
Implications of Memory Mappings on Cache Misses

Daniela Genius J�orn Eisenbiegler

Institut f�ur Programmstrukturen und Datenorganisation

Zirkel �

Fakult�at f�ur Informatik

Universit�at Karlsruhe� ����� Karlsruhe�Germany

e�mail�fgenius�eiseng�ipd�info�uni�karlsruhe�de

June �	� �		�

Abstract

This paper proposes an optimization by an alternative approach to memory map�
ping� Low set associativity allows representing cache lines by corresponding memory
areas� With the help of the notion of temporal reuse in the innermost loop� the be�
haviour of values in the cache is modelled� Combining these values into cache lines
so that spatial reuse is considered demands an alternative memory mapping� Memory
mappings with a low expectation of con�icts are achieved by the random placement of
arrays in memory� Signi�cant increase of cache misses for a worst case placement is
shown by experiments� as well as cache miss reduction achieved by improving reuse�

� Introduction

Scienti�c applications are particularly sensitive wrt� cache performance as large amounts
of data are regularly accessed in nested loops� On the other hand� a lot can be gained
if a compiler makes use of this regularity� A source of ine�ciency often neglected is the
competition for a single physical cache line� This might lead to cache thrashing when in
turn data is evicted that will shortly be reloaded into the same cache line� First level
caches almost always have low associativity� Typically� two �Intel Pentium� or four sets or
�more seldom� direct mappings �DEC Alpha� are implemented� Fully associative caches
are expensive and thus seldom used� as vendors prefer economical solutions� When high
performance is the issue� the problem to make good use of the cache mostly remains with
the programmer� This typically takes a lot of hand	optimization and should better be
accomplished by the compiler�

Compiler	controlled optimization techniques exploit compile	time information such as
loop boundaries and variable life ranges� Classical compiler optimizations
WL��
MCT��
work on the model of a fully associative cache� They focus on locality improvement� i�e��
they try to prevent data from exceeding cache size� Up to now� the problem of improving
behaviour for caches with less �exible mappings has very seldom been tackled� Caches
with low set associativity �including direct mapping as an extreme case� have a property
that can be used for optimization� They allow� in contrast to fully associative caches� the
drawing of conclusions from the memory layout back to cache behaviour as the cache line
resp� set a memory location maps to is known� A goal that has also often been neglected
is to aggressively achieve so	called spatial locality� Cache lines are often rather large� so
that for regular accesses to small data items� as is typical for scienti�c codes� a constant
improvement is achieved�

The present paper proposes a profound change of the memory mapping� A reuse	based
strategy is proposed that enables to capture the behaviour of cache lines more exactly than

�

so far� Reuse of data is considered by two stages� �rstly� representing life times of values
in the cache captures temporal reuse� Secondly� combining such values into cache lines
for multiple accesses aggressively improves spatial reuse� The knowledge gained about the
location of a virtual cache line in memory allows to detect potentiality for con�icts� The
code remains unchanged except index transformations� By experiment� the impact of the
optimizations is validated for typical scienti�c computing benchmarks� Negative e�ects from
cache thrashing reach from ca� ��� to �����

Basic terminology can be found in section �� Section � contains the assumptions made�
The optimization algorithm is presented in section �� Results of preliminary measurements
are shown in section �� In section �� recent related work is summed up and distinguished
from the approach taken here� In the �nal section� an overview is given on directions of
further work�

� Basic Notions

Figure � shows three levels of a �possibly larger� memory hierarchy� Low associativity is
assumed� i�e� memory areas bearing the same colour map to one cache line �resp� set of
cache lines� bearing the corresponding colour �thin arrows��� The fat arrows represent the
actions by the compiler� The notion of cache line� usually denoting a physical cache line�

R
E
G

I
S
T

E
R

S

CPU

Compiler

����
����

y
r
o

n
i

a
M

e
M

m

mapping
modulo k

0

t

Virtual Cache Line

0

k-1

l-1

l: Cache Line Size

t: Data Type Size

Memory Mapping

k Cache
 Lines/Sets

Source

Code

Code
Machine

Figure �� Setting� Terminolgy for Low	associativity Caches

needs to be de�ned more precisely� A cache consists of k physical cache lines of a length of
l bytes each� A variable of t bytes length can be considered a cache value in memory� In
the context of this paper� variables are array elements� The cache value life time denotes
the time during which this value is present in the cache� Virtual cache lines are composed
of several cache values� In caches with low associativity� they can be represented via one
of m

k
memory locations� where m is the memory size� They are mapped to physical cache

lines� Figure � sums up these notions� For example� the DEC Alpha �rst level data cache
has a size of ���� bytes� partitioned into k � ��� lines of �� byte length each� In scienti�c
computing� common types are �oat and long� i�e�� t is � resp� � bytes on the Alpha�s C
compiler�

Whenever a value requested in a calculation is present neither in registers nor in the
cache� a cache miss occurs� Compulsory misses occur when �lling up an empty cache�
Capacity misses happen when the data does not �t fully into the cache� Con�ict misses are
due to the competition of memory locations for the same cache line� such misses are speci�c
for direct mapped caches� We generalize this notion to con�icts between sets� In a direct
mapped cache� the line that is replaced on a miss is determined by a modulo calculation
out of the memory adress� Full associativity means free choice of cache location� allowing a

�In the following� the method is presented for direct mappings� modi�cations for higher set associativity

are mentioned where necessary� otherwise just replace line with set�

�

for �i��� i�SIZE� i���	 for�i�
� i�SIZE� i���	

for �j��� j�SIZE� j���	 x�k� � u�k��r�z�k��ry�k��

for �k��� k�SIZE� k���	 �t�u�k����r�u�k����ru�k����

c�i��j���a�i��k�b�k��j�� �t�u�k����r�u�k����ru�k�
����

� �

�

�

Figure �� Matrix Multiply and Livermore Kernel �

choice among candidates for replacement �e�g� LRU� FIFO� see
HP���� In a set associative
cache� this replacement policy is applied to smaller units� so	called sets� As the design of
fully associative caches is complex and expensive� mostly a low set associativity or a direct
mapping is chosen in practice�

Cache thrashing occurs when a value is required that has just been evicted� in turn
evicting a value tha will be required in the near future� etc� On a read miss� a value is loaded
into one of the registers� at the same time loading the corresponding memory location and
its surrounding values �depending on the line size and alignment� into the cache�

In a loop nest� the main cache pressure stems from accessing arrays depending on the
loop indices� The access pattern is described by a vector which is given by a matrix J of
multipliers and a constant vector �d of displacements� Assume a loop nest of depth m with
the corresponding index vector �i and a n	dimensional array� For a triply nested loop and a

twodimensional array ai��i������i���� J �

�
� � �
� � �

�
and �d �

�
�
�

�
�

The general form is

�
��

j��� � � � j��m
���

���
jn�� � � � jn�m

�
��
�
��

i�
���
im

�
���

�
��

d�
���

dm

�
�� � The array indices are thus

generated by an a�ne mapping of the loop counter vector�
Consider two loop nests typical in scienti�c computing� matrix multiply and kernel �

from the Livermore loops� In the �rst example� the access pattern is

�
� � �
� � �

��� i

j

k

�
� for

c�

�
� � �
� � �

��
� i

j

k

�
� for a and

�
� � �
� � �

��
� i

j

k

�
� for b� The access patterns for u in the

second example are trivially
�
k �
�� � � � �
�
k�
�� as there is only one loop� References
di�ering only in the displacement are uniformly generated�

Temporal reuse of data in the cache occurs when the same data item is accessed several
times� This was expressed formally by
WL��� Temporal reuse is in direction �rt� if J��rt � ���
spanning a vector space� This form of reuse is present for reference c
i
j� where J ��

� � �
� � �

�
� The reuse vector space is spanned by
�� �� ��

Spatial reuse means accesses to data in the same cache line� Spatial reuse occurs if
accesses are made to data that lie in memory sequentially or at least with a distance of less
than cache line size l

t
� All but the innermost index must be identical in order to achieve

self	spatial reuse� Let J � be J where all elements of the last row are set to �� then the
self	spatial reuse vectors ful�l J � � �rs � ��� Self	temporal implies self spatial reuse�

For c in example �� J �

�
� � �
� � �

�
� J � �

�
� � �
� � �

�
�

Reuse has been de�ned wrt� unlimited cache size� Given limited cache size� locality
denotes the property that no item is evicted that is still required� Reuse is a prerequisite
for locality� however note that reuse does not imply locality except for unlimited cache size�

�

� Starting Points

For the considerations in this paper� the restriction to perfectly nested loops without branches
is made� Furthermore� only a�ne index functions are considered and indirect addressing is
excluded� prerequisites ful�lled in many applications e�g� from scienti�c computing�

We restrict to array accesses without loop	carried dependencies for simplicity of presen	
tation� Otherwise� data �ow analysis for array references will have to be applied as proposed
by Feautrier
Fea��� It is assumed that array sizes are known to the compiler� The focus is
on algorithms whose behaviour only depends on the input size� a subclass of the large class of
oblivious algorithms �de�ned by L�owe and Zimmermann
ZL���� Exclusively� reuse wrt� the
innermost loop is considered� as the greatest e�ects can be achieved here� We concentrate
on data caches� Instruction caches are not considered� Unless loops are unrolled extensively
as e�g� in
DJ��� it is legitimate to leave instruction cache behaviour out of the focus�

As noted above� the scienti�c applications for which the optimizations apply are oblivious
and perfectly nested�References in the matrix multiplication algorithm ��gure �� are not
uniformly generated�There are three nested loops� In the Livermore kernel� there is only
one loop� all references are uniformly generated� None of the running examples contain
loop	carried dependencies�

� Deriving the Memory Mapping

Conventionally� compilers map arrays to memory in the following way� Let there be an
n	dimensional array� sizek denoting the number of data items in dimension k� There are
m nested loops denoted by �i� Row	major order is assumed� The memory mapping f is a
function f � INn � IN of the loop indices�

f�i�� � � � � im� � i� � size� � � � � � sizen � i� � size� � � � � � sizen � � �� in�

Obviously� such an arbitrary mapping of arrays often causes low reuse� e�g� for matrix b

in example �� A more adequate mapping must consider reuse and potentiality for con�icts�

�f�x�� � � � � xn� � x� � size� � � � � � sizen � x� � size� � � � � � sizen � � �� xn � �

where � denotes a displacement of the array in memory��
Note that such a mapping is always correct� however may incur di�erent cost due to

cache miss penalty� If the parameters xq and � are chosen adequately� the following two
goals are achieved�

�� Data should be combined into cache lines according to memory accesses� This can
only be achieved by aligning data in memory �parameter xq��

�� Data should be mapped to memory �parameter ��� in order to avoid con�icts�

Figure � depicts possible con�icts due to memory mapping in the running examples� Arrays
a and b resp� vectors u and x aligned to the same memory address modulo cache size k

�same colour� may cause cache thrashing� In section �� this e�ect is shown by experiment�
An overview of the algorithm is given before the steps are applied to the running examples

in the following� There are three main requirements for a single loop nest�

�� adequately represent temporal reuse

�� improve spatial reuse by a new memory mapping

�� determine a con�ict minimal memory mapping

In the following subsections� the thus decomposed goals will be ful�lled by the steps of the
optimization algorithm�

�As code is not modi�ed� moving cache lines in order to avoid con�icts is impossible and far too �ne�

grained�

�

accessed in same

loop iteration

conflict

...

CBA

a)
b)

... ...

u x

no conflictconflict

Figure �� Con�icts due to Memory Mapping� a� Example �� b� Example �

��� Cache Value Life Times

Temporal reuse has to be respected� To this end� an item should be present in the cache as
long as it is still accessed� As a feasible heuristics is of interest� the goal must be to derive a
pattern dependent of loop indices rather than fully unrolling the loop nest� For this reason�
a restriction to the innermost loop is made�

As the register allocation phase is assumed to be completed� physical registers have to
be taken into account
Bri��� Deriving cache value life times must take place after locality
optimizations because they might in�uence the instruction execution sequence�

Figure � sketches the cases that can occur� Memory accesses are depicted by full dots�
purely register operations by empty dots�� Number �� shows the general case� where reuse
is present� A remarkable fact is that often data are accessed only once� so that the cache
value life time can be depicted as a single dot �number ���� The third case is purely reg	
ister computation� a�ecting registers� but not the cache �number ���� Assume that load

2 31 VL VL VLCVL CVL CVL

Figure �� Relating Cache Value Life Times �CVL� to Variable Life Times �VL�

resp� store operations can be extracted on source code level� Given an array assignment�
e�g� a�i��b�i��k� reference to array a on its left hand side is a store operation� The right
hand side� which in source code might consist of many operations� usually contains loads
from several array locations� here b
i� Cache value life times are a representation of temporal
reuse ��gure ��� The life times of matrix elements in example � are mostly dot	shaped� In
matrix multiplication �see section ��� self	temporal reuse wrt� the innermost loop can only
be found in Matrix c� Extensive self	temporal reuse of u is present in the Livermore kernel�
Cache value life times are chains of length �� Elements of vectors x�y and z are not reused�
their life ranges are dot	shaped�

Summing up� temporal reuse in the innermost loop has been captured by the notion of
cache value life time� Now� this notion will be employed in order to derive an exact picture
of a cache line�

�Note that reading a value from memory after de�nition of the corresponding variable is not reasonable�

whereas it may happen that a value is stored before its last access via register�

�

k-3

k-6

k-1

k-4

k-5

k-2

k

self-temporal reuse of u(k)

k

j

i

a[i,k]:self-temporal reuse

in middle loop

b[k,j]:self-temporal reuse

in outermost loop

c[i,j]:self-temporal reuse

in innermost loop

k

Figure �� Cache Value Life Times for Running Examples 	 innermost loop unrolled

��� Virtual Cache Lines

The next goal is twofold� �rstly �x the values which belong together into one cache line
in order to reduce the degrees of freedom for the following stages and manage complexity
of con�ict detection� Secondly� enhance spatial locality� Note that the latter improvement
is limited by l

t
� however neglecting this option means giving away valuable chances for

improvement�
The �rst step should �ll up cache lines as good as possible� In order to deterministically

partition the array into cache lines� the notion of reuse described above is employed�
Spatial reuse is exploited by a modi�ed memory mapping function �f � INn � IN if �r

determines the sequence that is placed in memory� A restriction is made to those accesses
dependent on the innermost loop index� Reuse is now determined via J and �J as described
in section ��

The basic idea is to re�ect those loop transformations of
WL�� aiming at the innermost
loop by the memory mapping� For the moment� the approach is restricted to transposition
and related techniques for simplicity� Transposition can be considered a loop interchange!
concerning just one set of uniformly generated references �especially references to each array
of example � seperately�� This excludes e�g� blocking techniques� I�e�� only �i has to be
adapted to guarantee that the access pattern remains unchanged� preserving correctness�
�J �

��i� �d � J ��i� �d� For a n	dimensional array and
��i�

�f��i�� � � � ��im� � �i� � size� � � � � � sizen � � � ���im

maps the array elements for improved reuse in the innermost loop�
Array a already has self	spatial reuse of factor l

t
in the innermost loop� accesses to c were

already examined in section �� They are independent of the innermost loop index and thus

of no interest� For b� J �

�
� � �
� � �

�
� J � �

�
� � �
� � �

�
�

I�e�� interchanging loops for b wrt� the standard memory mapping f would create the
same reuse behaviour as for a� traversing the rows of an array mapped row	major� Swapping

loop indices k and j yields �J with �J � �

�
� � �
� � �

�
�

�i has to be adapted�
��i �

�
� i

k

j

�
�� The mapping prescribes to map array b columnwise

in example �� The indices k and j have to be swapped for accesses to b in the source
code� yielding c�i��j���a�i��k� � b�j��k�� Note that this e�ect� also known as matrix
transposition� cannot be achieved by loop transformations� On the right of �gure �� only the
accesses to �u in the body of Livermore loop � are shown� As there is temporal reuse� this
implies spatial reuse�

�

The method presented so far is conservative as it disallows e�g� the merging of arrays��

at this point because this complicates the derivation of �J and
��i�

Memory is virtually subdivided into cache lines� see section �� Technically however�
attention must be payed that any memory space delivered by routines such as malloc is
aligned to element size only� whereas alignment to cache line boundaries is needed�

Until now� arrays have been considered separately� In the following� the interaction
between arrays in memory will have to be considered�

��� Cache Line Allocation

The task is now to derive more information on con�icts� avoiding cache thrashing� The
number of con�icts has to be derived the as cost for use in an objective function� Let k

be an integer so that two memory locations map to the same cache line� i�e� their memory
addresses are identical modulo k �the machine dependent number of cache lines in direct
mapped cache�� the goal is to determine an optimal displacement � for each array in order
to minimize con�icts with all other arrays�

By restricting to the innermost loop� a cyclic representation of cache values in loop
iterations can be derived in analogy to Hendren et� al�
HGAM��� It should be noted that
the problem is easier for cache lines than for registers� For a practical application� cache
lines cl are represented by the corresponding memory address modulo k� subscripted by the
arrays they stem from� Then� the notion of con�ict can be modelled easily� Let a and b be
two arrays whose memory mapping has already been determined� In the same iteration im
of the innermost loop� memory is mapped to the same cache location� if

cla�im� � clb�im� � c � k �c � IN

As an array is always represented by one cache line� � can be chosen as displacement to the
array starting address�

It might look like �nding an adequate displacement is a very simple task� However� the
interaction between all arrays has to be taken into account� Obviously� this approach is
rather expensive as the con�ict cost minimal combination of �n�� starting address combi	
nations given n arrays has to be found� Experimental results will show �section �� that
randomization can be employed here�

� Experimental Results

The DEC Alpha ����� memory hierarchy is well documented� Measurements are made on
this architecture� whose �rst level data cache is direct mapped� The speci�c analysis tool
ATOM
SE�� allows specifying �e�g� cache� analyses in an elegant and �exible way� The tool
allows analysis of C code on the DEC Alpha architecture by instrumenting binaries� It is
used in order to get a realistic picture of cache behaviour� In the following� some preliminary
measurements for a selection of scienti�c applications are presented� As already mentioned
in section �� there are � � ��� cache lines of l � �� bytes each� The data type size t is � for a
�oating point value�� To give a clear picture� the absolute number of references resp� misses
for the loop nest in question is included� Run times denote user times in msec of a mean of
��� runs� Weak optimization means optimization with respect to cache line combination�
while memory is allocated more or less randomly� The worst case of strong optimization�

�Preliminary measurements not contained in the present paper have shown that merging arrays indeed

has potentiality for some loop nests�
�In order to capture the miss rate of the loop nest in question only� the number of references as well as

cache misses incurred by the rest of the program is subtracted from the total numbers� As the loop nests

are at the end of the program code� the results do not di�er signi�cantly from those obtained by modifying

the ATOM cache tool to measure the loop nest only�

�

problem size optimization references misses miss rate time�ms

�	
�	 none �����	 ������ �������� ����
�	
�	 weak �����	 ���� ���	��� ���
�	
�	 thrashing ������ �����	 �����		 ����

��
�� none ���� ����� �������� ���
��
�� weak ���� ��� ������� ���
��
�� thrashing ������� ����� ����	��� ��

Table �� Evaluating Optimizations for Example �

program size optimization references misses miss rate time�ms

LL � ���� none ����� 	�� �������� ��
LL � ���� thrashing ����� ���� ���������� ��

LL �� ����
� none ��	��� ��� ���		��� ���
LL �� ����
� thrashing ��		�� ���� ���	���� ���

LL �� ����
� none ����� ���� �������� ��
LL �� ����
� thrashing ����� ���� ����	��� �	

�lter ����
���� none ������ ����� ��������� 	���
�lter ����
���� thrashing �	 ����� ��������� 	���

Table �� Con�ict Miss Reduction� Livermore Kernels� Filter

mapping all arrays� starting addresses to the same cache line� is shown in the rows labelled
 cache thrashing!� The di�erent number of references is due to alignment�

A comparison of di�erent methods of optimizing matrix multiplication is shown in ta	
ble �� Mapping �f �i�e� the combination into cache lines� yields a transposition of matrix b�
decreasing cache misses signi�cantly� Aligning� in this case� reduces the miss rate by about
two thirds� Provoking cache thrashing by aligning all arrays modulo ��� � ��

�
� ���� has

little e�ect here� A matrix size of �� was additionally examined� because the usual negative
e�ects of matrix sizes of a power of �
PNDN�� have to be excluded� Surprisingly� cache
thrashing e�ects are even more signi�cant here� The size of the examples was chosen in
order not to exceed the second level cache� Embedding the blocking algorithms of
WL��
into our framework is not too di�cult and should achieve better results�

Table � shows results for the Livermore benchmark set and a �lter loop nest typical for
image processing� As already mentioned� the combination of values into cache lines has no
e�ect on the memory mapping here� The dramatic increase in cache misses in the Livermore
kernels after alignment modulo ���� are due to cache thrashing�

The increase in cache misses incurred by strong cache alignment is signi�cant� This
indicates that a certain amount of disorder! is desirable in order to avoid cache line con�icts�
Cache thrashing e�ects are stronger when life times are longer� as is the case in the Livermore
kernels� As there are many good and a few very bad choices of �� the expectation value for
con�icts is low� Thus� a randomized choice of displacements is very promising
MR���
which is con�rmed by the good results for the weakly optimized case� Secondly� run time
improvements fall a bit short behind expectations� This is due to the fact that cache misses
have no e�ect on run time in pipelined processors with separate functional units unless the
�oating point pipeline is not completely �lled� Otherwise� the actions overlap� The classes
of problems for which the method is applicable with signi�cant e�ect on run time will have
to be determined�

�

� Related Work

Classical approaches to cache optimization� aiming at the reduction of cache capacity misses
by improving locality� can e�g� be found� as noted above� in
WL�� and in the work of
McKinley et�al�
MCT��� In contrast� reuse information is directly used to control the
memory mapping here� By restricting to the innermost loop� compile	time complexity is
signi�cantly lower than theirs� Moreover� strictly speaking� the notion of locality applies
to fully associative caches only� The more realistic case of low	associativity caches is not
considered there� The combination of values into cache lines was examined in the context of
cache analysis by Rawat
Raw��� By not taking reuse information into consideration� the
estimations made by Rawat�s method are too coarse and often overestimate cache misses
signi�cantly� Panda� Nicolau et� al�
PNDN�� show a simple but striking approach to the
problem of con�ict misses in data caches which might provide an alternative approach to
con�icts between arrays� Hashemi� Kaeli and Calder
HKC�� very recently applied cache
line coloring for direct mapped instruction caches in order to obtain con�ict	minimal map	
pings for procedures� Their optimizations are based trace	driven simulation and validated
for the SPEC�� benchmark suite� In the approach presented here� by restricting to scienti�c
applications more information can be obtained at compile time� Furthermore� data caches
are challenging due to varying access patterns and huge amount of data�

� Conclusions and Future Work

By exploiting the mapping properties of low	associativity caches� a structured approach to
cache optimization is presented� Accounting for a composition of cache values to cache lines
that respect temporal and spatial reuse a method for deriving con�ict	minimal memory
mappings is proposed� Using a framework from locality optimization enables to make some
of the transformations available for memory mapping� More complicated mapping functions
will have to be examined� The optimization presented here is complementary to classical
loop transformations� Measurements document the �exiblity of the approach� which can
be applied to a large class of scienti�c programs� Expectations wrt� negative e�ects of
over	alignment due to cache thrashing have been con�rmed�

However� there still are a lot of potentialities for further optimization� In the following�
only the most important options are mentioned�

By now the source code is hand	optimized� The next step will be to embed the scheme
into an experimental compiler� Interaction with other compiler phases� such as register
allocation and instruction scheduling� has to be considered�

For the moment� each loop nest is analyzed separately� Arrays may be accessed in
di�erent ways in several loop nests that are part of a program� They may be replicated with
respect to di�erent access patterns� However� care must be taken not to exceed main memory
size� which would occur when large arrays are considered� Alternatively� arrays would have
to be remapped at run time� which is an expensive action� By choosing between alternative
parameter settings� Eisenbiegler has specialized the cost directed con�guration approach
described by Moldenhauer
Mol�� for the purpose of compiler	supported data distribution
for multiprocessors
Eis��� Currently� a method to support the choice between remapping
and replication is developed by us in analogy to the latter method� Data dependencies
between array references have to be taken into account�

Finally� innermost loops are not speci�c to the area of scienti�c computing� In more
general areas of application� data type sizes vary and structures of access are much less
regular� It in an open question whether the method can be generalized�

Acknowledgement We wish to thank Uwe Assmann� Thilo Gaul� Gerhard Goos and
Sylvain Lelait for productive discussions� Furthermore� we thank the authors of ATOM�
Amitabh Srivastava and Alan Eustace for providing their tool�

�

References

Bri�� Preston Briggs� Register Allocation via Graph Coloring� PhD thesis� Rice Uni	
versity� April �����

DJ�� Jack W� Davidson and Sanjay Jinturkar� Aggressive loop unrolling in a retar	
getable� optimizing compiler� In Compiler Construction� volume ���� of LNCS�
pages ��"��� April �����

Eis�� J�orn Eisenbiegler� Datenverteilung als Kon�gurationsproblem �data distribution
as con�guration problem�� Technical Report ����	��� Universit�at Karlsruhe
�TH�� Fakult�at f�ur Informatik� May �����

Fea�� Paul Feautrier� Data�ow analysis of scalar and array references� Int� J� of
Parallel Programming� ��������"��� February �����

HGAM�� L� Hendren� G� Gao� E� Altman� and C� Mukerji� A register allocation framework
based on hierarchical cyclic interval graphs� In Proc� �th Int� Conf� Compiler
Construction� volume ��� of LNCS� pages #"# Springer	Verlag� �����

HKC�� Amir H� Hashemi� David R� Kaeli� and Brad Calder� E�cient procedure map	
ping using cache line coloring� In PLDI ���	� pages ���"���� jun ����� Proceed

ings of the ACM SIGPLAN ��	 Conference on Programming Language Design
and Implementation�

HP�� John L� Hennessy and David A� Patterson� Computer Architecture
 A Quanti

tative Approach� Morgan Kaufman� �nd edition� �����

MCT�� Kathryn S� McKinley� Steve Carr� and Chau	Wen Tseng� Improving data local	
ity with loop transformations� ACM Transactions on Programming Languages
and Systems� ���������"���� July �����

Mol�� Horst Moldenhauer� Kostenbasierte Kon�gurierung f�ur Programme und SW

Architekturen cost
based con�guration of programs and software architectures��
PhD thesis� University of Karlsruhe �TH�� June �����

MR�� Rajeev Motwani and Praphakar Raghavan� Randomized Algorithms� Cambridge
University Press� �����

PNDN�� Preeti Ranjan Panda� Hiroshi Nakamura� Nikil D� Dutt� and A� Nicolau� Im	
proving cache performance through tiling and data alignment� In IRREGULAR
���	� pages ���"���� Springer LNCS ����� �����

Raw�� Jai Rawat� Static analysis of cache performance for real	time programming�
Technical Report IASTATECS$$TR��	��� Iowa state university� November ��
�����

SE�� Amitabh Srivastava and Alan Eustace� ATOM� A system for building cus	
tomized program analysis tools� In Proceedings of the SIGPLAN ��� Confer

ence on Programming Language Design and Implementation� pages ���"����
June �����

WL�� Michael E� Wolf and Monica S� Lam� A data locality optimizing algorithm�
SIGPLAN Notices� ��������"��� jun ����� Proceedings of the ACM SIGPLAN
��� Conference on Programming Language Design and Implementation�

ZL�� Wolf Zimmermann and Welf L�owe� An approach to machine	independent paral	
lel programming� In VAPP� CONPAR ���VAPP IV� Joint International Con

ference on Vector and Parallel Processing� LNCS ���� Springer	Verlag� �����

��

