
The Knowledge Acquisition and
Representation Language KARL

Dieter Fensel* , Jürgen Angele+, Rudi Studer*

*Institut AIFB, Universität Karlsruhe, D-76128 Karlsruhe,
e-mail: {fensel, studer}@aifb.uni-karlsruhe.de

+Institut für Angewandte Informatik, Fachhochschule Braunschweig, D-38302 Wolfenbüttel,
e-mail: angele@informatik.fh-wolfenbüttel.de

Abstract

The Knowledge Acquisition and Representation Language (KARL) combines a description
of a knowledge-based system at the conceptual level (a so-calledmodel of expertise) with a
description at a formal and executable level. Thus, KARL allows the precise and unique
specification of the functionality of a knowledge-based system independent of any
implementational details. A KARL model of expertise contains the description of domain
knowledge, inference knowledge, and procedural control knowledge. For capturing these
different types of knowledge KARL provides corresponding modeling primitives that are
based on Frame-logic and Dynamic Logic. A declarative semantics for a complete KARL
model of expertise is given by a novel combination of these two types of logic. In addition,
an operational definition of this semantics, which relies on a fixpoint approach, is given. This
operational semantics defines the basis for the implementation of the KARL interpreter
which includes appropriate algorithms for efficiently evaluating KARL specifications. This
enables the evaluation of KARL specifications by means of testing.

1 Introduction

During the last years a lot of informal, semiformal, and formal description techniques have
been developed for specifying the functionality of a KBS in an implementation independent
way. Such techniques fulfil the same purpose for KBS-development as dataflow diagrams,
entity-relationship diagrams, state-transition diagrams, etc. in software engineering and
information systems engineering.

Informal techniques enable the specification of a system at a conceptual level in an easy and
understandable manner. On the other hand, it is familiar from software engineering that
software specifications using these description techniques have some well-known

to appear in IEEE Transactions in Knowledge and Data Engineering (TKDE)



KARL 2

shortcomings. Informal or semiformal specifications using natural language suffer from
ambiguity and impreciseness and can neither be evaluated by automatic procedures nor by
formal proofs. Therefore, theformal knowledge specification languages DESIRE [LPT93a],
FORKADS [Wet90], KBSSF [JoS92], (ML)2 [HaB92], MODEL-K [KaV93], MODEL/
KADS [Bar93], MoMo [VoV93], OMOS [Lin93], QIL [ARS92], and KARL have been
developed to improve the result of the specification phase by supplementing informal
descriptions. A description of most of these languages and their comparison can be found in
[FeH94]. A formal description reduces the vagueness and ambiguity of natural-language
descriptions by enforcing preciseness without dealing with implementational decisions. Such
a formalized description allows formal proofs of properties of the specified knowledge.
Furthermore, some of these languages provide an automatic mapping to an (inefficient)
operational description to permit testing as a means for knowledge evaluation. The main
concern of theKnowledge Acquisition and Representation Language (KARL) is to provide
integrated means for a specificying knowledge at a conceptual, formal and operational level.

First, KARL provides appropriate modelling primitives to allow knowledge specifications at
the knowledge level. It distinguishes several types of knowledge and defines different
language primitives for them. The conceptual model underlying a specification in KARL is a
modification of the KADSmodel of expertise [SWB93]. Therefore, a smooth transition from
semiformal to formal specifications is possible. Both use the same conceptual framework and
the same modelling primitives. The difference lies in the fact, that these modelling primitives
become a defined semantics when applying KARL to formally specify them. The formal
description in KARL is reached by a refinement step which complements informal
descriptions in natural languages with formal definitions. The graphical representation of
most modelling primitives support this transition and the usefulness of KARL as a means for
communication with users and experts. In addition, they allow the implementation of a
graphical editor for KARL.

Secondly, KARL is aformal knowledge specification language. That is, it has a declarative
semantics. The advantages of a formal and declarative semantics are: The language primitives
get a defined meaning which allows a precise and unequivocal description of knowledge. A
declarative semantics should be easier to understand than its operationalization as the later
one deals with two aspects:what is the meaning of an expression andhow can it be computed.
The declarative semantics can be used as a base line for its operationalization. In fact, the
declarative semantics of KARL was used as a specification for the interpreter which was
developed for KARL. The semantics must include the representation of static and dynamic
(i.e., procedural) knowledge. In fact, the gist of the matter of the semantics of KARL was the
integration of static and dynamic knowledge.

Thirdly, KARL is anoperational knowledge specification language. That is, its semantics has
been operationalized and a debugger has been implemented. This operational description can
support knowledge evaluation via testing and debugging. As significant parts of the expertise
of a human expert is hidden in his skills and exists as implicit knowledge, only. The
elicitation and acquisition of this knowledge as well as its formal description requires a
modelling activity. As every model building process, knowledge acquisition is incremental,
in principle infinite, and faulty. The usefulness of testing (i.e., operational specifications) for
evaluating specifications is well-known in the domain of software engineering (cf. [Flo84]).
Therefore, we defined KARL in a way that its mechanization became possible. A debugger
allows the stepwise evaluation of knowledge specifications.



KARL 3

The development of the language KARL is part of theMIKE-approach (Model-based and
Incremental Knowledge Engineering) [AFL+93]. The overall goal of the MIKE project is the
definition of a development method for knowledge-based systems (KBS) covering all steps
from initial knowledge acquisition to design and implementation. MIKE provides a cascade
of models to bridge the gap between informal requirements and expertise at the one hand and
an implemented knolwedge-based system at the other hand. The first model is the so-called
elicitation modelwhich provides a natural language description of the expertise having been
collected from the expert or e.g. from text books. Using the elicitation model as a basis the so-
calledstructure model [Neu93] is built-up during the interpretation phase which succeeds the
elicitation phase in the MIKE process model. The structure model provides a semiformal
representation of the expertise by organizing the expertise in a hypertext network which
offers predefined types of nodes and arcs. By using the structure model as a basis the KARL
model of expertise is built up during the formalization phase. Thus the task and domain
knowledge being semiformally described in the structure model is represented in a
unambiguous and formal way. Since KARL is also an executable language MIKE offers a
formal and operational model of expertise as the result of the knowledge acquisition phase.
The KARL model of expertise does not take into account non-functional requirements like
e.g. maintainability. This type of requirements is considered in the design phase of MIKE
resulting in the so-calleddesign model [Lan94]. For specifying the design model KARL is
extended to DesignKARL which offers additional language primitives like data structures
and algorithms. This design model is then the basis for implementing the final KBS. A special
characteristic of the MIKE approach is the fact that all the different models are related to each
other in a well-defined way thus providing means for e.g. tracing back parts of the design
model to the formal KARL model of expertise or the semiformal structure model.

The contents of the paper are organized as follows. The modelling primitives of the language
KARL are introduced in section two. Then the declarative semantics of the sublanguages L-
KARL and P-KARL and finally the semantics of the complete language KARL are given in
sections three. The paper does not only describe the semantics but give the main reasons for
our choices. The declarative semantics of KARL has been developed with an eye to its
operationalization. Section four discusses this mechanization of KARL. Then, the tool
environment of KARL and some of its applications are sketched in section five. Finally, some
applications of the language are discussed in section six and the last section provides a
comparison of KARL with some other specification languages.

2 The Modelling Primitives of KARL

In the following, we first introduce the conceptual model which underlies a KARL
specification. Then, the two sublanguages of KARL are sketched. The sublanguage Logical-
KARL (L-KARL) integrates frames and logic to specify domain and inference knowledge.
The sublanguage Procedural-KARL (P-KARL) is used to specify the control flow of the
problem-solving process. We apply the so-called Sisyphus-I example to illustrate the
different language primitives of KARL. Sisyphus is a project that aims at comparing different
approaches to knowledge engineering [Lin92]. An assignment problem was posed, in which
employees are assigned to office places with several requirements to be met. Extracts of this
example are used to illustrate KARL.



KARL 4

2.1 The Model of Expertise

The conceptual model underlying KARL is derived from the KADSmodel of expertise
[SWB93]. As KADS is the most prominent methodological approach for developing expert
system—at least in Europe—we tried to keep the KARL model as close as possible to the
KADS model of expertise. On the other hand, this model is only defined informally and
refinement and modifications are natural results of every formalization process. For the sake
of self containment we briefly sketch the KADS model of expertise before we show how this
model was realized and modified by the KARL model of expertise.

The KADS Model of Expertise

A very important part of the KADS methodology [SWB93] is themodel of expertise which
describes the different kinds of knowledge required to solve the given tasks. The model of
expertise distinguishes different types of knowledge, defines primitives to express them, and
organizes them into several layers. It distinguishes static knowledge and three types of
control knowledge. Because there is still significant disagreement about the third type of
control knowledge (i.e., thestrategic layer) we have neither considered it for the KARL
model nor will we discuss it further in this paper. However, we followed KADS in
distinguishing domain, inference, and task layers.

The domain layerrepresents knowledge about the application domain of the system. An
important property of the domain layer is that the knowledge should be represented as
independently as possible from the way in which it will be used. It has two main purposes.
First, it should define a conceptualization of the domain. Secondly, it should define a
declarative theory of the domain providing all the domain knowledge required to solve the
given task.

The inference layer: defines the first type of control knowledge. It specifies the inferences
that constitute a problem-solving method and specifies how touse the knowledge from the
domain layer in these inferences. It specifies

• the inference steps that can be made using the domain knowledge, and
• theknowledge roles, which model the premises and conclusions of the inferences.

The inference steps are assumed to be elementary in the sense that they are completely
described by their names, an input/output specification, and a reference to the domain
knowledge that they use. The inference layer specifies the inference steps and knowledge
roles as well as the data-dependencies between these steps and roles. These dependencies are
specified in a network of inference actions and knowledge roles known as aninference
structure. The inference layerrestricts the use of the domain layer knowledge andabstracts
from it. It restricts all possible inferences to the set of inferences which it defines. This is done
to improve the efficiency of the problem-solving process. The inference layer abstracts from
the domain layer by using task-specific names for inferences and roles. The domain-
independent formulation of the inference layer should support its reuse, i.e. its application for
similar tasks in different application domains. Adomain view must specify the relationship
between the generic terms used at the inference layer and the domain-specific knowledge
specified at the domain layer. In general, knowledge roles have to be connected with domain
classes and inference actions have to be connected with the knowledge required for such an
inference.



KARL 5

The task layerrepresents a fixed strategy for achieving problem solving goals. The purpose
of the task layer is to specifycontrol over the execution of the basic inference steps specified
at the inference layer. This is done by imposing an ordering on these steps in terms of
execution sequences, iterations, conditional statements, etc. The description of a task consists
of three components: The goal which is fulfilled by the task; the control terms which
correspond to knowledge roles of the inference layer and which are used to specify conditions
for the control flow; and the task structure which hierarchically refines a given task to
subtasks and elementary steps, i.e. inference actions.

The separation of domain knowledge and the different types of control knowledge should
enable two kinds of reuse. The domain knowledge could be reused for different tasks and the
domain-independent control knowledge at inference and task layer could be reused for
similar tasks in different domains (for example, fault diagnosis of mechanic devices and
medical diagnosis for humans). The domain-independent control knowledge of a knowledge-
based system at the inference and task layer is called an interpretation model or aproblem-
solving method. It defines in generic terms a behavioral model of the systems` problem-
solving capability. Libraries of such reusable problem-solving methods are provided by
[Ben95] and [BvV94].

The Refined Model of Expertise of KARL

Originally, KADS proposed KL-ONE as a language for the domain layer. KL-ONE defines a
very restricted set of language primitives which enables strong characterizations of
decidability and efficiency of reasoning. Yet, for a specification language, a broad syntactical
variety of modelling primitives appears necessary to make the step from an informal to a
formal description as smooth as possible. Therefore, KARL integrates concepts of object-
oriented databases and logic for the domain layer, the inference layer, and their connections.
KARL provides the sublanguageLogical-KARL (L-KARL) for this purpose. L-KARL is
derived from Frame-logic (F-logic) [KLW95]. Terminological knowledge can be described
by a taxonomy of classes. Attributes can be defined for each class and are inherited according
to the taxonomy. Additional knowledge can be described with logical formulae. A domain
layer is structured and hierarchically ordered by the is-a hierarchy between classes and by a
module hierarchy.

In addition to its use at the domain layer, L-KARL is used to specify the logical relationship
defined by an inference action at the inference layer. Extending KADS, the conceptual
modelling primitives of L-KARL can be used to define a terminological structure of a
knowledge role. In KADS, such roles are flat containers, whereas in KARL they can be used
to definetask-specific andproblem-solving-method-specificterminologies independent of the
domain-specific terminology. The need for such a terminology is one of the most significant
results of the role-limiting method approach ([Mar88], [Pup93]). A second improvement
compared to KADS at the inference layer is the introduction ofhierarchical refinement
similar to levelled dataflow diagrams [You89]. Large specifications are therefore manageable
in KARL.

Furthermore, L-KARL is used to specify thedomain view.Modified Horn logic can be used
to define a view from the problem-solving method on the domain knowledge. L-KARL
distinguish three types of knolwedge roles. Aview could be used to provide domain
knowledge for an inference action at the inference layer. Complementarily, aterminator
could be used to write results of a problem-solving process at the inference layer back to the



KARL 6

domain layer and therefore to re-express such a result in domain specific terms. Finally, a
store is used to model the data and knowledge flow between inferences. It has no connection
to the domain layer but is used to connect two or more inference actions.

Procedural knowledge: The sublanguageProcedural-KARL (P-KARL) is used for specifying
the control flow of a problem-solving method at the task layer. Sequence, branch, loop, and
procedure call are the means to specify control flow and the hierarchical task structure.
Conditions can be specified via logical statements about the contents of knowledge roles. The
goal of a task is only described informally. The syntax of P-KARL is just sugar on top of
dynamic logic (cf. [Har84], [Koz90]) which defines the essence of the language. We chose
dynamic logic because it is a well-known means for declaratively describing procedural
programs.

The Sisyphus Example

During the following, we provide an informal and graphical representation of our running
example. In the following section, the elementary elements of the models will be defined by
the logical language. An example for the graphical representation of the domain layer of the
model of expertise is given in Figure 1. The domain terminology and the domain knowledge
required for the problem-solving process is defined at the domain layer. It consists of three
classes. A class of employees which should be placed and a set of working places for them. A
third class defines the subset of all employees who are supervisors (namedBosses). Each
class is further described by attributes. Employees are described by their names, whether they
smoke, and by the set of other employees with whom they can share a room (cf. the attribute
fit-together). The places are described by their room numbers. The attributeplacement should
represent the solution, that is, for each employee his or her work place. The classBosses
inherit the attributes of the classEmployees via the is-a link.

The inference layer as shown in Figure 2 contains the elementary inference steps and
knowledge roles of the problem-solving method. The inference actionscreate takes
components, slots, and assignmentsas input and delivers new (extended) assingment.
Components andSlots are domain views that must be mapped on domain knowledge. In our
example,Employees will be mapped onComponents andPlaces on Slots. The assignments
are handled by the storeAssignments. Prune eliminates incorrect assignments by using the

name

Employees

placement

Places

Fig. 1    The domain layer of the Sisyphus example.

fit_together

Bosses

STRING

INTEGER

room no.

Legenda: class

single-valued attribute

attribute

set-valued attribute
is-a relationship

BOOLEAN

smoker

rangedomain



KARL 7

domain knowledge delivered by the domain viewCorrect. Check searches for valid solutions
which are saved via the terminatorSolutionat the domain layer.

The control flow between these inferences is defined at the task layer (see Figure 3). It
consists of a loop which determines when a solution has been found (i.e., when∅solution(Solution)

is no longer evaluated to be true). This simple control flow uns in an infinite loop if no
solution exists, but we want to keep the example as simple as possible.

2.2 The Domain Layer: Logical-KARL (L-KARL)

L-KARL is a customization of Frame-logic (F-logic) [KLW95]. F-logic and L-KARL enrich
the modelling primitives of first-order logic through syntactic modifications, but preserve its
model-theoretical semantics. In this way, ideas of semantical and object-oriented data models
are integrated into a logical framework which enables the declarative description of
terminological and assertional knowledge.

L-KARL distinguishes classes, elements, and values.Classes refer to sets of real-world

check Solution

Components Slotscreate

prune

Fig. 2    The inference layer of the Sisyphus example.

Legenda: inference

view

dataflow
action terminator

store

Correct Assignments

correct assignments

create

prune

check

∅solution(Solution)

yes

no

Fig. 3    The task layer of the Sisyphus example.

Legenda: activity branch controlflow

Assignments :=
Correct Assignments



KARL 8

objects with common features. Classes and elements can be described by attribute values.
Attribute and class definitions, together with an is-a hierarchy and multiple attribute
inheritance can be applied to describeterminological knowledge. These attributes have
defined domains and ranges and can be applied to describe elements of classes or to describe
the classes themselves.Elements refer to real-world objects whereasvalues are only used to
describe such objects.1 Intentional and factual knowledge are described through logical
relationships between classes, objects, and their values. In the following we will discuss the
different modelling primitives.

Elements are denoted byelement-id-terms, consisting of variables, functions, or element-
constants, similar to terms in first-order logic. By means of functions it is possible to generate
new object identifiers in logical expressions. This way of generating new objects is based on
O- and F-Logic (cf. [KiW89], [KLW95]). Classes are denoted byclass-id-terms, which
consist of variables or class constants. The class constants are the class names of the class
definitions. Avalue-id term denotes a value, i.e. a number, a boolean value, or a string.

A class definition which corresponds to a frame describes class attributes which refer to the
class as such and attributes for the objects which are elements of the class. The attributes are
described by their name, their domain, and their ranges. Classes are arranged in an is-a
hierarchy with multiple attribute inheritance. Attributes can be single-valued or set-valued.
As mentioned above, attributes can be used to describe elements as well as classes. They have
defined domain types and range types. In general, the range is defined by a set of classes. A
correct attribute value must be an element or a subclass of all classes used in its range
definition. Therefore, the specification of attributes via class definitions defines the following
well-typing conditions:

• First, there must be a functional dependency between an object and the values of its
attributes.

• Second, an attribute can only be applied to a class or element for which it is defined by
an according class definition.

• Third, the values of attributes must fulfil the range restriction of the corresponding class
definition.

These well-typing conditions are integrated into the model-theoretical semantics of L-KARL.
That is, a minimal Herbrand model is only regarded as valid semantics when it fulfils these
restrictions (see section two).

Figure 4 provides the definition of the terminology of the domain layer in our example. The
three classes together with their attributes are defined in L-KARL.

The literals of logical expressions in L-KARL areis-element-of literals which state that
objects are elements of classes;is-a literals which describe sub- and superset relationships
between the classes;equality literalswhich denote equality of objects, classes, and values;
and finally data literals which define attribute values for objects and classes. Logical
formulae are built from these literals using logical connectors∧, ∨, ¬, ← and variable
quantification. The logical language for describing relationships between classes, objects, and
values is Horn logic with equality and function symbols extended by stratified negation (cf.
[Prz88], [Ull88]).

1.  See [Kim90] and [Bee90] for an introduction in object orientation and its integration with logic.



KARL 9

Def. 1  (Positive Literal in L-KARL)
A positive literal in L-KARL is either:

• an is-element-of literal e∈ c wheree is an element-id-term,c is a class-id-
term. An element-term describes that an objecte is an element of classc.

• an is-a literal c≤ c  ́wherec andc  ́are class-id-terms. An is-a-term expresses
that a classc is a subclass of classc .́

• a data literal o[..., a:T,...,s::{ S1,...,Sn},...] whereo is either an element-id-term
or a class-id-term,T, Si are again data-literals.a is an attribute name of a
single-valued attribute,s of a set-valued attribute. A data-literal defines
attribute values for the element or classo.

• anequality literal o = o  ́whereo ando  ́are id-terms. This means thato ando´
denote the same element, class, or value.

In addition,P-literals p(a1:T1,...,an:Tn) allow to express relationships between data literalsTi
in a similar way as in predicate logic. Furthermore, the arguments of a predicate are named
and typed.

An example for a logical formulae is provided by the following clause that expresses that two
employees fit together if nobody of them is a boss (i.e., bosses get single rooms) and if both
smoke or neither smokes:

In addition, factual knowledge have to be defined. Some employees together with their names
and some places have to be given. Attributes can be marked as input or output attributes.
Input attributes refer to case-specific input of the user, describing his specific problem.
Output attributes store the results of a problem-solving process. For reasons of limited space,
we will not discuss this distinction further (see [Fen95b] for more details). In our example
there are no values given for the attributeplacement because this attribute will contain the
solution of the problem-solving process. The attributefit_together is defined by means of

Fig. 4    The terminological knowledge of the Sisyphus example defined by using KARL.

/* The classemployees models the employees */
CLASS employees

ELEMENT_ATT
name : { STRING};
fit_together:: { employees};
placement : { places};
smoker : {BOOLEAN}

END;
/* The classplaces models the places in the rooms. */
CLASS places

ELEMENT_ATT
room_no: { INTEGER};

END;
/* The classbosses models the heads of  projects. */
CLASS bosses

ISA employees;
END;

∀X ∀Y ∀Z1 ∀Z2 (X[fit_together :: {Y}] ←
X[smoker : Z1] ∈ employees∧
Y[smoker : Z2] ∈ employees∧
¬(X ∈ bosses)∧ ¬(Y ∈ bosses)∧
Z1 = Z2).



KARL 10

logical clauses. Table 1 and 2 provide a definition of the factual domain knowledge of our
example.

The rows in the tables correspond to ground clauses like:
fvh [name : “Frank van Harmelen“, smoker: NO] ∧ fvh ∈ employees

which can be abbreviated by a combined is-element-of term and data term
fvh [name : “Frank van Harmelen“, smoker: NO] ∈ employees.

2.3 The Inference Layer and the Mapping between Domain and Inference Layers:
Logical-KARL (L-KARL)

L-KARL is also used to specify the logical inferences at the inference layer and their
connection with the domain layer. We will show this in part. In fact, we give the definition of
the inference actionprune, its input storeAssignments, its output storeCorrect assignments,
and its viewCorrect in Figure 5.Prune deletes all assignments which describe incorrect
assignments. The inference action is very easy to specify as shown in Figure 5. Every
Assignments that is not an incorrect assignments is a correct assignment. That is, such a state
is re-examined later in the problem-solving process until all components have been assigned
to a slot. Domain knowledge is required by the inference action in order to decide whether a
state is correct or not. The required domain knowledge is delivered by the viewCorrect. It
specifies when a state is an incorrect state. An assignmentZ having two assignmentsA1 and
A2 where different employees are assigned to the same room is a assignments state if the
assigned employees do not fit together. The set-valued attributefit_together was defined at
the domain layer.

2.4 The Task Layer: Procedural-KARL (P-KARL)

Experience with XCON [SBJ87] showed that great problems arise if the control flow is only
specified implicitly. A production rule formalism was used to specify a large expert system
for designing computer configurations. Very soon it became clear that the domain experts
have a significant amount of control knowledge concerning the appropriate order of
subactivities and that this knowledge is required to solve a task efficiently. Therefore, this
knowledge was implicitly encoded in the rule formalism. Similar experiences have been
made with PROLOG where the order of clauses and literals and primitives like the cut are
used to implicitly specify the control flow. This need for specification of the control flow
leads to the development of the sublanguage P-KARL. The control flow is specified in a way
similar to that of procedural programming languages.

Table 1.    class: employees

Element-id name fit_together placement smoker

fvh Frank van Harmelen NO

mab Manfred Aben NO

dla Dieter Landes NO

sun Susanne Neubert YES

jtr Jan Treur NO

Table 2.    class: bosses

Element-id name fit_together placement smoker

jtr Jan Treur NO



KARL 11

A P-KARL program consists of elementary programs which are assignments. Composed
programs are constructed from elementary ones by defining the control flow between these
assignments. For this purpose, logical formulae can be used for defining branches and loops.

For theelementary programs, a number of function symbolsF = {f1, f2,..., fr} and a number of
variables{X1,..., Xn} are available. The function symbols correspond to names of inference
actions. The variables address their stores and terminators.2 The actual parameters of a
function are the input stores of the corresponding inference action and the results of the
function are mapped to its output stores. As primitive programs three types ofassignments
exists:

• (1) (Xk1,..., Xkh) := fi(Xj1,..., Xjl)
fi corresponds to an inference action and theXk1,..., Xkh denote its output stores and
terminators and theXj1,..., Xjl its input stores;

• (2) Xk := Xj

2.  Views are used to read domain knowledge and have no dynamic interpretation. They therefore do not appear
at the task layer.

Fig. 5    The inference action Prune and its context.

STORE Correct assignments

Correct assignments

component

components slots

slot

STORE Assignments

Assignments

component

components slots

slot

VIEW correct

Wrong states

∀A1 ∀A2 ∀R1 ∀R2 ∀X1 ∀X2 ∀Y1 ∀Y2 ∀Z (Z ∈ Wrong_states←
Z[consists_of :: {A1[component : X1, slot : Y1]}] ∈ Assignment∧ (1)
Z[consists_of :: {A2[component : X2, slot : Y2]}] ∈ Assignment∧ (2)
Y1[room_no : R1]∧ Y2[room_no : R2]∧ R1 = R2 ∧ ¬(X1 = X2) ∧ (3)
¬X1[fit_together :: {X2}]). (4)

∀X (X ∈ Correct_assignment← X ∈ Assignment∧ ¬ (X ∈ Wrong_assignment)).
INFERENCE ACTION Prune

consists_of

assignments

consists_of

assignments



KARL 12

Xk andXi denote stores;
• (3) bj := bi

bj andbi are logical variables.

Formulae are defined as follows:

• true andfalse are formulae;
• b is a formula ifb is a logical variable;
• ∅c(X), whereX is a store or terminator name andc is a class name, is a formula3;
• and ifφ, γ are formulae then¬φ, φ ∨ γ, φ ∧ γ are formulae.
• These are all formulae.

Formulae like∅c(X) can be used to check the content of a store during the problem-solving
process. In addition boolean variables can be defined for storing truth values which can then
be used in other formulae.

A composed program is defined as

• sequence: p;q,
• while loop: WHILE ψ DO p ENDDO,
• repeat-until loop: REPEAT p UNTILψ, or
• alternative: IF ψ THEN p ELSE q ENDIF

of programsp, qand formulaeψ.

In our Sisyphus example, we have
F = {Check, Create, Prune}
X = {New States, Old States, Solutions}

The control flow defines of a loop that consists of successively creating assignments by
extending them, pruning incorrect assignments, and checking whether a solution (i.e., a
completed assignment) has been found (see Figure 3). The linear notation is given in Figure
6.

The syntax of P-KARL is just sugar on top of dynamic logic (cf. [Har84], [Koz90]) which
defines the essence of the language. In the next section we will show how dynamic logic is
used to define a declarative semantics for P-KARL. We chose dynamic logic because it is a
well-known means for declaratively describing procedural programs.

3.  The formula ∅c(X) is evaluated to true for a state if the store or terminatorX does not contain an element of
the classc.

Fig. 6    The task layer of the Sisyphus example defined by using the linear notation of P-KARL.

WHILE ∅ solution(Solution)
DO

Assignments := create (Assignments);
Correct assignments := prune (Assignments);
Assignments := Correct assignments;
Check (Correct assignments);

ENDDO



KARL 13

3 The Formal Semantics of KARL

In the following, we characterize the declarative semantics of the sublanguages L-KARL and
P-KARL and finally the semantics of the complete language KARL. We do not only describe
the semantics but also give the main reasons for our choices. The declarative semantics of
KARL has been developed with an eye to its operationalization. The final subsection
discusses how the mechanizability influenced design decisions of the declarative semantics.
As KARL allows the representation of static and dynamic (i.e., procedural) knowledge, its
semantics must include both types of knowledge. The development of KARL and its
declarative semantics had to solve three problems: First, an object-oriented logic L-KARL
was developed which can be used to specify static knowledge. L-KARL has the perfect
Herbrand model semantics which is defined for Horn clauses with stratified negation.
Second, dynamic logic was used to develop P-KARL for specifying knowledge about
dynamics. P-KARL has the modal semantics of dynamic logic. Third, both languages had to
be combined to represent a complete model of expertise. The semantics for this combination
was reached by using the model-theoretical semantics of L-KARL for defining an
interpretation for the P-KARL language. As a result,the integrated description of static and
dynamic knowledge based on a well-defined declarative framework becomes possible.

During the following, we first present the essence of the different semantics and their
combination. Then we present the different subjects (i.e., the semantics of L-KARL, P-
KARL, and KARL) in more detail. Finally, we discuss issues related with trying to
operationalize such a semantical framework.

3.1 A Sketch of the Different Semantics

The semantics is defined in three steps reflecting the internal structuring of KARL. First, we
define the semantics of L-KARL. Because it is a syntactical variant of first-order logic we can
do this in the same style as it is done for first-order logic. However, we have to provide a
more complex definition of interpretations and models because of this syntactical extensions.
For the Horn fragment of L-KARL we will define the perfect Herbrand model semantics.
That is, we select for a set of Horn clauses one model from all possible ones as semantics.
Second, we define the semantics of P-KARL. Because it is a subset of dynamic logic we can
do this by q Kripke structure as done for dynamic logic. A state of a program is expressed by
a value assigment of each variable and programs are defined as relations between such states
(or worlds). Third, we have to define a semantics for a complete KARL specification
including L-KARL and P-KARL of the different elements of a model of expertise in KARL.
We achieve this by viewing the execution of an inference actions as elementary programs and
interpreting the variables of dynamic logic by stores. We use the perfect Herbrand model of a
set of clauses that define the inference plus the current content of a store according to the
value assignment in dynamic logic to derive the new value assignment of the output store of
the inference. That is,

Y := f(X)

becomes interpreted by the functionf´ that is defined by the perfect Herbrand model
semantics of the clauses defining the inference actionf´.



KARL 14

3.2 The Semantics of Logical-KARL (L-KARL)

Because L-KARL is a syntactical variant of first-order predicate logic, its semantics can be
defined in two ways:

• We can introduce a mapping that transforms expressions in L-KARL to according
expressions in first-order logic and applying the usual Herbrand model semantics for
these expressions in first-order logic.

• We can provide a direct semantics for L-KARL by modifying and extending the model-
theoretical semantics of predicate logic according to the extended syntax of L-KARL.

As done for F-logic (cf. [KLW95]) we have chosen the second way because it provides a
direct semantics of a L-KARL specifications. Otherwise, one had to do a mapping into a
lower-level language before assigning semantics to the modelling primitives. In that sense,
first-order logic and L-KARL are related together like an assembler language and Pascal. The
semantics can be expressed by mapping it on an assemebler language but it is usually more
convinient to define a direct semantics. Actually defining the semantics by a lower-level
language is usually necessary when executing a high-level language. We will see in section 4
that such a malling is actually done for executing KARL.

We start by defining an interpretation for a set of L-KARL formulae. Objects, classes, and
values are interpreted by using individuals of a givenuniverse. Associating classes and also
sets (sets can appear as attribute values) with individuals allows to reason about classes and
sets without destroying the first-order semantics of the language (cf. [KLW95]). For example,
the following Horn clause collects all subclasses of classc as value of the set-valued attribute
subclass:

∀X (c[subclass :: {X}] ← X ≤ c).

The attributes and their domain and range restrictions are interpreted usingfunctions on the
universe. Specific conditions postulated for these functions realize multiple-attribute
inheritance. The is-a and is-element-of hierarchies are captured by apartial orderingdefined
on the universe.

As L-KARL is a syntactical extension of first-order logic it is necessary to define its
semantics in a more complex manner.

Def. 2  An interpretation of an L-KARL language
An interpretationI for an L-KARL language is a tuple <UE, U∑, UV, ≤U, IU, IE→, I∑→,
IE→→, I∑→→, IE⇒, I∑⇒, IE⇒⇒, I∑⇒⇒, I∏, IA∏> with:

• UE is a subset of the domain for interpreting element denotations,U∑ is a
subset of the domain for interpreting class denotations, andUV is a subset of
the domain for interpreting values. The sets must be pairwise disjunct and their
unionU defines thedomain.

• ≤U is a partial ordering onU used to interpret is-a and is-element-of literals.
• IU interprets every element denotation, class denotation, and value using an

element of the domain.
• IE→ interprets each single-valued attributea defined for elements as a partial

function
IE→(a): UE → U.

• IE→→ interprets each set-valued attributes defined for elements as a partial



KARL 15

function
IE→→(s): UE → ℘(U).

I∑→ andI∑→→ do the same for attributes defined for classes.
• IE⇒, (and respectively I∑⇒, IE⇒⇒, I∑⇒⇒) interprets each single-valued

attributea defined for elements as apartial anti-monotonic function having the
upwardly-closed subsets of ℘(U∑) as its range.

• I∏ interprets eachk-ary predicate symbol by ak-ary relation over the domain
andIA∏ interprets eachk-ary predicate symbol by its argument types.

IE→, IE→→, I∑→, andI∑→→ interpret each attribute using a partialfunction to capture the
functional dependencies between objects and their attribute values. They interpret each
attribute using apartial function as an attribute need not be defined for all elements or
classes. The partiality of the function is used to interpret thedomain restrictions of the
attributes. Therange restrictions are realized byIE⇒, I∑⇒, IE⇒⇒, andI∑⇒⇒ as proposed by
[KLW95]. A partial function f on U is anti-monotonic if the fact thatv ≤U u and f(u) are
defined implies that

(1) f(v) is defined and

(2) f(u) ⊆ f(v).

(1) ensures attribute inheritance. That is, if a class is a subclass of a class or if an element is an
element of a class it inherits its attributes. (2) ensures that the range restriction for an inherited
attribute can be stricter for a subclass, that is, its definition contains more classes of which an
attribute value has to be an element or a subclass. This can occur if a class has several
superclasses defining the same attribute. The subclass inherits all range restrictions of its
superclasses. Therefore, the concept of an anti-monotonic function captures multiple-attribute
inheritance in a declarative manner.Upwardly-closed sets are used as an interpretation for
range restrictions to ensure that ifc is used as a range restriction andc ≤U c  ́thenc  ́must also
hold true as a range restriction, becausec is a subclass ofc .́

Such an interpretationI defines amodel for a set of formulae if every formula is true
according to the interpretation. Elementary formulae areis-element-of literals, is-a literals,
equality literals, anddata literals. Therefore, we must define when an interpretation satisfies
such a literal. Composed formulae which are constructed from these elementary formulae by
logical connectives and quantifiers are interpreted in the usual manner. For example, a ground
data literal

fvh[name : “Frank van Harmelen”, fit_together :: {mab, dla[name : “Dieter Landes“]}]

is satisfied by an interpretationI iff:

• The functions which interpret the attributesname andfit_together are defined forfvh.
That is, the domain restrictions for the attributes are not violated.

• The value of the function which interprets the attributename is equal to“Frank van
Harmelen”. That is, the functionality of an attribute is not violated and“Frank van
Harmelen” does not violate its range restrictions.

• The value of the function which interprets the attributefit_together is a superset of the
set{mab, dla}. It is not required, that a data literal contains all elements of a set-valued
attribute.

• As the data literal contains recursively a second data literaldla[name : “Dieter



KARL 16

Landes“], it is required that this data literal is also fulfilled byI.

An interpretation which fulfils a set of clauses is called amodel of this set of clauses. Only a
specific type of model is taken into account for L-KARL, in fact, onlyHerbrand models are
admitted. This does not create a significant restriction because every set of formulae can be
transformed into a logically equivalent set of clauses and for every set of clausesS holds:

S has a model iffS has a Herbrand model [Llo87].
A Herbrand modelH is a set of ground positive literals. These literals are regarded to be true
according to the given Herbrand modelH. A negative literal is true if the corresponding
positive literal is not an element ofH. Similar to predicate logic with equality, it is required
that such a Herbrand model isclosed with regard to logical consequqence. That is, if a
ground positive literalφ follows fromH thenφ ∈ H must hold. Acongruence relation on the
Herbrand universe must be defined where each congruence class contains all syntactically
different but semantically equivalent terms (see [SpA91] for more details).

In the case of Horn clauses, every set of clauses has a definite minimal Herbrand model. This
minimalor least Herbrand model is taken as the semantics for a set of L-KARL Horn clauses
S. It is exactly the set of positive ground literals which are entailed byS. Negative literals are
derived by applying theclosed-world assumption. That is, every negated ground positive
literal ¬φ is regarded as being true iffφ ∉ H. Therefore, the set of negative literals which are
derived from a set of Horn clauses according to the minimal Herbrand model is larger than
the set of negative literals which are derived from all models. Because Horn clauses are too
restrictive, L-KARL also allows negative literals as premises of implications. In this case, the
minimal Herbrand model is no longer unique. That is, several minimal models can exist.
Therefore, only a stratified set of clauses is allowed andstratification is applied to select one
unique model from the set of all minimal Herbrand models. This model is called theperfect
Herbrand model(cf. [Prz88], [Ull88]). Considering only one model (i.e., the perfect
Herbrand model) instead of all possible models makes the operationalization of KARL
significantly easier.

3.3 The Semantics of Procedural-KARL (P-KARL)

For defining a declarative semantics for the procedural part we usedynamic logic (cf.
[Har84], [Koz90]) which is a means for defining a model-theoretical semantics for procedural
programs. The basic ingredients of dynamic logic are:

• States and variables: a state of a program is characterized by the values which are
assigned to all its variables.

• Programs: a program is a binary relation between states.
• Formulae: A formula is true for some states and false for the others. That is, it is

interpreted by a subset of all possible states for which it is regarded as true.

According to the expressive power of these formulae, one can distinguish different types of
dynamic logic, e.g., propositional and first-order dynamic logic. In the following, the case of
first-order formulae without quantifiers is discussed.

An interpretation provides adomainor universe D, some functions {fA1, fA2, ...} used to
interpret the function symbols and some relations on the domain {PA

1, PA
2, ...} used to

interpret the predicate symbols.

Simple atomic formulae have the formP(X) where P is a predicate symbol andX is a



KARL 17

variable. This formula is true for all states, whereν(X) ∈ PA. That is, where the value
assignment of the variableX is an element of the relation which interprets the predicate
symbolP. Complex formulae can be built up by logical connectives¬, ∨, and∧.

A simple elementary programs looks like:

y := f(x)

It changes the value assignment of the variabley according to the current value of the variable
x and the function used to interpret the function symbolf. The semantics of such an
elementary program is the set of value assignments tuples where:

(y := f(x))A = {(v,w) | v(z) = w(z) for z ≠ y andw(y) = fA(v(x))}

Complex programs can be built up from other programs and the following constructs:

• Thenon-deterministic choice operator∪:
p ∪ q means that the program can either executep or q; and the semantics ofp ∪ q is
the union of the relationspA andqA which interpretp andq.

• Thesequence operator ;:
p;q means that the program must executep followed byq; and the semantics ofp;q is
the composition of the relationspA andqA which interpretp andq.

• Thenon-deterministic iteration operator *:
p* means that the program could executep a non-deterministic number of times, and
the semantics ofp* is the transitive closure of the relationpA which interpretsp.

• Thetest operator ?:
ψ? is the set of all tuples (ν,ν) of statesν whereψ is true. That is, the execution path of
the entire program is only continued for these states which evaluateψ to true.

These operators can be used to model the control flow as it is known from procedural
programming languages. For example, a program like

ψ?;p∪¬ψ?;q
models

IF ψ THEN p ELSE q
as it is known from procedural languages.

P-KARL restricts first-order dynamic logic todeterministic while programs[Koz90]: First, P-
KARL allows only formulae without quantifiers (i.e., the alphabet of P-KARL does not
contain quantifiers). This ensures that P-KARL programs areregular [Koz90]. Second,
KARL allows only deterministic programs. That is, a program corresponds to a partial
function between input states and output states. On the one hand, both language design
decisions support the operationalization of KARL. On the other hand, this restricts the
expressibility of the language. Up until, these restrictions have not caused problems but it is
clear that the design of our language immediately biases our point of view on how to model a
problem.

An interpretation (D, FA = {f1
A,..., fr

A}, PA = {P1
A,..., Ps

A}) of a dynamic logic language using
the multiple world semantics consists of three sets. In the next section we show how a L-
KARL language is used to define such an interpretation.



KARL 18

3.4 The Semantics of KARL

In the following, we give the local semantics of an elementary inference action and describe
its use for defining a global semantics of a complete KARL specification.

The Semantics of an Inference Action

The declarative semantics of an elementary inference action is the perfect Herbrand model of
the clauses and facts which describe it. If it has an input store, then its semantics implicitly
rely on the dynamic state of the reasoning process, as the facts of the input store must be
contained by this perfect Herbrand model.

Def. 3  Semantics of an elementary inference action
The semantics of an elementary inference actionia is defined as theperfect Herbrand
model of the union of

• the set of clauses and facts which define the inference actionia;
• all clauses and facts which define the views ofia;
• all clauses and facts which define the terminators ofia; and
• thecurrent contents (i.e., sets of ground facts) of the input stores ofia.
• In addition, if ia has at least one view or terminator, then the clauses and facts

defined at the domain layer are added.

For example, the semantics of the inference actionprune is the perfect Herbrand model of the
current contents of the storeAssignments, the clauses and facts used to define the domain
layer, the viewcorrect, and the inference action. If such a model does not exist, or if it is not
well-typed, then the inference action is not defined for the given input.

Having defined the semantics of an inference action, we now must definehow such an
inference action changes the contents of its output stores.4 For this purpose a subset of the
perfect Herbrand modelH is used. Every store is described by a set of class definitions which
are used to define these subsets. Thus, a store can be used to select just the information which
is needed out of the entire Herbrand model of an inference action. When an inference action
uses a view, its perfect Herbrand model is a superset of the complete domain layer. Therefore,
it would not make sense to store this complete model in a store. In addition, when an
inference action has several output stores, the class definitions of the stores can be used to

4.  We will not discuss the case in which a terminator is used to modify the domain layer because there is no
technical difference.

output store := inference action (input store);

input store inference action output store

Perfect Herband modelH

a ∈ c1.

CLASS c1
END

CLASS c2
END

∀X (X ∈ c2 ← X ∈ c1). a ∈ c1.
a ∈ c2.

Fig. 7    An example of the semantics of an inference action.



KARL 19

choose different parts of the perfect model as their new contents.

For the new content of an store, only the is-element-of literals, equality literals, and data
literals which fit to the class definitions of the store are selected. For example, anis-element-
of literal e ∈ c in H is only chosen if a class definition forc is contained by the store.
Similarly, a data literale[...] in H is only chosen if an is-element-of literale ε c  ́exists as
element ofH with c  ́being contained by the store. Figure 7 illustrates this. The input store
contains a class definition forc1 and the output store for c2. For the sake of simplicity no
attributes are defined. The input store contains one fact which indicates thata is an element of
c1. The inference action is described by one clause which infers that everyX is an element of
the classc2 if it is an element ofc1. Therefore, the perfect Herbrand model of the inference
action contains the two is-element-of literalsa ε c1 anda ε c2 but only the second literal is
chosen as new content of the output store.

Formally, the set of all is-element-of literals, equality literals, and data literals which are
contained by the model of the elementary inference action is employed as the new contents of
an output store. This contents consist ofterms over the class definitions of the store.

Def. 4  Terms over a set of class definitions5

Let H denote the perfect Herbrand model of a set of rules and definitions of an L-KARL
alphabet.CD denotes a set of class definitions using the same L-KARL alphabet.
CD(H) denotes theset of all terms from H over CD.

• An is-element-of terme∈ c of H is a term over the class definitionsCD, if and
only if CD contains a class definition forc.

• A data terme[a1 : T1,...,ar : Tr, s1 :: { ,..., },..., st :: { ,..., }] of H, e
is an element-id-term, is a term over the class definitionsCD if and only ifCD
contains a class definitions for a classc which defines all attributesa1,..., ar,
s1,...,st for c. In addition,H must contain the element-of literale ∈ c.

• A data termc[a1 : T1,...,ar : Tr, s1 :: { ,..., },..., st :: { ,..., }] of H, c
is a class-id-term, is a term over the class definitionsCD, if and only if CD
contains a class definition for a classc  ́which defines all attributesa1,..., ar,
s1,...,st for c´. In addition,H or CD must contain the is-a literalc ≤ c .́

• Every equality termo = o  ́of H is a term over the class definitionsCD.

The Semantics of an Entire KARL Specification

An interpretation (D, FA = { f1
A,..., fr

A}, PA = {∅c, ∅c ,́...}6) of a P-KARL program requires
three ingredients: A universeD must be defined which provides the values for the variable
assignments. A setFA of functions must be given to interpret the function symbols used in
elementary programs and a setPA of relations must be provided to interpret the predicate
symbols used in the formulae.

Def. 5  Universe of the P-KARL language
Theuniverse D is defined as thepower set of the Herbrand base of the union of the L-
KARL languages used at the domain layer, inference layer, and for the domain view.

The Herbrand base contains all ground positive literals which can be expressed by these
languages. Therefore, every perfect Herbrand model of an inference action is a subset of the

5.  In the paper, we simplify this definition. For more details see [Fen95b].
6. c, c’, etc. are the class names which occur in the class definitions of the stores.

S11 S1m1
St1 Stmt

S11 S1m1
St1 Stmt



KARL 20

Herbrand base and an element of its power set. A variable assignment assigns a set of ground
literals to a variable. Every variable of a P-KARL program corresponds to a store defined at
the inference layer. The current contents of the stores are defined by the current values of the
variables of the P-KARL program according to the given variable assignment. Astate is
therefore characterized by the current contents of the stores.

Every inference action defines a mapping between the current contents of its input and output
stores. These mappings are used to interpret thefunction symbols in elementary P-KARL
programs.

Def. 6  Interpretation of the function symbols of a P-KARL program
The function which is defined by an inference actionia is used to interpret the function
symbolia of P-KARL.

The three function symbolsCheck, Create, and Prune at the task layer in Figure 6 are
interpreted by the three functions which are defined by the model-theoretic semantics of the
inference actionsCheck, Create, andPrune.

Finally, the relations for interpreting thepredicate symbols have to be defined. The formula
∅c(X) should be false for all states (i.e., variable assignments) for which the storeX contains
an is-element-of literale ∈ c, wheree is an arbitrary object denotation. That is, it should be
true for all states, whereno is-element-of literale ∈ c is assigned to the storeX. In that way, it
express the case, where a store is empty for the classc.

Def. 7  Interpretation of the predicate symbols of a P-KARL program
The unary predicate symbol∅c is interpreted by the set of all elements of the universe
D which do not contain an is-element-of literale ∈ c, with e is an arbitrary object
denotation.

3.5 Mechanizability of the Declarative Semantics

A declarative semantics of a language A defines the meaning of an expression in A using
expressions of a second (mathematical) language B. These definitions need not be
constructive. For example, the minimal Herbrand model of a set of Horn clauses is defined as
the intersection of all Herbrand models of this clause set. These can be infinitely many if
function symbols are allowed. The purpose of the declarative semantics is to define a precise
and detailed meaning of the language expressions. Because KARL is also intended to support
prototyping, anoperational semantics based on its declarative semantics has been defined.
The operational semantics of KARL which will be introduced in the next section allows the
derivation of output facts based on a given set of input facts which support thevalidation of a
specification.

The declarative semantics of KARL has been developed with an eye to its operationalization.
P-KARL programs areregular anddeterministic. In addition,recursion is not available (i.e.,
the number of variables remains unchanged during execution). These restrictions
significantly reduce the effort necessary for operationalization. In the non-deterministic case
all states must be regarded simultaneously; or the interpreter must choose a state and the
operationalization would thus be incomplete.7 In the case of L-KARL, the language is
restricted to a stratified set of clauses and only one specific model, the perfect Herbrand

7.  Compare the discussion of [AEL+92], [LaL91] who operationalize loose specifications in VDM-SL.



KARL 21

model, is regarded to define the truth value of formulae. The restriction to one specific model
significantly reduces the effort needed for operationalization. Normally, three different sets of
ground positive literals exist in regard to a given set of formulaS: literals which are entailed
by S, literals which are entailed byS when they are negated, and literals which are neither a
positive nor negative consequence ofS. In our case, the third set disappears and the truth
value of a negated ground literal can be determined by checking to see whether the according
positive literal is an element of the perfect Herbrand model. Work done in logic programming
and deductive databases motivated our choice.

The main restriction of the operational semantics which will be introduced by the next section
is the fact that user-defined classes and predicates (but not the defined value types like integer
or string) have to have afinite extension. Otherwise, their minimal model would be infinite
and therefore also its computation. Actually, this restriction has not yet caused problems in
any application of KARL.

4 The Operationalization of KARL

In the following the main choices and reasons for the design of an interpreter for KARL are
described. Firstly the different possibilities for the evaluation of L-KARL are discussed. Then
the operational semantics for L-KARL and P-KARL are described. Finally the evaluation
algorithms for L-KARL are sketched.

4.1 Selection of an evaluation strategy for L-KARL

The evaluation strategy of L-KARL can be discussed concerning two related but different
issues. First, we discuss the distinction betweenset-oriented and tuple-oriented evaluation.
The former computes all tuples which fulfil a predicate whereas the later computes only one
of these tuples per time. Second, one can distinguish between bottom-up and top-down
oriented evaluation.Bottom-up evaluation (also calledforward chaining) starts from the facts
and uses the rules to create new facts from the existing ones.Top-down evaluation (also
calledbackward chaining) starts with the query, searches recursively for rules whose heads
match the query and produces recursively new subqueries using the body atoms of the rules.
Although in most cases set-orientation is combined with bottom-up techniques and tuple-
orientation is combined with top-down evaluation these different aspects should not get
mixed.

Set-oriented vs. one-tuple-at-a-time-oriented

One important decision for the design of an interpreter for KARL is the choice of an
evaluation strategy for L-KARL. Such an evaluation strategy comes into action during the
activation of an inference action. Such an inference action is described by a set of rules and
facts. The effect of an inference action is to change the contents of its output stores. The
content of an output store may be computed by posing several queries to the set of rules and
facts of the inference action. For instance an output store contains only objects, which are
elements of a class c of the output store. In Figure 7 it is shown, that only the facta ∈ c2 is an
element of the output store; the facta ∈ c1 is not element of the output store, because the
classc1 is not defined for the output store. To determine which objects are elements of the
classc the query:



KARL 22

X ∈c

may be posed to the set of rules and facts. For every object identifiero which substitutes the
variableX and thus makes this query trueo ∈c is an element of the content of the output
store. In a similar way the values of the attributes of such objects may be determined by
posing adequate queries to the set of rules and facts.

One important parameter for the choice of an evaluation strategy is whether for a set of rules
and facts and a query to this set all or only one solution is needed. According to the formal
semantics both alternatives would be possible:

• If an evaluation strategy is used which produces only one answer for a query, the effect
of the call of an inference action would be that for every class of every output store one
element with all its attribute values is determined by posing a set of queries to the set of
rules and facts. The selection which element out of the set of all possible elements may
be done randomly. Using such an evaluation strategy the interpreter would work as an
nondeterministic machine, because the result of the call of an inference action would be
nondeterministic.

• If an evaluation strategy is used which produces all answers for a query, the effect of the
call of an inference action would be that for every class of every output store every
element with all its attributes is determined. So using this evaluation strategy the result
of the call of an inference action is deterministic, because there is no need to choose one
of the different possible solutions.

The first evaluation strategy (one-tuple-at-a-time) may be realized very efficiently using
resolution-oriented top-down inferencing. For F-Logic, which is the basis of L-KARL a
correct and complete proof-theory has been described which may easily be adapted to L-
KARL. Otherwise this evaluation strategy has the severe disadvantage that the interpreter
behaves in an nondeterministic way. This means that the interpreter behaves differently for
the same test case in different runs. Additionally for one test case only one (randomly chosen)
solution path is followed such that this test case may not be examined entirely. So the choice
of such an evaluation strategy would contradict the needs for a prototyping environment,
because prototyping needs the prototype to be validated sufficiently by testing. Finally, the
specification cannot be used as gold standard for the implementation of the system which
could deliver a different output which still could be correct.

The second evaluation strategy (set-oriented) does not provide these disadvantages. On the
other hand evaluating all solutions of a posed query may be a very time consuming activity.
In the area of deductive databases there has been a lot of effort to develop set-oriented
evaluation strategies, which deliver all solutions to a posed query and which are much more
efficient compared to using a one-tuple-at-a-time strategy to compute all solutions8.

A set-oriented evaluation strategy may be realized much more efficiently than a one-tuple-at-
a-time-oriented evaluation strategy because of the following reasons:

• For the single basic inferences set operations defined by the algebra of Codd may be
used directly, which may be realized very efficiently. In [Ull88] it has been shown how
inference steps may be mapped to expressions of Codd’s algebra. For the computation
of the conjunction of two atoms the join-operator must be used very frequently. The

8.  In PROLOG this would be realized by artificially creating a failure of the proof in order to enforce the
inference machine to backtrack and deliver the next solution.



KARL 23

join-operator needsO(n log(n)) operations in the average. The computation of the
conjunction by a one-tuple-at-a-time approach needsO(n2) operations [EIN89].

• Using a set-oriented approach duplicates may be eliminated. The detection of such
duplicates is rather difficult and therefore time consuming within a one-tuple-at-a-time
oriented approach.

Due to these advantages it has been decided to choose a set-oriented approach for the
evaluation of sets of rules and facts in L-KARL.

Bottom-up vs. top-down evaluation

As already mentioned,bottom-up evaluation starts from the facts and uses the rules to create
new facts from the existing oneswhereastop-down evaluation starts with the query searches
recursively for rules whose heads match the query. For both strategies set-oriented or tuple-
oriented versions exist.

The main advantage of a top-down oriented evaluation strategy is that it is more goal
oriented. Pure bottom-up evaluation starts with the facts and computes all facts which are
derivable by the rules. These new facts are again used as input for this process. Thus there are
many facts computed where most of them do not affect the posed query. In most cases the
facts which fulfil the query are only a small subset of the set of all computed facts. In contrast
the top-down approach only considers those rules and facts which may be relevant to the
posed query. Otherwise set-oriented evaluation can be much more efficiently achieved using
a bottom-up approach because set-oriented top-down evaluation tends to produce a great
number of smaller sets. So the efficiency of the set operations do not come to full effect (see
[Ull89b]).

L-KARL includes equality reasoning. This means that if for two identifiersa andb it is stated
that they denote the same object (a = b) then both must behave equally in the evaluation of
the rules. If for instance the following facts and rules are given:

a = b.
p(a).
q(c) ← p(b).

Thenq(c) is a logical consequence of this set of rules and facts. Integrating equality reasoning
into a top-down oriented evaluation strategy byhyper-resolution or similar techniques causes
a large effort for evaluation. For a bottom-up approach onlymatching, i.e. unification of a
ground term with a non-ground term, must be realized. This reduces the search space
considerably.

Due to these reasons both—bottom-up evaluation and top-down evaluation—have advantages
and disadvantages. Fortunately evaluation strategies have been developed which combine the
advantages of both approaches (see [Ull89b]). For L-KARL an evaluation strategy based on
such a combination has been developed.

4.2 The fixed-point semantics of L-KARL

L-KARL has a higher-order syntax. For instance, L-KARL allows sets of objects as values of
attributes of an object. Nevertheless L-KARL has a direct first-order semantics. Therefore
there exists a simple mapping from L-KARL to first order logic with equality. This mapping



KARL 24

allows an easier description of the operational semantics during the paper.
• Every atomic data literalT1[a:T2] or T1[a::{ T2}] is mapped to an atoma(T1,T2).
• Every P-literalp(a1:T1,...,an:Tn) is mapped to an atomp(T1,...,Tn).
• Every is-a literalT1 ≤ T2 is mapped to an atomisa(T1,T2).
• Every is-element-of literalT1 ∈T2 is mapped to an atomel(T1,T2).
• Every equality literal T1 = T2 is mapped to an atomeq(T1,T2).
• To integrate transitivity of the element relation the rule

el(t,c’) ← el(t,c) ∧ isa(c,c’) is inserted.
• To integrate transitivity of the is-a relation the rule

isa(c,c’’) ← isa(c,c’) ∧ isa(c’,c’’) is inserted.

Every ground instance of the binary predicateeq expresses that its two arguments are two
different notations for the same object.

For the sake of simplicity, we do not consider negation and the original syntax of L-KARL
instead we rely on its transformation to pure Horn logic with equality. For more details see
[Ang93].

The characterisation of the minimal Herbrand model by a fixed point operator is the basis for
the bottom-up evaluation of a set of rules. The fixed point operator is iteratively applied to the
set of rules and the results of the previous application of the operator until a fixed point is
reached. Then this fixed point represents the minimal Herbrand model.

Def. 8  (Fixed point operator)
Given a setK of rules of the formA0 ← A1 ∧... ∧ An, n ≥ 0, whereAi, 0≤ i ≤ n, areni - ary
atoms of the formAi = qi(bi1,...,bin ). In the following definitionI, I´, I´´ are sets of
ground atoms without equality atoms andR, Ŕ  andŔ ´ are equivalence relations on the
set of all terms (representing the equality relation).C(R) denotes the congruent closure of
the equivalence relationR with respect to the functions inK. I| R denotes the quotient ofI
with respect to the congruence relationR. BeS a set of disjunct sets which divide the set
I in the following way: every elements ∈ S, s is a maximal subset ofI with the property
that for any pairp(c1,...,cn), p(d1,...,dn) of elements ins, (cj,dj) ∈ C(R) holds for allj, 1 ≤
j ≤ n. I| R contains from every set inS exactly one element and it does not contain other
elements.t1 andt2 are arbitrary terms.
The fixed point operatorTK is defined as follows:
TK((I,R)) = (I´, Ŕ ) with

I´´ := I ∪ {A0Θ | (A0 ← A1 ∧...∧ An) ∈Κ, A0 is not an equality atom and
for all i, 1 ≤ i ≤ n, there exists aqk(ak1,...,akn ) ∈ I and a ground substitution
Θ, such that (akj,bijΘ) ∈ C(R), for 1 ≤ j ≤ ni}

Ŕ ´ := R ∪ {( t1Θ, t2Θ) | (eq(t1,t2) ← A1 ∧...∧ An) ∈Κ,
for all i, 1 ≤ i ≤ n, there exists aqk(ak1,...,akn ) ∈ I and a ground substitution
Θ, such that (akj,bijΘ) ∈ C(R), for 1 ≤ j ≤ ni}

Ŕ  := the transitive, reflexive and symmetrical closure ofŔ ´
I´ := I´´| C(Ŕ )

Whenever there is at least one functionf in K and one equalityeq(a,b) thenC(R) contains
(besides all reflexive equalities) an infinite set of equalities, because ifeq(a,b) ∈ R then
eq(f(a), f(b)), eq(f(f(a)),f(f(b))), ... are elements ofC(R).

i

i

i



KARL 25

The separation of the equality information in the equivalence relationR resp.Ŕ  from the
other facts inI resp. I´ and the application of the quotient operator to the setI´´ is not
necessary to define a fixed point operator for Horn logic with equality (see [SpA92]) but it
allows to develop a much more efficient evaluation strategy.

Def. 9  (Fixed point)
The least fixed pointFPK of a set of rules and factsK is defined by

FPK := TK
∞(({},{( t,t) | t is an element of the Herbrand universe}))

In [Ang93] it has been shown that the least fixed point for a set of L-KARL rules always
exists and that this least fixed point can easily be mapped to the minimal (i.e., perfect)
Herbrand model which constitutes the semantics of a set of L-KARL rules.

In order to operationalize this fixed point operation for an KARL interpreter the fixed point
has to be finite. Infinite recursions of rules, unsafe rules, the application of built-in predicates
within recursion and the equality predicate are reasons why the fixed point may become
infinite. In [Ang93] restrictions for the rules are described which enforce the finiteness of the
resulting fixed point. These restrictions are syntactical and are thus statically provable.

4.3 The Operational Semantics of a KARL Program

The semantics of an entire KARL program is defined by successively transforming one
program state to the next state by the mapping defined by the activated inference action. So
every statement at the task layer either changes the program state which is defined by the
contents of the stores and the program counter or it only changes the program counter. This
semantics is quite similar to the semantics of deterministic while-programs (see [LoS84]).

The state of a program is defined by the contents of the stores:

Def. 10  (state)
A variable assignment is a function which maps each variable (store) to a subset of the
Herbrand base and each boolean variable to one of the valuestrue or false. The state of a
program is one variable assignment of all variables.

A configuration of a KARL program represents the whole process state. It consists of the
state and additionally the remaining program which has to be processed.

Def. 11  (configuration)
A configuration is a pair (w,σ), wherew is the remaining to be processed program andσ
is the state of the program (an assignment for all variables).

The following transition relation describes for each statement at the task layer how it changes
the process state, i.e. how it relates a configuration with its succeeding configuration. This
transition relation is described for two types of statements available at the task layer.

Def. 12  (transition relation)

Given the two configurations (w1,σ1) and (w2,σ2), the transition relation⇒ is defined by:
(w1,σ1) ⇒ (w2,σ2)

with



KARL 26

1. w1 = (Xk1,...,Xkh):=fi(Xj1,...,Xjl); w2,
w1 is the call of an inference action andσ2 is the new variable assignment
(with changed contents of the output stores of the inference actionfi).

2. w1 = IF B THEN w1´ ELSEw2´ ENDIF; w3´
σ2 = σ1
andw2 = w1´; w3´, if B is true forσ1 or w2 = w2´; w3´, if B is false forσ1

The semantics of the KARL program is defined by the functionM(P), which maps the start
configuration (P, σ0) to the final configuration (λ, σk), whereλ denotes the empty program.
This mapping exists if there exists a sequence of configurations where two succeeding
configurations are related by the transition relation, the first configuration of this sequence is
the start configuration (P, σ0) and the last configuration is the final configuration (λ, σk). If
there does not exist such a sequence (the program does not stop) then the semantics is
undefined.

4.4 The evaluation method DFE

In the following section the evaluation algorithm DFE for sets of L-KARL rules and facts is
sketched. DFE stands for Dynamic Filtering with Equality.

System Graph

The evaluation algorithm works on a data structure called system graph [KiL86]. This graph
represents the set of rules. Every atom of the rules is represented as a vertice of the graph. All
atoms in the body of a rule are connected to the head atom of the rule. A head atom is
connected to all body atoms with the same predicate symbol. Let’s have a look at an example.

 Example 1
Given the following set of rules

1.∀X∀Y (eq(X,Y) ← p(X,Y) ∧ q(Y)).
2.∀X∀Y (r(X,Y) ← p(X,Y) ∧ r(Y,b)).
3.∀X∀Y (r(X,Y) ← s(X,Y)).
q(a). p(b,a). p(c,b). r(a,a). r(c,b). s(e,f).

and a query
∀Y (← r(a,Y)).

The corresponding system graph is shown in Figure 8.

Data propagation and query evaluation using the system graph

The bottom-up evaluation using the system graph may be seen as a flow of data from the
sources to the sinks along the vertices of the graph.

If a fact q(a1,...,an) flows from a head atom of ruler to a body atomq(b1,...,bn) of rule r’
(along a solid arrow) a match operation takes place. This means that the non-ground body
atom has to be unified with the facts produced by ruler. As an extension of the match-
operation in [KiL86] this operation has to take the equalities into account. All substitutions
for a body atom form the tuples of a relation which is asserted to the body atom. Every tuple
of this relation provides a ground term for every variable in the body atom. To evaluate the
rule all relations of the body atoms are joined and the resulting relation is used to produce a
set of new facts for the head atom. These facts again flow upwards in the system graph.



KARL 27

This evaluation strategy corresponds to naive evaluation [Ull88] and realises directly the
above mentioned fixed point operator. Because the system graph may contain cycles (in case
of recursion within the set of rules) semi naive evaluation [Ull88] may be applied to increase
efficiency.

The bottom-up evaluation of the example mentioned above is shown in Figure 9. The facts
flowing to a vertice are shown in the bubble attached to the vertice.

Note that for the flow of the factr(a,a) to the vertice of the body atomr(Y,b) the fact that term
b is equal to terma has to be known. This means that this equality has to be determined
before the factr(a,a) can flow to the body atomr(Y,b). This equality has also to be considered
in creating the factr(c,b) at the vertice of the head atomr(X,Y) from the conjunction of the
factsp(c,b) andr(a,a) of the body atomsp(X,Y) andr(Y,b).

The result of an evaluation corresponds to the entire perfect Herbrand model of a set of rules
and facts. But to determine the contents of the output stores of an inference action normally
only a proper subset of this model is needed (see Figure 7).

p(b,a)q(a) r(a,a) s(e,f)

q(Y) p(X,Y) p(X,Y) r(Y,b) s(X,Y)

eq(X,Y) r(X,Y) r(X,Y)

p(c,b)

r(a,Y)
body atom

head atom

connection

head-body atom

connection

body-head atomr(c,b)

Fig. 8    System graph for the example.

p(b,a)q(a) r(a,a) s(e,f)

q(Y) p(X,Y) p(X,Y) r(Y,b) s(X,Y)

eq(X,Y) r(X,Y) r(X,Y)

p(c,b)

r(a,Y)
body atom

head atom

connection

head-body atom

connection

body-head atom
s(e,f)

q(a)

p(b,a)
p(c,b)

eq(b,a)

p(b,a)
p(c,b)

r(b,a)
r(c,b)

s(e,f)

r(b,a)

r(c,b)

r(a,a)
r(c,b)

1

2

3

4

5

6

7

8

9

10

11

5
no of vertice

p(a,X) F12

Filter

Fig. 9    Bottom-up evaluation.



KARL 28

In order to reduce the evaluation effort, i.e. to evaluate only a small superset of the needed
subset of the perfect Herbrand model the evaluation algorithm has been optimized by
combining it with a top-down strategy.

Optimization of the data flow

Figure 9 exemplifies that facts are created for the vertices although they are useless for
answering the posed query. For instance the factp(c,b) flowing to the body verticep(X,Y)
cannot contribute in any way to the answer, because of the queryr(a,Y) only instances of the
variableX which are equal to the constanta (a or b) are relevant andc is not equal toa. Such
useless facts then in turn produce new useless facts in the subsequent evaluation. The key
idea of thedynamic filtering technique is to abort the flow of useless facts as early as possible
(i.e. as close to the sources of the graph as possible) attaching so-called filters to the edges of
the graph. Such a filter consists of a set of atoms. A filter lets a fact pass through if there
exists an atom within the filter which matches with the fact.

For instance the filterF12 between vertice 1 and vertice 2,F12 = {p(a,X)} prevents the fact
p(c,b) from flowing to the vertice 2 because no ground substitutionζ exists such that (aζ,c) ∈
C(R) (in the example only a andb are derived as equal). Additionally the creation of the fact
r(c,b) for vertice 3 is prevented. Thus the answer to the posed queryr(a,Y) remains the same,
although the amount of facts flowing through the graph is reduced.

The filters at the edges of the system graph are created by propagating constants within the
query, within the rules, or within already evaluated facts downwards in the graph. For
instance the filterF12 = {p(a,X)} is determined using the constanta at the first argument
position of the queryr(a,Y). This filter is valid because for the answer only facts at vertice 3
are useful containing ana or a constantb with (a,b) ∈ C(R) (a and b are equal) as first
argument. So variableX in rule 2 must be instantiated witha or a constantb equal toa only in
order to be useful for the query.

The filters at the edges of the system graph are created during the evaluation process in the
following way. Assume that all equalities are known in advance. First of all constants within
the query and within the rules are propagated downwards in the graph. Starting at the query or
at a body atom they are propagated to all head atoms which are connected to this atom. From
the head atoms they are propagated to the first body atom of the corresponding rule and from
there in the same way downwards. In propagating the constants downwards they produce new
filter atoms for the filters at the edges between the head atoms and the body atoms. Now new
facts may flow through these newly created (or modified filters). The constants within facts
which have flown to a body atom are now propagated sideways to the next body atom of the
same rule. From there they are again propagated downwards and thus produce new filter
atoms which again allow new facts to pass. This process proceeds until no more facts flow
upwards and no more filter atoms are created. The posed query is answered now by all facts
which have flown to this query.

Let us demonstrate this at our running example. The query atom is propagated downwards.
This creates the filtersF9,10 = {r(a,Y)}, F4,5 = {s(a,Y)}, F3,10 = {r(a,Y)}, F11,2 = {p(a,Y)} and
F1,2 = {p(a,Y)}. Becausea and b are equal the factp(b,a) can flow throughF11,2. By
sideways propagation at vertice 7 the instancer(a,b) is created which again is propagated
downwards. This leads to the filtersF6,7 = {r(a,b)} and F8,7 = {r(a,b)}. Becausea andb are
equal the factr(a,a) can flow throughF6,7 to vertice 7. With the factp(b,a) which has flown



KARL 29

to vertice 2 a new instancer(b,a) of the head atom is created. This fact flows throughF3,10 to
vertice 10 and answers the query (Y = a).

This mechanism works fine if all relevant equalities are known in advance. In the above
described course of events it is essential to know the equivalence ofa andb. But knowing in
advance means that all equalities have to be determined in advance by a bottom-up evaluation
of all rules which may contribute to the determination of equalities. This may be a large effort
and additionally requires finite extensions of the corresponding head atoms. These
disadvantages may be avoided by determining only those equalities that are actually needed.

At the beginning of the evaluation all equalities for the constantsa within the rules and the
query are determined by posing the queries← eq(a,X) and← eq(X,a) to the set of rules and
facts and evaluating these queries using the above mentioned algorithm. After this evaluation
all terms equal toa are known.

During the evaluation process, three different events may lead to the derivation of new terms
from existing ones (for which the equalities have to be determined):

• When new facts flow to a body atom of a rule at the leaves of the graph, new terms
come into play. For instance if the factp(b,a) flows throughF11,2 the new constantb
comes into play.

• At the point where a rule is evaluated new facts for the head atom are created which
may contain new terms. For instance a rulep(f(X)) ← q(X) creates a new termf(a) for
the instancea of X.

• When constants are propagated sideways, the instantiation of the body atom may create
new terms. For instance for rulep(Y) ← q(X,Y) ∧ r(f(X)) a substitutionσ = {X/a, Y/b}
creates the instancer(f(a)) of the next body atom and thus creates a new termf(a).

For these new terms the equalities have to be known in order to propagate the facts upwards
and downwards in the graph correctly. For newly created ground termst as well as for their
subterms the queries← eq(X,t) and ← eq(t,X) are posed to the set of rules while the
evaluation process is running. Thus in order to evaluate a query additional queries may be
created in order to derive the necessary equalities. The new queries additionally weaken the
filters and let thus additional facts flow in the graph. If a new equalityeq(a,b) has been
evaluated (a corresponding fact has flown to an equality vertice) it has to be checked for those
facts which containa or b whether they now flow through filters or are now matched by a
body atom or create now new filter atoms in propagating downwards. By this way for a query
only those equalities are determined which may contribute to the answer of the query. Thus
only a small subset of all equalities have to be evaluated normally which may reduce the
evaluation effort considerabely compared to the evaluation of all equalities in advance.

The above described algorithm combines the advantages of set-oriented evaluation, bottom-
up evaluation and top-down evaluation. The advantages of set-oriented evaluation are gained
by realising the join-operations efficiently in time O(nlogn). Bottom-up evaluation provides
larger, but fewer sets of facts, reduces the additional search space caused by the equalities and
avoids infinite branches in the proof tree. The advantages of top-down evaluation are gained
by the propagation of constants within the graph which leads to the evaluation of a subset of
the perfect Herbrand model only.



KARL 30

5 The Tool Environment of KARL

Based on the operational semantics for KARL and on the evaluation algorithm DFE for sets
of L-KARL rules and facts an interpreter for KARL has been developed. The interpreter
integrates a lot of debugging facilities:

• The graphical interface shows the model of expertise using the graphical representation
of KARL and supports the refinement facilities at the inference and task layer.

• The contents of stores may be inspected and modified.
• The problem solving process may be traced step by step.
• Breakpoints may be defined.
• The execution is possible in both directions, i.e. the debugger can run one step

backwards for example.
• The whole state of the debugger may be saved and loaded.

As the formal and executable specification in KARL uses the KADS model of expertise as its
framework the validation of the specification become possible in terms of the conceptual
model which is also used to specify an informal model of the system. This buys two
important advantages. First, a smooth transition from informal and formal as well as
operational specifications become possible (see [FeN93]). Second, the understandability of
the formal specification, of the validation process and of its results is significantly improved
for the system developer as well as for the user as they can interpret and communicate at the
conceptual level.

Figure 10 shows a screen dump of the graphical interface for the debugger. It shows the
inference structure of the model of expertise. The content of a store may be inspected by
clicking on the symbol of the store on the screen.

This debugger allows to observe the running problem solving process step by step and thus
allows to validate it by testing. This validation provides the necessary feed back for the
knowledge engineer and the expert in order to develop an adequate model of the problem
solving process by explorative prototyping.

There exists an environment called MEMO-Kit ([Neu93], [NeM93]) which supports earlier
phases in the development process of a model of expertise. MEMO-Kit offers editors to
create and modify informal models and semiformal models using graphical primitives. These
models are transformable to KARL models. MEMO-Kit allows to represent the model of
expertise in a semiformal manner and thus supports the communication process between the
knowledge engineer and the expert.

6 Applications

KARL has already been applied and evaluated in different case studies which resulted either
in a formal model of expertise for an expert system application or in a formalization of a
problem solving method.

KARL Models of Expertise for Expert System Applications

The development of different models of expertise for various expert system applications
provided valuable feedback for developing the version of KARL which is described in this



KARL 31

paper. Among others the following applications have been tackled:

• Room Assignment Task (Sisyphus-1) [Lin92]: The Sisyphus-1 task consists of assigning
a set of employees to appropriate office rooms meeting a predefined set of constraints. In
[AFL+92a] and [AFL92c] two solutions for the Sisyphus-1 problem are described
providing a complete model of expertise specification.

KARL-Debugger on:#’KARLall.p+e_Sisyphus

Fig. 10    Screen dump of the debugger of KARL.

Correct_
Assignemnts

check
Solution

pruneCorrect Assignemnts

Components

slotscreate



KARL 32

• Scheduling Task: For comparing different approaches for formally specifying the
functionality of expert systems a simple scheduling task has been posed in [TrW93].
Here, a set of activities have to be scheduled to a set of time periods taking some
restrictions into account. In [LFA93] a KARL solution for this problem is described
resulting among others in the formalization of the problem solving method propose and
exchange.

• Selection of Scheduling Algorithms: Selecting operations research algorithms, which are
suitable for solving a given application task, from a large library is a significant problem.
In [KFG92] an approach for solving the problem of selecting appropriate scheduling
algorithms from a library in a given project management context is discussed.

• Elevator Configuration Task (Sisyphus-2/VT): As a second problem for comparing
different knowledge level modeling approaches and languages an elevator configuration
task has been posed [Yos92]. In [PFL+96] a KARL model of expertise for solving the VT
task is described. The detailed specification of such a complex task gave us various
insights in the advantages and disadvantages of some of the design decisions which we
have made when developing KARL.

Specification of Problem Solving Methods in KARL

We also specified some problem solving methods with KARL. Problem-solving methods can
be seen as a model of expertise with an empty domain layer. They define a generic reasoning
strategy that should be applicable to a complete class of tasks and domains:

• Weak Problem Solving Methods: The development of several solutions for the Sisyphus-
1 task (room assignment) resulted in the specification of the weak problem solving
methodshill climbing [AFL+92a], chronological backtracking [FEM+96], andbeam
search[FEM+96].

• Cover and differentiate: In [Ang92] a complete specification of the strong problem
solving methodcover and differentiate has been provided based on the informal
description which is given in [Mar88]. This problem solving method can be used to solve
problems in which a solution has to be identified from a given set of solutions, like e.g. in
diagnosis tasks.

• Board-game method: Theboard-game method is a refinement of chronological
backtracking for problems, in which a fixed set of pieces can be moved between locations
in order to reach a goal state [EST+92]. Using the informal description given in
[EST+92] as well as the available CLIPS code the board-game method has been formally
specified [FEM+96]. This case study is a typical example how KARL can be used for re-
engineering already implemented problem solving methods.

• Propose and exchange: The strong problem solving methodpropose and exchange
[PoP92] has been formalized for solving a simple design task [LFA93]. This problem
solving method is well-suited for solving assignment problems.

• Propose and revise: In the context of the Sisyphus-2 VT task a formal specification of the
strong problem solving methodpropose and revise has been developed [PFL+96]. This
problems solving method can be used for solving problems where specific revise rules
exist for solving constraint violations.



KARL 33

7 Comparison with Related Languages

In the following, we will briefly compare KARL with specification languages from the field
of knowledge engineering ((ML)2 and DESIRE), information systems development (Telos
and TROLL), and software engineering (VDM and Z). A more detailed comparison of KARL
with most existing knowledge specification languages can be found in [FeH94], [AFL92b]
contains a comparison of KARL with a specification language for developing information
systems and [Fen95c] provides a comparision with languages stemming from software
engineering.

The main difference between KARL and(ML)2 [HaB92] is based in the fact that (ML)2 is a
language which aims only at formalizing models of expertise of kbs and not at
operationalization. It uses full first-order logic to specify static knowledge and regards all
possible interpretations in order to determine the truth value of formulae. A possible
operationalization of (ML)2 would require theorem-proving techniques. This
operationalization would not be complete and would be less efficient than an
operationalization of Horn logic as used by KARL. A further difference lies in the fact that
KARL uses an object-oriented customization of first-order logic to express domain and
inference knowledge whereas (ML)2 provides pure predicate logic for this purpose.
Therefore, epistemologically different types of knowledge like concepts, attributes, domain
restrictions and range restrictions are uniformly represented by predicates in (ML)2. Both
languages use dynamic logic for specifying procedural knowledge. On the other hand, there is
a significant difference in how both languages use dynamic logic. In KARL, an inference
action is represented by a function. In (ML)2, every inference action is represented by a
predicate and the logical description of the predicate is integrated into dynamic logic through
clauses having this predicate as a literal. As a consequence, (ML)2 requiresquantified
dynamic logic, because the logical description of inferences require quantifiers, whereas a
less expressive variant of dynamic logic is sufficient for P-KARL because every formula only
contains free variables (cf. [Koz90]).DESIRE [LPT93a] is also a knowledge specification
language but differs significantly from KARL in the conceptual model it applies as DESIRE
does not rely on the KADS model of expertise. The main difference is that DESIRE uses a
meta-level architecture for dynamic control based ontemporal logic. Therefore, the control
flow is not procedurally described, but a set of meta-level formulae can constrain possible
control flows. Semantically, DESIRE represents its partial reasoning using a temporal logic
with a fixed discrete set of time points where the control flow is represented as a trace of
different points in time. DESIRE provides no means for reasoning about composition of
actions like sequences or loops.

Telos [MBJ+93], which has evolved from RML (Requirements Modeling Language, see
[GMB94]) is a language for supporting the development of information systems. It views the
specification of an information system as an object-oriented knowledge base supplemented
by constraints and rules. An interval-oriented temporal formalism is provided to express
temporary features of these objects and their relationships. Telos provides the operations
RETRIEVE and ASK for querying this knowledge base. In addition to some technical details,
L-KARL and the analogous part of Telos are very close in spirit. As in KARL, attributes and
classes are treated as first-order citizens but KARL provides a more explicit notion of
complex objects. The main difference between the two languages concerns the representation
of dynamics. KARL has no explicit means to represent temporal knowledge and Telos



KARL 34

includes no representation of procedural knowledge as the system is viewed as a static
knowledge base and not as a program.TROLL [Jun93] is a language for formally specifying
information systems and is used for requirements specification or conceptual modeling—a
phase in the development of information systems which directly corresponds to knowledge
acquisition. In TROLL, an information system is modelled as a community of interacting
objects where each object covers structural as well as behavorial aspects. A basic
characteristic of TROLL is the use of temporal logic for specifying, e.g. the admissible state
sequences of objects. The formal semantics of TROLL is given in [Jun93] using the so-called
Object Specification Logic [SSC92]. However, a complete operationalization of TROLL is
not available. Again, a major difference between KARL and TROLL is the fact that the latter
aims primarily at the specification of objects and their behavior. The behavior is
characterized by rather simple operations which change the state of the corresponding objects
and may cause a change in the state of other objects. However, the specification of complex
application functions, which are described in KARL on the task and inference layer, is not
addressed in TROLL. On the other hand, it should be clear that, e.g., ideas like dynamic
integrity constraints as offered by TROLL could be used to enhance the specification of the
domain layer of a KARL model of expertise. The main difference between KARL and
TROLL is again the representation of dynamics. Whereas TROLL constrains possible control
flows by using temporal logic, KARL uses dynamic logic to explicitly define the control flow
in a procedural manner. As already mentioned, this design decision in KARL was made
because experience in large expert system projects like XCON (cf. [SBJ87], [BaS89]) have
shown that great problems arise if the control flow is only implicitly specified.

Several semiformal specification techniques have been developed in software engineering. In
[FAL93] it is described how KARL can be used to formalize and operationalize software
specifications using structured analysis techniques like data flow diagrams [You89]. This
shows that the application of KARL is not restricted to the development of KBS, in fact
application systems which are developed with a classical software engineering techniques
like structured analysis can be formally specified in KARL as well. On the other hand, there
are no means to specify real-time problems in KARL.

VDM and Z are formal specification languages developed by the software engineering
community. Both languages can report several applications in the development of large
software products.VDM [Jon90] describes a system by means of a data model together with a
set of operations which express the required behavior of a system. Each operation is defined
as a relation between input and output values of various defined types. Preconditions, post-
conditions, and invariants are means for specifying these data models and operations. VDM
provides a number of proof obligations which can be used to show the mathematical self-
consistency of a specification (cf. [BFL+94] for an introduction to proofs in VDM-SL).Z is
based on typed set theory. Static and dynamic aspects of a system are uniformly described by
so-called schemes. Complex specifications can be built up by combining several of these
schemes. A schema describes a data type or an operation by means of preconditions,
postconditions, and invariants. For this purpose, sets, relations, and functions can be defined
using a language similar to predicate logic. [Spi92] defines a standard for Z and its
mathematical semantics is defined in [Spi88].

A difference when comparing the languagesVDM and Z with KARL is that the latter is
generally subject to a stronger conceptual model of the system to be described. KARL uses
the KADS model of expertise and is thus much closer to a conceptual and informal or semi-



KARL 35

formal description of expertise than general purpose languages likeZ, which describe
arbitrary programs with the help of mathematical set theory. On the other hand, as a result of
the effort to put VDM and Z into practice, several authors developed combinations with semi-
formal specification techniques like structured analysis [You89] or object-oriented analysis
[CoY91]. Approaches like [ELP93], [LPT93b] for VDM, [Ran90], [SBC92] for Z (or
[FrD89] for algebraic techniques) are therefore in this respect close in spirit to KARL.

In addition, VDM and Z were designed as formal specification languages. Supporting the
specification process by prototyping with executable specifications as supported by KARL
was not a goal of these projects. More recent approaches to VDM developed interpreters for
subsets of the language (cf. [AEL+92], [ELL94], [LaL91]). Since the full VDM-SL language
is not executable in general, these interpreters have to exclude language features like infinite
sets, execution of type binding, purely implicitly defined functions and operations. A further
problem for the operationalization effort is caused by loose specification.9

Finally, a difference between KARL and specification languages of Software Engineering
lies in the fact that these languages aim for a declarative specification of the functionality of a
system. They try to abstract fromhow this functionality is achieved. As already mentioned, in
knowledge-based system development of part of the “how” is regarded as essential expertise
which must therefore be specified. Therefore, an inference layer in KARL specifies the
significant inferences of a problem-solving process and the task layer supplements these
definitions with a control flow which should ensure an effective and efficient computation of
a solution. KARL specifies in an abstract manner how a solution is achieved instead of only
describingwhat the solution is.

8 Conclusion

In this paper a detailed specification as well as a design rationale of the Knowledge
Acquisition and Representation Language KARL are given. In essence, the development of
KARL aimed at fulfilling the following requirements:

• KARL should be based on a conceptual model which provides means for specifying the
functionality of a knowledge-based system in an implementation independent way. For
that purpose, KARL uses the well-known KADS model of expertise as the underlying
conceptual model. Thus, different types of knowledge are explicitly distinguished and
specified separately.

• KARL should be a formal and executable specification language. During the process of
defining the KARL language it became clear that a lot of well-balanced design
decisions have to be made to end up with a language which is both, a formal and an
executable language. Furthermore, for having a precisely defined implementation basis
available a formal operational semantics had to be developed supplementing the
declarative formal semantics.

• KARL should be defined in a way that improves the comprehensibility of KARL
specifications. Therefore, most KARL primitives have a graphical representation. All
the case studies which have been carried out so far indicate that the graphic
representation of KARL specifications considerably enhances their comprehensibility.

9.  Compare [HaJ89] and [Fuc92] for a discussion on pro and cons about executable specification languages.



KARL 36

When considering KARL from a technical point of view it becomes apparent that the design
of KARL is influenced by methods from knowledge engineering, software engineering, and
deductive data bases. In that way, KARL is a good example of the close relationships which
exist between these different research areas.

Some shortcomings of KARL have been detected during its applications. First, Horn clauses
often enforce an artificial manner in modeling problems. Therefore, syntactical extensions of
Horn logic as proposed by [LlT84] should be included in a revised version of KARL. Second,
the mentioned VT-task showed the need of an object-meta-relationship between domain and
inference layer. Rules of the domain layer must be treated as objects at the inference layer. For
example, one must determine which is the appropriate repair rule for a violated constraint. We
could bypass this problem be modeling such repair rules twice. Once as objects and once as
rules. In addition, these rules contained a premise which turn them on and off. So it was doable
but not at all in a nice and natural manner. Third, the deterministic control at the task layer
enforces over-specification in cases where no complete and deterministic control flow should
be specified. Otherwise, prototyping of non-deterministic specifications causes serios
problems (cf. [AEL+92], [LaL91]).

Acknowledgement

We want to thank Dieter Landes for many helpful discussions concerning the development of
KARL, Susanne Neubert for her work on MEMO-Kit, Robert Lechler and Michael Wagner
for implementing the KARL interpreter, and Manfred Aben, Frank van Harmelen, Jan Treur
and two anaonymous reviewer for their comments on drafts of the paper

Bibliography
[AEL+92] M. Andersen, R. Elmstr∅m, P. B. Lassen, and P. G. Larsen: Making Specifications Executable—

Using IPTES Meta-IV. InMicroprocessing and Microprogramming, vol 35, September 1992.
[AFL+92a] J. Angele, D. Fensel, D. Landes, and R. Studer: An Assignment Problem in Sisyphus - No Problem

with KARL. In M. Linster (ed.): Sisyphus ´91: Models of Problem Solving, Arbeitspapiere der
GMD, no 630, March 1992.

[AFL92b] J. Angele, D. Fensel, and D. Landes: Two Languages to Do the Same? InProceedings of the 2nd
Workshop Informationssysteme und Künstliche Intelligenz, February 24-26, 1992, Ulm, R. Studer
(ed.), Informatik- Fachberichte, no 303, Springer-Verlag, Berlin, 1992.

[AFL92c] J. Angele, D. Fensel und D. Landes: An Executable Model at the Knowledge Level for the Office-
Assignment Task. In [Lin92].

[AFL+93] J. Angele, D. Fensel, D. Landes, S. Neubert, and R. Studer: Model-Based and Incremental
Knowledge Engineering: The MIKE Approach. In J. Cuena (ed.),Knowledge Oriented Software
Design, IFIP Transactions A-27, North Holland, Amsterdam, 1993.

[Ang92] J. Angele: Cover and Differentiate Remodeled in KARL. InProceedings of the 2nd KADS User
Meeting, Munich, February 17-18, 1992, C. Bauer et al. (eds.), Interpretation Models for KADS -
Proceedings of the 2nd KADS User Meeting (KUM´92), GMD report, no 212, 1992.

[Ang93] J. Angele: Operationalisierung des Modells der Expertise mit KARL (Operationalization of a
Model of Expertise with KARL), PhD thesis, Infix-Verlag, St. Augustin, 1993 (in German).

[ARS92] S. Aitken, H. Reichgelt, and N. Shadbolt: Representing KADS Models in QIL, AI Group,
University of Nottingham, Working Paper WP-006, 1992.

[Bar93] M. Barbuceanu: Models: Toward Integrated Knowledge Modeling Environments. InKnowledge
Acquisition, vol 5, 1993.

[BaS89] J. Bachant and F. Soloway: The Engineering of XCON,Communications of the ACM, vol 32, no 3,
March 1989.

[Bee90] C. Beeri: A Formal Approach to Object-Oriented Databases,Data & Knowledge Engineering, vol
5, no 4, 1990, pp. 353-382.

[Ben95] R. Benjamins: Problem Solving Methods for Diagnosis And Their Role in Knowledge Acquisition,



KARL 37

International Journal of Expert Systems: Research and Application, 8(2):93—120, 1995.
[BFL+94] J. C. Bicarregui, J. S. Fitzgerald, P. A. Lindsay, R. Moore, and B. Ritchie:Proof in VDM: A

Practitioner´s Guide, Springer Verlag, Berlin, 1994.
[Bra79] R. J. Brachman: On the Epistemological Status of Semantic Networks. In N. V. Findler (ed.),

Associative Networks: Representation and Use of Knowledge by Computers, Academic Press, New
York, 1979.

[BvV94] J. Breuker and W. Van de Velde (eds.):The CommonKADS Library for Expertise Modelling, IOS
Press, Amsterdam, The Netherlands, 1994.

[CoY91] P. Coad and E. Yourdon:Object-Oriented Analysis, 2nd ed., Yourdon Press, Englewood Cliffs,
1991.

[ElN89] R. Elmasri and S.B. Navathe:Fundamentals of Database Systems, The Benjamin/Cummings
Publishing Company, Houston, 1989.

[ELL94] R. Elmstr∅m, P. B. Lassen, and P. G. Larsen: The IFAD VDM-SL Toolbox: A Practical Approach
to Formal Specifications. InACM SIGPLAN Notices, summer 1994.

[ELP93] R. Elmstr∅m, R. Lintulampi, and Mauro Pezze: Giving Semantics to SA/RT by Means of High
Level Timed Petri Nets. InReal-Time Systems, vol 5, no 2-3, May1993.

[EST+92] H. Eriksson, Y. Shahar, S. W. Tu, A. R. Puerta, and M. A. Musen: Task modeling with reusable
problem-solving methods. InProceedings of the 7th Banff Knowledge Acquisition for Knowledge-
Based Systems Workshop, Banff, Canada, October 11–16, 1992.

[FAL93] D. Fensel, J. Angele, D. Landes, and R. Studer: Giving Structured Analysis Techniques a Formal
and Operational Semantics with KARL.

[FeH94] D. Fensel and F. van Harmelen: A Comparison of Languages which Operationalize and Formalize
KADS Models of Expertise.The Knowledge Engineering Review, vol 9, no 2, June 1994.

[FEM+96] DD. Fensel, H. Eriksson, M. A. Musen, and R. Studer: Developing Problem-Solving by Introducing
Ontological Commitments,International Journal of Expert Systems: Research & Applications,
9(4), 1996.

[Fen95a] D. Fensel: Assumptions and Limitations of a Problem-Solving Method: A Case Study.  In
Proceedings of the 9th Banff Knowledge Acquisition for Knowledge-Based System Workshop
(KAW´95), Banff, Canada, February 26th - February 3th, 1995.

[Fen95b] D. Fensel:The Knowledge Acquisition and Representation Language KARL, Kluwer Academic
Publ., Boston, 1995.

[Fen95c] D. Fensel: Formal Specification Languages in Knowledge and Software Engineering,The
Knowledge Engineering Review, 10(4), 1995.

[FeN93] D. Fensel and S. Neubert: Integration Of Semiformal and Formal Methods For Specification of
Knowledge-Based Systems. InProceedings of the GI-Fachgespräch Workshop-F1 Integration of
Semiformal and Formal Methods, IFIP´94, Hamburg, August 31, 1994.

[Flo84] C. Floyd: A Systematic Look at Prototyping. In R. Budde et al. (eds.),Approaches to Prototyping,
Springer-Verlag, Berlin, 1984, pp. 1-18.

[FrD89] R. B. France and T. W. G. Docker: Formal Specifications Using Structured System Analysis.In
Proceedings of the 2nd European Software Engineering Conference ESEC´89, Warwick,
September 11-15, Lecture Notes in Computer Science, no 387, Springer-Verlag, Berlin, 1989.

[Fuc92] N. E. Fuchs: Specifications Are (Preferably) Executable. In Software Engineering Journal, vol 7,
September 1992.

[GMB94] S. Greenspan, J. Mylopoulus, and A. Borgida: On Formal Requirements Modeling Languages:
RML Revisited. InProceedings of the 16th International Conference on Software Engineering
(ICSE´94), Sorrento, Italy, May 16-21, 1994.

[HaB92] F. v. Harmelen and J. Balder: (ML)2: A Formal Language for KADS Conceptual Models. In
Knowledge Acquisition, vol 4, no 1, 1992.

[Har84] D. Harel: Dynamic Logic. In D. Gabby et al. (eds.), Handook of Philosophical Logic, vol. II,
Extensions of Classical Logic, Publishing Company, Dordrecht (NL), 1984, pp. 497-604.

[HaJ89] I. J. Hayes and C. B. Jones: Specifications are not (necessarily) Executable. In Software
Engineering Journal, vol 4, no 6, November 1989.

[Jon90] C.B. Jones:Systematic Software Development Using VDM, 2nd ed., Prentice Hall, 1990.
[JoS92] W. Jonker and J.W. Spee: Yet Another Formalisation of KADS Conceptual Models. In

Proceedings of the 6th European Knowledge Acquisition for Knowledge-Based Systems Workshop



KARL 38

(EKAW-92), May 18-22, Heidelberg/Kaiserslautern, T. Wetter et al. (eds.),Current Developments
in Knowledge Acquisition, Lecture Notes in Artificial Intelligence, no 599, Springer-Verlag, Berlin,
1992.

[Jun93] R. Jungclaus: Modeling of Dynamic Object Systems - A Logic Based Approach, Vieweg Verlag,
Braunschweig, 1993.

[KaV93] W. Karbach and A. Voß: MODEL-K For Prototyping and Strategic Reasoning at the Knowledge
Level. In J.-M. David, J.-P. Krivine, and R. Simmons (eds.),Second Generation Expert Systems,
Springer-Verlag, Berlin, 1993.

[KFG92] R. Köppen, D. Fensel, and J. Geidel: Modelling the Selection of Scheduling Algorithms with
KARL. In Proceedings of the 2nd KADS User Meeting, Munich, February 17-18, 1992, C. Bauer et
al. (eds.), Interpretation Models for KADS - Proceedings of the 2nd KADS User Meeting
(KUM´92), GMD report, no 212, 1992.

[KiL86] M. Kifer, E. Lozinskii: A Framework for an Efficient Implementation of Deductive Databases. In
Proceedings of the 6th Advanced Database Symposium, Tokyo, 29.-30. August 1986, 109-116.

[Kim90] W. Kim: Introduction to Object-Oriented Databases, The MIT Press, Cambridge, Massachusetts,
1990.

[KiW89] M. Kifer and J. Wu: A Logic for Object-Oriented Logic Programming (Maier´s O-Logic
Revisited). InACM Symposium on Principles of Database Systems, Philadelphia, March 29-31,
1989, pp. 379-393.

[KLW95] M. Kifer, G. Lausen, and J. Wu: Logical Foundations of Object-Oriented and Frame-Based
Languages, Journal of the ACM, 42:741—843, 1995.

[Koz90] D. Kozen: Logics of Programs. In J. v. Leeuwen (ed.),Handbook of Theoretical Computer Science,
Elsevier Science Publ., B. V., Amsterdam, 1990.

[LaL91] P. B. Lassen and P. G. Larsen: An Executable Subset of Meta-IV with Loose Specification. In
Proceedings of the VDM´91 Formal Software Development Methods, Noordwijkerhout, The
Netherlands, Oktober 1991, Springer-Verlag, Berlin, 1991.

[Lan94] D. Landes: DesignKARL - A Language for the Design of Knowledge-Based Systems. In
Proceedings of the 6th International Conference on Software Engineering and Knowledge
Engineering SEKE’94, Jurmala, Latvia, June 20-23, 1994.

[LaS94] D. Landes and R. Studer: The Design Process in MIKE. InProceedings of the 8th Knowledge
Acquisition for Knowledge-Based Systems Workshop KAW´94, Banff, Canada, January 30 -
February 5, 1994.

[LFA93] D. Landes, D. Fensel, and J. Angele: Formalizing and Operationalizing a Design Task with KARL.
In [TrW93].

[Lin92] M. Linster (ed.): Sisyphus ´92: Models of Problem Solving, Arbeitspapiere der GMD, no 663, July
1992.

[Lin93] M. Linster: Using OMOS to Represent KADS Conceptual Models. In [SWB93].
[LlT84] J. W. Lloyd and R. W. Topor: Making Prolog More Expressive, Journal of Logic Programming,

vol 1, no 3, 1984.
[Llo87] J.W. Lloyd:Foundations of Logic Programming, 2nd Editon, Springer-Verlag, Berlin, 1987.
[LoS84] J. Loecks, K. Sieber:The foundations of program verification, Wiley, Teubner, Stuttgart, 1984.
[LPT93a] I. van Langevelde, A. Philipsen, and J. Treur: A Compositional Architecture for Simple Design

Formally Specified in DESIRE. In [TrW93].
[LPT93b] P. G. Larsen, N. Plat, and H. Toetenel: A Formal Semantics of Data Flow Diagrams. InFormal

Aspects of Computing, vol 3, 1993.
[Mar88] S. Marcus (ed.):Automating Knowledge Acquisition for Experts Systems, Kluwer Academic

Publisher, Boston, 1988.
[MBJ+93] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis: Representing Knowledge About

Information Systems in Telos. In M. Jarke (ed.),Database Application Engineering with DAIDA,
research reports ESPRIT, project 892, DAIDA, vol 1, Springer-Verlag, Berlin, 1993.

[NeM93] S. Neubert and F. Maurer: A Tool for Model Based Knowledge Engineering.In Proceedings of the
13th International Conference AI, Expert Systems, Natural Language (Avignon´93), May 24-28,
Avignon, 1993.

[Neu93] S. Neubert: Model Construction in MIKE (Model-Based and Incremental Knowledge Engineering).
In N. Aussenac et al. (eds.),Knowledge Acquisition for Knowledge-Based Systems, Proceedings of



KARL 39

the 7th European Workshop (EKAW´93, Toulouse, France, September 6-10, 1993), Lecture Notes
in AI no 723, Springer-Verlag, Berlin, 1993.

[New82] A. Newell: The Knowledge Level,Artificial Intelligence, vol 18, 1982.
[PFL+96] K. Poeck, D. Fensel, D. Landes, and J. Angele: Combining KARL and Configurable Role Limiting

Methods for Configuring Elevator Systems. Combining KARL And CRLM For Designing Vertical
Transportation Systems,International Journal of Human-Computer Studies (IJHCS), 44(3-4),
1996.

[PoP92] K. Poeck and F. Puppe: COKE: Efficient Solving of Complex Assignment Problems with the
Propose-And-Exchange Method. InProceedings of the 5th International Conference on Tools with
Artificial Intelligence, Arlington, Virginia, November 10-13, 1992.

[Prz88] T. C. Przymusinski: On the Declarative Semantics of Deductive Databases and Logic Programs. In
J. Minker (ed.),Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann
Publisher, Los Altos, CA, 1988.

[Pup93] F. Puppe:Systematic Introduction to Expert Systems: Knowledge Representation and Problem-
Solving Methods, Springer-Verlag, Berlin, 1993.

[Ran90] G. P. Randell:Translating Data Flow Diagrams into Z (and Vice Versa). Technical Report 90019,
Procurement Executive, Ministry of Defence, RSRE, Malvern, Worcestershire, UK, October 1990.

[SBC92] S. Stepney, R. Barden, and D. Cooper (eds.): Object Orientation in Z, Springer-Verlag, Berlin,
1992.

[SBJ87] E. Soloway, J. Bachant, and K. Jensen: Assessing the Maintainability of XCON-in-RIME: Coping
with the Problems of a VERY Large Rule-Base. InProceedings of 6th National Conference on AI
(AAAI-87), Seattle, Washington, July 13-17, 1987, pp. 824-829.

[SpA91] V. Sperschneider and G. Antoniou:Logic: A Foundation for Computer Science, Addison-Wesley
Pub., Wokingham, England, 1991.

[SpA92] V. Sperschneider, G. Antoniou:LOGIC: A Foundation for Computer Science, International
Computer Science Series, 1992.

[Spi88] J.M. Spivey:Understanding Z. A Specification Language and Its Formal Semantics, Cambridge
University Press, Cambridge, 1988.

[Spi92] J.M. Spivey:The Z Notation. A Reference Manual, 2nd ed., Prentice Hall, New York 1992.
[SSC92] A. Sernadas, C. Sernadas, and J.F. Costa:Object Specification Logic. Research Report INESC/

DMIST, University of Lisbon, 1992. To appear inJournal of Logic and Computation.
[SWB93] G. Schreiber, B. Wielinga, and J. Breuker (eds.):KADS. A Principled Approach to Knowledge-

Based System Development, Knowledge-Based Systems, vol 11, Academic Press, London, 1993.
[TrW93] J. Treur and Th. Wetter (eds.):Formal Specification of Complex Reasoning Systems, Ellis

Horwood, New York, 1993.
[Ull88] J. D. Ullman: Principles of Database and Knowledge-Base Systems, vol I, Computer Sciences

Press, Rockville, Maryland, 1988.
[Ull89] J. Ullman: Bottom-up beats top-down for Datalog. InProceedings of the 8th ACM Symposium on

Principles of Database Systems (PODS), Philadelphia, USA, 1989.
[VoV93] H. Voss and A. Voss: Reuse-Oriented Knowledge Engineering with MoMo. InProceedings of the

5th International Conference on Software Engineering and Knowledge Engineering (SEKE´93),
San Fransisco Bay, June 14-18, 1993.

[Wet90] T. Wetter: First Order Logic Foundation of the KADS Conceptual Model. In B. Wielinga et al.
(eds.), Current Trends in Knowledge Acquisition, IOS Press, Amsterdam, 1990.

[Yos92] G.R. Yost:Configuring Elevator Systems. Technical report, Digital Equipment Co., Marlboro,
Massachusetts, 1992.

[You89] E. Yourdon:Modern Structured Analysis, Prentice-Hall, Englewood Cliffs, 1989.


