 -- ***

26 -- Here we use a seperate signal module which is responsible

27 -- for a signal. The sender (respectively the receiver)

28 -- can request to set (reset) the signal. Than the signal

29 -- module will do this for him.

30 -- The reason for this complicated scheme is that the smv

31 -- language does not support multiple assignement of variable

32 -- in different modules (though both modules who want to

33 -- write to the variable don't do it simoustanly).

34 -- ***

35
36 MODULE main

37
38 VAR

39 snd : signal;

40 rcv : signal;

41 SND : sender(RCV.data, rcv, snd); -- No media supported. So we have to

42 -- access the data in common store.

43 RCV : receiver(SND.data, snd, rcv);

44
45 -- first of all four liveness specifications

46 SPEC -- ensure that the transition relation is not empty

47 EF SND.state = transmitted

48 SPEC

49 AG AF SND.state = transmitted

50 SPEC

51 AG AF SND.state = sendSet

52
53 -- correct transmission of a one bit

54 -- this means that when the sender sends a one bit the

55 -- receiver does not enter his received state without

56 -- having received one bit:

57 SPEC --

58 AG ((SND.state = sendSet & SND.Smsg) ->

59 A [(! RCV.state = received) U (RCV.state = received & RCV.Rmsg)])

60
61 SPEC -- correct transmission of a zero bit

62 AG ((SND.state = sendSet & ! SND.Smsg) ->

63 A [(! RCV.state = received) U (RCV.state = received & ! RCV.Rmsg)])

50

64
65
66 MODULE signal

67 VAR

68 sig : boolean;

69 set : boolean; -- the sender of this signal *owns* this bit.

70 -- he sets it when wants the signal module to

71 -- set sig to one.

72 reset: boolean; -- the receiver of this signal *owns* this bit.

73 -- he sets reset when wants to set sig to zero.

74 ASSIGN

75 init(sig) := 0;

76 next(sig) :=

77 case

78 ! sig & set : 1;

79 sig & reset : 0;

80 1 : sig;

81 esac;

82
83
84 MODULE sender(rdata, IN, OUT) -- rdata is the data of the receiver

85 -- IN = rcv, OUT = snd

86 VAR

87 Smsg : boolean;

88 control : boolean;

89 state : {

90 prepareSend, -- there must be an extra state to generate the

91 -- the data we want to transmit

92
93 -- the next to sates send the data (OUT = snd)

94 sendWait, -- Wait for ! snd.sig

95 sendSet, -- Wait for snd.sig

96
97 -- the next two states receive the acknowledgement

98 -- (IN = rcv)

99 receiveWait, -- Wait for rcv.sig

100 receiveReset, -- Wait for ! rcv.sig

101
102 transmitted -- we got the right acknowledgement

103 };

104 data : { dm00, dm01, dm10, dm11, err };

105
106 ASSIGN

107 next(data) :=

108 case

109 state = prepareSend & Smsg & ! control : { err, dm10 };

110 state = prepareSend & ! Smsg & ! control : { err, dm00 };

111 state = prepareSend & Smsg & control : { err, dm11 };

112 state = prepareSend & ! Smsg & control : { err, dm01 };

113 1 : data;

114 esac;

115 next(Smsg) :=

116 case

117 state = transmitted : { 0, 1}; -- generate new data to send

118 1 : Smsg; -- keep it the same so that

119 -- the receiver gets the

120 -- right one. We don't have

121 -- buffer for the data!

122 esac;

123 init(control) := 0;

124 next(control) :=

125 case

126 state = transmitted : ! control;

127 1 : control;

128 esac;

51

129 init(state) := prepareSend;

130 init(IN.reset) := 0;

131 next(IN.reset) :=

132 case

133 state = receiveReset & IN.sig : 1;

134 1 : 0;

135 esac;

136 init(OUT.set) := 0;

137 next(OUT.set) :=

138 case

139 state = sendSet & ! OUT.sig : 1;

140 1 : 0;

141 esac;

142 next(state) :=

143 case

144 state = prepareSend : sendWait;

145 state = sendWait & ! OUT.sig : sendSet;

146 state = sendSet & OUT.sig : receiveWait;

147 state = receiveWait & IN.sig :

148 case

149 control :

150 case

151 rdata = am1 : receiveReset;

152 rdata = am0 | -- we got a wrong ack:

153 rdata = err : sendWait; -- send again

154 esac;

155 ! control :

156 case

157 rdata = am0 : receiveReset;

158 rdata = am1 | -- we got a wrong ack:

159 rdata = err : sendWait; -- send again

160 esac;

161 esac;

162 state = receiveReset & ! IN.sig : transmitted;

163 state = transmitted : prepareSend;

164 1 : state;

165 esac;

166 -- the sender is responsible on his own that an error

167 -- in the underlying media is generated.

168 -- This is accomplished by allowing the data to be

169 -- nondeterministically choosen between the real data (data bit

170 -- and control bit) and an error. To ensure a correct transmission

171 -- of data by the ABP we have to impose a restriction. Namely that

172 -- the media does not always generate an error:

173 FAIRNESS --

174 ! data = err

175
176 MODULE receiver(sdata, IN, OUT) -- sort of pram model for data transfer

177 -- IN = snd, OUT = rcv

178 VAR

179 Rmsg : boolean;

180 control : boolean;

181 state : {

182 receiveWait, -- wait for data to come in (snd.sig = 1)

183 receiveReset, -- reset snd.sig

184
185 prepareAck, -- generate an acknowledgement according

186 -- to the control bit and the received data.

187 -- Also it is possible to generate an error.

188
189 -- send the acknowledgement to the sender.

190 sendWait, -- wait for signal to be read by sender

191 sendSet, -- now set it (rcv.sig = 1)

192
193 received -- got data with the right control bit.

52

194 };

195 data : { am0, am1, err };

196
197 ASSIGN

198 init(control) := 0;

199 next(control) :=

200 case

201 state = received : ! control;

202 1 : control;

203 esac;

204 next(data) :=

205 case

206 state = prepareAck :

207 case

208 control :

209 case

210 sdata in { dm11, dm01 } : { am1, err };

211 sdata = err : err;

212 1 : { am0, err };

213 esac;

214 ! control :

215 case

216 sdata in { dm10, dm00 } : { am0, err };

217 sdata = err : err;

218 1 : { am1, err };

219 esac;

220 esac;

221 1 : data;

222 esac;

223 next(Rmsg) :=

224 case

225 state = receiveWait & IN.sig :

226 case

227 sdata in { dm10, dm11 } : 1;

228 sdata in { dm00, dm01 } : 0;

229 esac;

230 1 : Rmsg;

231 esac;

232 init(IN.reset) := 0;

233 next(IN.reset) :=

234 case

235 state = receiveWait & IN.sig : 1;

236 1 : 0;

237 esac;

238 init(OUT.set) := 0;

239 next(OUT.set) :=

240 case

241 state = sendWait & ! OUT.sig : 1;

242 1 : 0;

243 esac;

244 init(state) := receiveWait;

245 next(state) :=

246 case

247 state = receiveWait & IN.sig : receiveReset;

248 state = receiveReset & ! IN.sig : prepareAck;

249 state = prepareAck : sendWait;

250 state = sendWait & ! OUT.sig :

251 case

252 control :

253 case -- the receiver has choosen nondeterministically

254 -- to generate an error or not. This means we have

255 -- to check our own data that we have prepared for

256 -- acknowledging.

257 data = am1 : sendSet;

258 1 : receiveWait; -- receive again

53

259 esac;

260 ! control :

261 case

262 data = am0 : sendSet;

263 1 : receiveWait; -- receive again

264 esac;

265 esac;

266 state = sendSet & OUT.sig : received;

267 state = received : receiveWait;

268 1 : state;

269 esac;

270 FAIRNESS

271 ! data = err

B.5 Synchronization via state investigation

1 -- NAME: ABP_NM_NU.ni.si.smv

2 -- AUTHOR: Armin Biere (armin@ira.uka.de)

3
4 -- ABP Alternating Bit Protocol

5 -- NM No Media modelled

6 -- NU No users modelled

7 -- ni non interleaving

8 -- si synchronize via state investigation

9
10 -- This is the alternating Bit Protokoll as described in:

11 -- Automatic Verification of Finite-State Concurrent Systems Using

12 -- Temporal Logic Specifications, by E.M. Clarke, E.A. Emerson

13 -- and A.P. Sistla, in ACM Transactions on Programming Languages

14 -- and Systems. Volume 8. No.2. April 1986. Pages 244--263.

15
16 -- This example is a small one because we use synchronous send

17 -- and receive. In addition no lower or higher media is simulated.

18 -- But we do include the transmission of the data.

19
20 -- The main difference between this description of the Alternating

21 -- Bit Protocol and that mentioned above is that no interleaving

22 -- semantic is used. Because the smv system restricts multiple

23 -- assignement of a variable in different modules we can't use

24 -- global variables to exchanges signals between modules.

25 -- This version ensures the correct transmission of lower media messages

26 -- by simultaneous investigation of the states of the sender and

27 -- receiver. So this is no real implementation.

28
29 MODULE main

30
31 VAR

32 SND : sender(RCV.state, RCV.data);

33 RCV : receiver(SND.state, SND.data);

34
35 -- first of all liveness specifications

36 SPEC -- ensure that the transition relation is not empty

37 EF SND.state = transmitted

38 SPEC

39 AG AF SND.state = transmitted

40 SPEC

41 AG AF SND.state = send

42
43 -- correct transmission of a one bit

44 -- this means that when the sender sends a one bit the

45 -- receiver does not enter his received state without

46 -- having received one bit:

47 SPEC --

54

48 AG ((SND.state = send & SND.Smsg) ->

49 A [(! RCV.state = received) U (RCV.state = received & RCV.Rmsg)])

50
51 SPEC -- correct transmission of a zero bit

52 AG ((SND.state = send & ! SND.Smsg) ->

53 A [(! RCV.state = received) U (RCV.state = received & ! RCV.Rmsg)])

54
55 MODULE sender(rstate, rdata) -- rstate is the state of receiver

56 -- rdata is the data of the receiver

57
58 VAR

59 Smsg : boolean;

60 control : boolean;

61 state : {

62 prepareSend, -- there must be an extra state to generate the

63 -- the data we want to transmit

64 send, -- send data and control bit (see data)

65 receive, -- receive acknowledgement of the receiver

66 transmitted -- we got the right acknowledgement

67 };

68 data : { dm00, dm01, dm10, dm11, err };

69
70 ASSIGN

71 next(data) :=

72 case

73 state = prepareSend & Smsg & ! control : { err, dm10 };

74 state = prepareSend & ! Smsg & ! control : { err, dm00 };

75 state = prepareSend & Smsg & control : { err, dm11 };

76 state = prepareSend & ! Smsg & control : { err, dm01 };

77 1 : data;

78 esac;

79 next(Smsg) :=

80 case

81 state = transmitted : { 0, 1}; -- generate new data to send

82 1 : Smsg; -- keep it the same so that

83 -- the receiver gets the

84 -- right one. We don't have

85 -- buffer for the data!

86 esac;

87 init(control) := 0;

88 next(control) :=

89 case

90 state = transmitted : ! control;

91 1 : control;

92 esac;

93 init(state) := prepareSend;

94 next(state) :=

95 case

96 state = prepareSend : send;

97 state = send &

98 rstate = receive : receive;

99 state = receive &

100 rstate = send :

101 case

102 control :

103 case

104 rdata = am1 : transmitted;

105 rdata = am0 | -- we got a wrong ack:

106 rdata = err : send; -- send again

107 esac;

108 ! control :

109 case

110 rdata = am0 : transmitted;

111 rdata = am1 | -- we got a wrong ack:

112 rdata = err : send; -- send again

55

113 esac;

114 esac;

115 state = transmitted : prepareSend;

116 1 : state;

117 esac;

118 -- the sender is responsible on his own that an error

119 -- in the underlying media is generated.

120 -- This is accomplished by allowing the data to be

121 -- nondeterministically choosen between the real data (data bit

122 -- and control bit) and an error. To ensure a correct transmission

123 -- of data by the ABP we have to impose a restriction. Namely that

124 -- the media does not always generate an error:

125 FAIRNESS --

126 ! data = err

127
128 MODULE receiver(sstate, sdata) -- sstate is state of sender

129
130 VAR

131 Rmsg : boolean;

132 control : boolean;

133 state : {

134 receive, -- wait for data to receive

135 prepareAck, -- generate an acknowledgement according

136 -- to the control bit and the received data.

137 -- Also it is possible to generate an error.

138 send, -- send the acknowledgement to the sender.

139 received -- got data with the right control bit.

140 };

141 data : { am0, am1, err };

142
143 ASSIGN

144 init(control) := 0;

145 next(control) :=

146 case

147 state = received : ! control;

148 1 : control;

149 esac;

150 next(data) :=

151 case

152 state = prepareAck :

153 case

154 control :

155 case

156 sdata in { dm11, dm01 } : { am1, err };

157 sdata = err : err;

158 1 : { am0, err };

159 esac;

160 ! control :

161 case

162 sdata in { dm10, dm00 } : { am0, err };

163 sdata = err : err;

164 1 : { am1, err };

165 esac;

166 esac;

167 1 : data;

168 esac;

169 next(Rmsg) :=

170 case

171 state = receive & sstate = send :

172 case

173 sdata in { dm10, dm11 } : 1;

174 sdata in { dm00, dm01 } : 0;

175 esac;

176 1 : Rmsg;

177 esac;

56

178 init(state) := receive;

179 next(state) :=

180 case

181 state = receive & sstate = send : prepareAck;

182 state = prepareAck : send;

183 state = send & sstate = receive :

184 case

185 control :

186 case -- the receiver has choosen nondeterministically

187 -- to generate an error or not. This means we have

188 -- to check our own data that we have prepared for

189 -- acknowledging.

190 data = am1 : received;

191 1 : receive; -- receive again

192 esac;

193 ! control :

194 case

195 data = am0 : received;

196 1 : receive; -- receive again

197 esac;

198 esac;

199 state = received : receive;

200 1 : state;

201 esac;

202 FAIRNESS

203 ! data = err

57

