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ABSTRACT

JANUS-II is a research system for investigating various issues

in speech-to-speech translations and has been implemented
for speech-to-speech translations on many languages [1]. In

this paper, we address the Spanish speech recognition part of

JANUS-II. First, we report the bootstrap and optimization
of the recognition system. Then we investigate the di�erence

between push-to-talk and cross-talk dialogs, which are two

di�erent kinds of data in our database. We give a detail
noise analysis for the push-to-talk and cross-talk dialogs and

present some recognition results for the comparison. We have

observed that the cross-talk dialogs are harder than the push-
to-talk dialogs for speech recognition, because they are more

noisy than the latter. Currently, the error rate of our Spanish

recognizer is 27% for push-to-talk test set and 32% for cross-
talk test set.

1. Introduction

Today, most of the state of the art speech recognition sys-

tems are based on Hidden Markov Model (HMM) techniques,
which were �rst applied to speech recognition about twenty

years ago. The HMM based systems are quite successful

on reading speech recognition task. However they are far
from satisfactory for spontaneous speech recognition. Much

research in this �eld has been directed to the recognition

and understanding of spontaneous speech in recent years.
Compared to reading speech, spontaneous speech usually

contains much more noises and dis
uencies, such as human

noise, background noise, simultaneous speaking, mispronun-
ciations and repetitions. Therefore, it is well know that the

spontaneous speech is much harder than the reading speech

for speech recognition. In this paper, we report how to boot-
strap and improve JANUS-II speech engine for spontaneous

Spanish speech recognition. Then we analyze the dis
uen-

cies of the push-to-talk and cross-talk dialogs, and compare
their performance in speech recognition.

2. Database

The JANUS system is built for and evaluated on the ap-

pointment scheduling task. The details of this Database,

including English, German, Korea, Japanese and Spanish
data, can be found in [1]. The Spanish Database consists of

two di�erent kinds of data: push-to-talk dialogs and cross-
talk dialogs. More than a half of the data in the database

are cross-talk dialogs. Although they are all human to hu-

man dialogs, these data are recorded in very di�erent styles.
Brie
y, in push-to-talk recording, two speakers have to inter-

face with a computer and push the \return" key to speak, so

that simultaneous speaking can be avoided. In the cross-talk
recording, two speakers can interrupt each other at any time,

so that simultaneous speaking is possible. Table 1 is a sum-

mary of the database used for development of the Spanish
speech recognizer.

training set push-to-talk cross-talk

utterances 1090 7740

words 42142 73617

words per utt 38.6 9.5

hours 5 7

Table 1: Spontaneous Spanish Scheduling Task Database

On average, there are 38.6 words per utterance for the push-

to-talk dialogs and 9.5 for the cross-talk dialogs, indicating

that the length of cross-talk utterance is, in general, much
shorter than the push-to-talk utterance. Because of the lack

of the training data, we use the push-to-talk and cross-talk

dialogs together to train the acoustic models, but keep an
individual test set for each of them. The push-to-talk test set

consists of 13 dialogs, three male and four female speakers,

which contains 86 utterances. The cross-talk test set consists
of 6 dialogs, three male and three female speakers, which

contains 117 utterances. The test vocabulary consists of 3911

unique words in the training set. For both test sets, the out
of vocabulary word rate is 1.6%.

3. Preprocessing

The feature we are using is Perceptual Linear Predictive

(PLP) coe�cients, which are generated based on [3]. The

speech signal is sampled with 16KHz rate. After passing
through a preemphasis �lter and Hamming window as usual,

128 points FFT spectrum is calculated. The FFT spectrum



is integrated with a critical band in Bark-scale, and oper-
ated with the cube 0.33 cubic-root amplitude compression.

After such kind of perceptual processing, 21 coe�cients are
obtained and used to generate 13 LPC coe�cients and then

13 LPC-Driven Cepstrum coe�cients. We combine 13 cep-

strum coe�cients with its Delta and Delta-Delta coe�cients
together to generate a 39-dimension feature vector. Finally,

this feature vector is transformed by a 39x39 matrix which is

generated by Linear Discriminant Analysis [2]. The �rst 16
components of the transformed vector are kept as the �nal

feature vector. Our experiments showed that the above PLP

is better than the Mel-Frequency-Scale Coe�cients (MFSC).
The word accuracy with PLP feature is about 1.5% better

than that with MFSC feature.

4. JANUS-II Spanish speech

recognition system

4.1. Speech engine

The JANUS-II Spanish speech engine is based on Contin-

uous Density Hidden Markov Model (CDHMM). We use
Gaussian-Mixture density as the output probability of each

CDHMM's state. The mixture-order, called codebook size

in semi-continuous density HMM, is chosen according to the
amount and separability of the training samples which are

aligned to this mixture density. Thus we can make sure

that every component of the mixture density has enough
samples for its training, and meanwhile the mixture-order

is reasonable large in order to keep the model's accuracy.

We use the Viterbi algorithm for acoustic model training
and update the parameters of the best matched component

of Gaussian-Mixture density. For recognition, we use the

standard JANUS-II decoder which includes three passes, i.e.
Tree-pass, Flat-pass and Lattice-pass [1, 6]. All results we

report in this paper are obtained from the Flat-pass, with

which word accuracy is about 1.5% - 2.5% better than the
Tree-pass and 0.5% - 1.5% lower than the Lattice-pass. We

have used two di�erent trigram language models. One is gen-

erated with the standard LM Tools at CMU, which is based

on the standard backo� algorithm. The other is generated by

using the Knesey/Ney backo� algorithm [4]. We found that

Knesey/Ney's algorithm gives us about 4% error reduction.
Therefore we keep using this language model in the paper.

4.2. Bootstrapping the context depen-

dent phone models

When porting a existing speech recognition system towards

a new language, the �rst thing to be done is to choose a suit-

able speech units of the target language as acoustic models.
Spanish is a phonological language and its phoneme numbers

is in the same range as English, so we �rst choose Context-

Independent (CI) phones as speech units for acoustic models,
then extend the CI phone models into Context-Dependent

(CD) phone models. We use 40 CI phones as the CI acoustic

models for the Spanish speech recognition system. The ini-

tial parameters of the Spanish acoustic models are obtained
from the corresponding acoustic models of JANUS-II English

speech recognizer. From CI to CD acoustic phone models,
the within-word-triphones are used without position tag. We

simply choose the triphones according to their frequencies in

the training set. There are two typical methods for context-
dependent model clustering: the data-driven algorithm and

decision-tree algorithm. The purpose to cluster the triphones

is to make the acoustic models cover more context-dependent
information and at the same time keep the number of acous-

tic models in a reasonable level so that we can train them well

with the limited data. Therefore, there is always a trade-o�
between accuracy and robustness of the acoustic models in

the condition of limited training data. Compared to choos-

ing the triphones according to their frequencies in the train-
ing set, the data-driven method did not give us substantial

improvement. Because our training and testing data are re-

stricted in the same domain, the scheduling task, we can
get better result by just using the high frequent triphones as

acoustic models. In Table 2 and Table 3, we present some

results based on di�erent number of CI to CD phone mod-
els and di�erent dimensions of the PLP feature vectors. All

these results were obtained with the push-to-talk test set.

phones 48(CI) 245 421 596 684

WA 61.2% 67.5% 71.3% 72.3% 72.1%

Table 2: Word accuracy with di�erent number of triphones

In Table 2, we keep using a 16-dimensional PLP feature vec-

tor, full covariance matrix in the Gaussian Mixture density

and Trigram language models. The triphone numbers in Ta-
ble 2 includes 8 special phones as the noise models. It shows

that 596 triphones as acoustic models give us the best word

accuracy. The word accuracy with di�erent number of acous-
tic models depends on the acoustic model's complexity and

the amount of training data. With more data, we may get

better word accuracy with more acoustic models.

Dimension eigen-ratio Diagonal Full

12 44.3% 66.7% 67.8%

16 53.2% 71.0% 72.3%

20 61.6% 71.7% 71.9%

24 69.9% 72.2% 71.5%

Table 3: Word accuracy with di�erent dimensions of feature

and di�erent type of covariances

In Table 3, we keep using 596 triphones as acoustic models
in the recognizer. The table shows that the best result is

obtained from the system which uses a 16-dimensional fea-

ture vector and full covariance. The dimension of the feature
vector was increased from 16 to 24, the word accuracy also

had slight increase for the system with diagonal covariance,

but decrease for the system with a full covariance. We need
to mention that we compare the diagonal and full covariance

system based on the principle of same parameter num-



bers. The principle means that we choose the mixture num-
bers to keep the two systems have nearly the same number

of parameters in their acoustic models. For example, in the
case of using 16-order feature vector in Table 3, the average

number of Gaussian mixtures for each acoustic model is nine

in the diagonal covariance system, and two in the full covari-
ance system. Because of symmetry of the covariance matrix,

there is only a little extra computational complexity in the

full covariance system. Therefore we choose 16-order PLP
feature, 596 triphones and full covariance in the Gaussian

mixture density as our standard system for the remaining

experiments. The sum of eigenvalues of the diagonal LDA
matrix is a measure of separability of the classes with which

the LDA matrix is generated. Table 3 shows that if we choose

the �rst 16 coe�cients from the 39-order feature vector, we
can keep 53.2% separability of the original vector. Actu-

ally, projecting a feature vector to a lower space with the

LDA technique usually leads to a better performance, be-
cause with limited data, we can get more robust model in

the reduced space.

5. Optimization of the LDA

transformation matrix

Linear Discriminant Analysis (LDA) is a traditional tech-

nique for pattern recognition [2]. It has been used in speech
recognition systems as a preprocessing method for several

years. But how to embed the LDA matrix into the training

process of speech recognition is still a open problem [5]. The
LDA transformation matrix is created based on the classes

of the patterns. The goal is to build a linear transforma-

tion matrix, with which the feature can be projected into
its subspace, and meanwhile keep or increase the separabil-

ity of the patterns. In speech recognition system, the LDA

matrix is usually generated based on the label �le which con-
tains the alignment of the training samples with the acoustic

models, hence the phone classes. Once the LDA matrix is

built, it is rarely updated, because the current training algo-
rithm (Viterbi or Baum algorithm) does not include training

the LDA matrix. Obviously, this is not optimal. The LDA

matrix is entirely based on the alignment of the training

samples. Every time the acoustic model is updated in train-

ing process, the alignment is changed. Therefore, the LDA

matrix should be updated too. The training algorithm can

be divided into two steps: dynamic match and model up-

date. The alignment of the training samples is obtained in

the dynamic match step, and model is updated based on the
alignment. Our idea is to insert a LDA matrix updating step

between the dynamic match and model update step. After

the dynamic match or force-alignment, we �rst update the
LDA matrix according to the alignment, then update the

models. Finally, the new models are obtained by projecting

the updated models into a new space based on the new LDA
matrix. [5] gives a rigorous algorithm for the LDA optimiza-

tion, but did not get signi�cant improvement. Compared to

it, our method is simple and suboptimal. But we got 5%-7%
error reduction from it.

6. Comparison of push-to-talk and

cross-talk dialogs

In this section, we �rst analyze the noise distribution of

the two databases, then describe the noise model genera-
tion and compare the performance of the two database in

speech recognition.

6.1. Noise analysis

Generally speaking, noises fall into three classes: (a) distor-

tion of the recording equipment, such as channel and mi-
crophone distortion; (b) human and nonhuman made noises

which occur exactly between the real words, such as /LS/

/H#/ W1 W2 /MM/ W3 /EH/. . . , where /LS/ is lip smack,
/H#/ is breathing; (c) human and nonhuman made noises

which occur at the same time that the user is speaking to the

recognizer, i.e. the noises overlap with the real speech sig-
nal, such as /BEGIN-LAUGH/ W1 W2. . . /END-LAUGH/;

Most of the noises in class (c) are background noises, and as

of our knowledge, there is no existing very e�ective method
dealing with them. Using special microphone is one of the

ways to reduce the e�ect of such background noises, but it is

limited by practical environment. Besides, there is a lot of
false-starts, repetitions, mispronunciations, and simultane-

ous talking in the spontaneous speech, which heavily a�ect

the speaking rate, amplitude and prosody, and are very di�-
cult to handle. In our system, we use the Mean-Subtraction

technique to eliminate the channel distortions, i.e. the noises

in class (a). Table 4 contains some statistical analyses of the
noises in class (b) and (c). Ratio1 is noises/(words +

noises), where the noises are those in class (b). We did not

include false-starts into the noise count, because we treated
them as real words. But we included the mispronounced

words into the noise rate calculation, because they are one

of the worst noises and very hard to be recognized. Ra-
tio2 is words-covered-by-noise/words, which gives us a

kind of measurement for the noises in class (c). The words-

covered-by-noisewas counted according to the noise marks
in the transcription �les. Only the real words which are be-

tween the noise beginning and ending marks were counted,
and the noises in class (b) were excluded, because they were

already considered in Ratio1.

Database Utts Words Ratio1 Ratio2

push-to-talk 1090 42142 17.94% 9.8%

cross-talk 7740 73617 19.32% 30.5%

Table 4: Statistics of the noises

Table 4 illustrates that there is no signi�cant di�erence be-

tween the Ratio1 of the cross-talk dialogs and push-to-talk
dialogs. But we noticed that among 19.32% noise rate of the

cross-talk dialogs, the mispronunciation rate is 2.67%, which

is signi�cantly higher than 0.87% mispronunciation rate of
the push-to-talk dialogs. Obviously, the Ratio2 of the cross-

talk dialogs is much higher than that of the push-to-talk



dialogs. Among 30.5% rate of noise covered words in the
cross-talk dialogs, the rate of words covered with simultane-

ous speaking is 5.2%, compared to zero in the push-to-talk
dialogs.

6.2. Noise model generation

The noise acoustic models described in this section are for

the noises in class (b). We count the human and nonhuman

made noises in the training database and pick up several
sorts of noises according to the rank of their frequencies to

assign special acoustic models for them. Two general noise

models are used for the remaining human and nonhuman
noises. We found that the high frequency noises in the push-

to-talk and cross-talk dialogs are almost the same, though

their noise rates are di�erent. The major di�erence is that
there are a lot of Key-Click noises in the push-to-talk di-

alogs and no such noises in the cross-talk dialogs. Thus we

use the same noise models for both data. We also assign a
general acoustic model to those words which were mispro-

nounced (most of them were pronounced incompletely, i.e.

some phonemes in the word were not pronounced). Table
5 gives the word accuracy with respect to di�erent number

of noise models. The results depend on the database size

No. of Noise Models push-to-talk cross-talk

2 69.2% 64.4%

4 70.5% 65.7%

8 72.3% 67.4%

11 71.7% 67.1%

Table 5: Word accuracy with di�erent No. of noise models

and the statistical distribution of the noises. In our case,

the best word accuracy is obtained with 8 noise models. We
tried to merge some noises which likely have similar voice

together, such as, /MM/ /NN/, and also tried to use more

noise models, but did not get signi�cant improvement. We
found that some noises, which have low amplitude and short

duration, such as lip smacks, glottal noises, do not a�ect the

performance of the system very much, though they occur
with high frequency. The noises which have high amplitude

and long duration, such as laugh, mispronunciations, EH or

HUH with long duration, and long silence, heavily a�ect the
performance of the system.

6.3. Comparison in speech recognition

In this section, we give a comparison of the word accuracy for

the push-to-talk and cross-talk dialogs. Table 6 contains the

results of speech recognition for the push-to-talk and cross-
talk test set. We use di�erent number of acoustic models in

the recognition systems for this experiment, but keep using

8 noise models according to the results in Table 5.

Table 5 and Table 6 indicates that because of the high noise
and dis
uency rate, as we showed in Table 4, the word ac-

curacy of the cross-talk dialogs is consistently lower than

Triphones push-to-talk cross-talk

48(CI) 60.2% 51.2%

245 66.5% 61.0%

421 68.7% 65.0%

596 73.5% 68.8%

Table 6: Word accuracy with di�erent acoustic models

that of the push-to-talk dialogs regardless of the number of

acoustic models and noise models.

7. Conclusion

In this paper, we have reported the development of JANUS-
II Spanish speech recognition system, and given a detail

analysis and comparison of the push-to-talk and cross-talk

database in speech recognition. The error rate of the system
has been reduced from around 70% at the beginning to the

current 26.5%.

8. ACKNOWLEDGMENTS

The work reported in this paper was funded in part by grants

from the US Department of Defense. The author wish to
thank all members of the Interactive Systems Laboratories

in University of Karlsruhe and Carnegie Mellon University,

especially Ivica Rogina, Bernhard Suhm, Torsten Zeppen-
feld, Martin Maier and Monika Woszczyna, for their active

support.

9. REFERENCES

1. A.Waibel, M.Finke, D.Gates, M.Gavalda, T.Kemp,

A.Lavie, L.Levin, M.Maier, L.May�eld, A.McNair,

I.Rogina, K.Shima, T.Sloboda, M.Woszczyna,
T.Zeppen�led, and P.Zhan. Jnaus-ii { advances in

spontaneous speech recognition. ICASSP-96, 1996.

2. Fukunnaga and Keinosuke. Introduction to statistical pat-

tern recognition. Academic Press, Boston, 1990.

3. Hynek Hermansky, Nelson Morgan, Aruna Bayya, and

Phil Kohn. Rasta-plp speech analysis technique. ICASSP-

92, 1:121{124, 1992.

4. Reinhard Knesey and Hermann Ney. Improved backing-

o� for m-gram language modeling. ICASSP-95, pages
181{184, 1995.

5. E. Gunter Schukat-Talamazzini, Joachim Hornegger,

and Heinrich Niemann. Optimal linear feature trans-

formations for semi-continuous hidden markov models.

ICASSP-95, pages 369{372, 1995.

6. M. Woszczyna and M.Finke. Minimizing search errors
due to delayed bigrams in real-time speech recognition

system. ICASSP-96, 1996.


