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ABSTRACT
In recent years, application server technology has become
very popular for building complex but mission-critical sys-
tems such as Web-based E-Commerce applications. How-
ever, the resulting solutions tend to suffer from serious per-
formance and scalability bottlenecks, because of their dis-
tributed nature and their various software layers. This pa-
per deals with the problem by presenting an approach about
transparently caching results of a service interface’s read-
only methods on the client side. Cache consistency is pro-
vided by a descriptive cache invalidation model which may
be specified by an application programmer. As the cache
layer is transparent to the server as well as to the client
code, it can be integrated with relatively low effort even in
systems that have already been implemented.

Experimental results show that the approach is very effec-
tive in improving a server’s response times and its trans-
actional throughput. Roughly speaking, the overhead for
cache maintenance is small when compared to the cost for
method invocations on the server side. The cache’s perfor-
mance improvements are dominated by the fraction of read
method invocations and the cache hit rate. Our experiments
are based on a realistic E-commerce Web site scenario and
site user behaviour is emulated in an authentic way. By in-
serting our cache, the maximum user request throughput of
the web application could be more than doubled while its
response time (such as perceived by a web client) was kept
at a very low level.

Moreover, the cache can be smoothly integrated with tradi-
tional caching strategies acting on other system tiers (e.g.
caching of dynamic Web pages on a Web server). The pre-
sented approach as well as the related implementation are
not restricted to application server scenarios but may be
applied to any kind of interface-based software layers.

Categories and Subject Descriptors
H.3 [Information Systems]: Information Storage and Re-
trieval; D.1.5 [Software]: Object-oriented Programming;
C.4 [Performance of Systems]: Optimization

General Terms
Information Systems, Architecture, Design, Optimization,
Experimentation

Keywords
Caching, Application Server, EJB, Object-Oriented, Web-
Application, Performance, Scalability

1. INTRODUCTION
In recent years, application server technology has become
very popular for building complex but mission-critical sys-
tems. One the of most important standards in this context is
the Java 2 Enterprise Edition platform by Sun (J2EE, [32]),
including Enterprise Java Beans (EJB, [31]) and Java Server
Pages (JSP, [33]) as major building blocks. A common use
case for this technology is the development of database-
driven e-business Web sites and Web applications in gen-
eral. Although the resulting systems tend to have a clean
architecture of well separated components, they often suffer
from serious performance and scalability problems. A major
reason for this is that total system functionality is scattered
amongst various software layers (or tiers) on potentially dif-
ferent machines (e.g. a Web server, an EJB-based applica-
tion server and a database server).

Industry and research have developed mechanisms to over-
come these problems by stating design patterns and im-
plementation tricks as well as providing sophisticated data
caching techniques. On the one hand, design patterns have
mostly focused on the design and the interfaces of compo-
nents residing at an (EJB-based) application server. Caching
techniques, on the other hand, have only dealt with the top
and the bottom tiers of Web applications: Web caches usu-
ally cache entire Web pages (or at least fragments of pages)
such as served by a related Web application. Application
data caches store data that is sent to an application server
as a result of database queries.

In contrast, the approach of this paper increases system per-
formance by caching results of method calls as they occur for
example when invoking EJB-methods from servlets running
on a Web server. The related method cache caches the re-
sults on the application server’s client side (which is a Web



server for the case of Web applications). Thus, it differs
from conventional caches who deal with caching attribute
values of data objects.

In order to maintain cache consistency, we expect an appli-
cation developer to create a so called cache model. The cache
model states read-write dependencies between the meth-
ods exposed by the application server. Results of methods
that only read data at the application server side (no state
changes) may be cached and will be available for potential
cache hits. Write-methods (which may change application
server states) are always delegated to the application server.

As opposed to conventional software components, a part of
the classes representing a method cache are automatically
generated from the cache model. This way, the cache imple-
ments the interface classes exposed by the application server.
The generated classes may be used on the system’s client
side. Still, it remains transparent to the client code that
it actually invokes methods from the method cache rather
than from the application server itself.

The rest of this paper is organized as follows: Section 2
highlights the overall architecture of a method cache dif-
ferentiating runtime and generation time aspects. Section
3 formally introduces cache models which help to provide
cache consistency. It also gives a sample cache model such as
processed by our implementation and it describes the data
structures and interfaces that are used for runtime cache
maintenance. Section 4 discusses further issues of method
caching, e.g. cache size and cache bypassing. Experiments
concerning the overall cache performance are presented in
Section 5. We then compare our contribution with related
work and explain how a method cache can be integrated
in a modern Web application architecture (Section 6). In
this context, we propose a combination of dynamic Web
page caching and method-based caching where invalidation
events for cached Web pages are triggered by the method
cache. The paper closes with a conclusion and an outlook
on future work in Section 7.

2. GENERAL CACHE ARCHITECTURE
This section highlights the general architecture of the method
cache system and how it integrates into application server
systems. We distinguish between runtime aspects, that re-
late to the time when the cache is actually used, and gener-
ation time aspects.

2.1 Runtime Aspects
Figure 1 gives an illustration of an application server sys-
tem’s client and server part: The application server compo-
nent exposes an object-oriented interface consisting of a set
of abstract classes which hold a set of abstract methods. The
client knows about these classes, their methods, and the re-
lated invocation protocols. It invokes the methods exposed
by the server and receives the corresponding results. The
server internally keeps implementation code for executing
those methods.

Depending on a system’s overall architecture, the calls may
be remote or in process. Furthermore, one can distinguish
between method implementations that never alter the in-
ternal state of the application server (or its dependent sub-
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Figure 1: Abstract interaction scheme for applica-
tion server and client.

systems) and methods that potentially do. In this paper,
we will refer to them as read methods and write methods
respectively.

Figure 2 shows how the system’s abstract structure is changed
when introducing a method cache. The latter is located
in between the client and server and exactly repeats the
server’s service interface. Method calls from the client that
formerly addressed the application server are now received
by the cache component. The cache component performs
different actions depending on whether the called method is
a read or a write method.1
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Figure 2: Interaction of application server and client
when using a method cache.

If it is a read method, the component tries to look up a
cached method result that has been stored in the cache dur-
ing a former method call. In order to guarantee the result’s
correctness the original call must have been performed on an

1The method’s type (read or write) is determined by means
of a related cache model whose structure is described in
Section 3.



identical application server object and a list of equal method
arguments.2 Hence, a method’s signature, its arguments and
the invocation-object act as a cache key.

If the key’s lookup succeeds, there is a cache hit and the
stored result is immediately returned to the client. Oth-
erwise the call is delegated to the application server. The
result from the application server is then cached and asso-
ciated with the cache key. Eventually the result is returned
to the client.

In case of a write method’s invocation, the cache must inval-
idate all cached read method results that potentially depend
on the state-altering effects of the write method call at the
application server. The related cache entries are determined
by the argument values of the method call and the related
cache model. After the entries are deleted from the cache,
the write method call is delegated to the application server
and the result is propagated to the client.

2.2 Structure of a Method Cache
Figure 3 illustrates a simplified version of the cache’s internal
class structure using the UML notation: the generated cache
classes implement the service interface such as exposed by
the application server. They contain code for looking up
cached method results and delegating calls to the application
server as well as code for result invalidation.

CachableCacheManagerInitialContextProxy

<GeneratedCacheClass1> <GeneratedCacheClass n>

Auxiliary Cache Classes

...

...

Generated Cache
Classes

Service Interface Classes (from Application Server)

<ServiceInterfaceClass 1> <ServiceInterfaceClass n>

Figure 3: Simplified class structure of a method
cache.

Instances of generated cache classes act as proxy objects for
application server objects (e.g. EJBs) on the application
server side. If the cache is activated, the client code keeps
references (or handles) to proxy objects from the cache in-
stead of handles to application server objects. However,
there is a unique mapping from proxy objects to applica-
tion server objects and internally every proxy object carries

2Equality tests for method arguments can be customized.
By default, they are based on standard comparison
methods for the respective programming language (e.g.
java.lang.Object.equals() for Java).

a handle to its related application server object. The han-
dle is required when delegating corresponding method calls
to the application server (e.g. because of a cache miss).
The cache’s auxiliary classes provide functionality that is
common to all generated classes. This includes mapping of
application objects to proxy objects, storing method results
that need to be cached as well as keeping validity and per-
formance information for the cache.

The class InitialContextProxy is specific to the cache’s us-
age in the EJB context: it mimics the functionality of the
J2EE class javax.naming.InitialContext and therefore is
in charge of looking up the initial handles of application
server objects on the client side. However, in contrast to
the original class javax.naming.InitialContext, the sub-
stitute does not return handles to application server objects
but to their related proxy objects from the cache. Thus,
if one makes the client code access InitialContextProxy

instead of javax.naming.InitialContext, all client-server
interaction will be seamlessly redirected to go through the
method cache.

2.3 Generation Time Aspects
At generation time, a generator tool takes the service inter-
face structure and a related cache model as its input and
writes out source files for generated cache classes. After
the latter ones have been compiled, they can be used in the
cache’s runtime environment.

The related data flow of our implementation is shown in Fig-
ure 4: The service interface is provided as a set of compiled
Java interfaces whose method structure is accessed through
the Java Reflection API. The cache model is represented by
an XML file whose formal semantics will be discussed in
Section 3.
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Figure 4: Data flow for the generation of cache
classes.

3. CACHE INVALIDATION
In order to guarantee the validity of cached method results,
we have designed a structure for specifying cache models. In
general, a cache model expresses under what circumstances
a cache value must be invalidated because it might not be
consistent with the state on the application server side any-
more.

As our cache strategy is based on methods whose imple-
mentations and data dependencies are unknown and poten-
tially difficult (or impossible) to automatically analyze, we
expect an application programmer to provide abstract in-
formation about data dependencies of methods as part of a
cache model.



This section formally introduces the kind of method depen-
dencies which must be taken into account. Then the se-
mantics and the qualities of the corresponding cache models
are discussed. We give a short example on how those mod-
els are realized in our system. Lastly, we discuss the data
structures and interfaces that are required to efficiently re-
alize our invalidation approach in practice.

3.1 Method Dependencies
In this section, we give a simple but abstract definition of
service interfaces and read-write dependencies. In order to
focus on aspects that are relevant for cache models, we have
avoided many details such as method signatures, method
implementations or a related type system.

Definition 1: Let S = {s1, s2, . . .} be a countable set of
server states and P = {p1, p2, . . .} be a countable set of
potential method arguments or results. A service interface
is a finite set of methods M = {m1, . . . , mn}, where an mi

is a computable function mi : S×P → S×P, (sbef , parg) �→
(saft, pres).

In other words, a method maps an initial server state (sbef )
to a resulting server state (saft), while accepting a set of
arguments (parg) and returning a result (pres).

Definition 2: A read method is a method mi ∈ M such
that ∀s ∈ S,∀p ∈ P : ∃p′ ∈ P : mi(s, p) = (s, p′). A write
method mj ∈ M is a method which is not a read method.

Definition 3: A dependency dep(mi, pk, mj , pl) exists iff
mi is a read method and ∃s, s′ ∈ S : ∃p′

l, p
′
k, p′′

k ∈ P :
mj(s, pl) = (s′, p′

l) ∧ mi(s, pk) = (s, p′
k) ∧ mi(s

′, pk) =
(s′, p′′

k) ∧ p′
k �= p′′

k .

So, a read method invocation (mi, pk) depends on a write
method invocation (mj , pl), if and only if the write method
invocation alters the read method invocation’s result for
some server state. As read methods don’t change server
states, there are no dependencies between read methods.

3.2 Cache Models
Cache models must enable dependencies of method calls to
be determined on the client side. Unfortunately, comput-
ing those dependencies on the client side, would involve a
simulation or an execution of the related service method
calls in the same place. This cannot be done because the
related computation would be too expensive and, also, it
would corrupt the entire approach of a client server system.
Instead, the formalism proposed below allows for estimat-
ing a method call’s read-write dependencies on the client
side. This is done by abstracting from the actual read-write
dependencies and replacing them by so-called model depen-
dencies.

The central structure for defining model dependencies is
a collection of abstract indexes. Abstract indexes are sets
which help to model invalidation dependencies between read
and write methods. If a read and a write method call access
the same elements of the same index, it is taken as an indi-
cation of a potential dependency between the two calls. At
cache runtime, the read method call’s cached result will be
invalidated, if the write method call writes the correspond-

ing index element. The indexes are abstract in a sense that
they may but do not have to represent real data dependen-
cies such as caused by a service method’s implementations.
Thus, their major purpose is to provide for a consistent but
light-weight invalidation of cached read method results on
the client side.

The number of indexes and the way their elements are ac-
cessed must be defined by the cache model designer: For
every service method the designer has to specify a set of in-
dexes and a corresponding number of so called index func-
tions. An index function’s argument is based on the argu-
ments (and the result) of a service method call and an index
function’s result represents an index element. The cache
model designer also declares whether a service method is
a read or a write method. When a service method is in-
voked on the client side, its arguments are well known and
the respective index functions can be evaluated. The evalu-
ations just return the index elements which are needed for
tracking invalidation dependencies between read and write
method calls.

The following definitions formalize the related concepts:

Definition 4: Let IFun be a finite set of computable index
functions, where each element f ∈ IFun has the following
signature: f : P → N. Then, a cache model mod is a
function mod : M → {r, w}×℘({1, . . . , k}×(IFun∪{all}))
(M as in Definition 1).3

Here, the number of indexes is represented by k. A function
f ∈ IFun states what index elements are accessed by a
method call (m, p) (with m ∈ M and p ∈ P ). In order to
keep the model simple, a method call may either access a
single index element or all elements of an index. The latter
case is indicated by the special function all. The values
r and w express whether a method performs read or write
access.

Definition 5: A model read method is a method m ∈ M
where: mod(m)(p) = (r, ifs) with some index function set
ifs ∈ ℘({1, . . . , k} × (IFun ∪ {all})). Otherwise it is a
model write method. Furthermore, mrm(mod) represents
the set of model read methods for the cache model mod.
More formally: mrm(mod) = {m ∈ M | mod(m).1 = r}4

Definition 6: A model dependency moddep(m,p, m′, p′)
exists iff m is a model read method such that mod(m) =
(r, ifs), m′ is a model write method such that mod(m′) =
(w, ifs) and ∃i ∈ {1, . . . , k} : ∃f, f ′ ∈ IFun ∪ all : (i, f) ∈
ifs ∧ (i, f ′) ∈ ifs′ ∧ (f = all ∨ f ′ = all∨f(p) = f ′(p′)).

The following model is called the trivial model modtriv (for
a given M) as it assumes that every method is a model write
method: k := 0, ∀m ∈ M : m �→ (w, ∅).

All model dependencies for a model mod form a relation
moddep ⊆ M × P × M × P . For the trivial model we have
moddeptriv = ∅ and also mrm(modtriv) = ∅.

3℘(x) specifies the powerset of a set x.
4.1 denotes the selection of the first element of an n-tuple.



Definition 7: A cache model is correct iff every model read
method is a read method and ∀m, m′ ∈ M,∀p, p′ ∈ P : m ∈
mrm(mod) ⇒ (dep(m,p,m′, p′) ⇒ moddep(m,p, m′, p′)).

Correctness only requires that dependencies are indicated
by model dependencies for those methods who are model
read methods. However, a cache model may cause a ”false
alarm” and invalidate a cached method result, although the
corresponding method invocation on the server would still
return the same value. For example, one may declare a read
method as a model write method and state model depen-
dencies between this read method and other read methods.

Obviously, modtriv is a correct cache model because it con-
tains no model read methods at all.

Lemma (Correctness of Cache Results): Let m ∈ M
be a model read method and seq be a sequence of (con-
secutive) method invocations of the following form: seq =
(m(s, p) �→ (s, res) = (sj1 , res),ml1(sj1 , pm1) �→ (sj2 , p′

m1),
ml2(sj2 , pm2) �→ (sj3 , p′

m2), . . . , mln(sjn , pmn) �→ (s′, p′
mn

),
m(s′, p) �→ (s′, res′)). Then, if mod is a correct model
for M and ∀k ∈ {1, . . . , n} :¬moddep(m,p, mlk , pmk ) then
res = res′. (The related proof is straight forward by induc-
tion on n.)

Definition 8: Let mod1 and mod2 be two correct cache
models for the same set of methods M and moddep1, moddep2

the respective model dependencies. Then, mod1 is more
precise than mod2 iff mrm(mod2) is a proper subset of
mrm(mod1) or, both sets of model read methods are equal
and moddep1 is a proper subset of moddep2. More formally:
mrm(mod2) � mrm(mod1)∨(mrm(mod1) = mrm(mod2)∧
moddep1 � moddep2).

According to this definition, if the two cache models mod1

and mod2 hold the same set of model read methods, mod1

is more precise because it better models when method calls
are independent of each other. On the other hand, if mod1

contains more model read methods than mod2, it is more
precise than mod2, since it allows for a larger set of meth-
ods to be cached. Note that for correct cache models, the
number of model read methods ranges from zero (for the
trivial model) to the total number read methods of M .

Precision is a semi-ordered relation. Obviously, the trivial
model is a lower bound for precision. dep from Definition
3 is the unique upper bound for precision and, in general,
it is different from any correct cache model for a given ser-
vice interface. A useful cache model should be more precise
than the trivial model. However, if a cache model is too
precise, it might become expensive to compute the related
dependencies.

3.3 Example
This section demonstrates how the proposed cache models
are realized in practice. In essence, the presented imple-
mentation corresponds to the formalism from above. One
important difference is that abstract indexes can be named
and are not just represented by numbers (such as in Defi-
nition 4). Moreover, elements of abstract indexes are now
represented by Java objects instead of natural numbers.

The Java pseudo code in Figure 5 represents an extract of
a service interface for subscribers holding a list of subscrip-
tions. Here, a subscriber is identified by an ID while the
subscription is identified by the corresponding document ti-
tle. For a subscriber new subscriptions may be added, or
existing ones removed. The list of subscribers may be re-
trieved from a subscription. Also, one may read the list of
subscriptions for a certain subscriber.

public interface Subscription {
String getTitle();
Vector getSubscriberList();

}

public interface Subscriber {
String getID();
Vector getSubscriptionList();
void addSubscription(String title);
void removeSubscription(String title);

}

Figure 5: Java interface pseudo code for a subscrip-
tion service.

An XML-based cache model that deals with the given ser-
vice interface is presented in Figure 6. It defines two in-
dexes named Subscription and Subscriber (Lines 2 and
3), which correspond to index numbers k = 1 and k = 2.

Every interface method is annotated with mappings that
correspond to elements of function mod from Definition 4.
E.g. every interface method (identified by its name) is de-
clared as either a read or a write method (attribute access).5

The model-tag states on what indexes the corresponding
method acts (attribute index). The attribute values for
ifun specify index functions as Java code fragments. A
method may read or write all elements of an index (spec-
ified by ifun="all") or just a single element. In the lat-
ter case the corresponding element is computed at runtime
by executing a Java expression which must be stated as
ifun’s attribute value. The expression must be functional
and may refer to the annotated method’s this-object (by
using the keyword $this$), its result (by using the key-
word $result$) or its parameter variables. (The latter two
options are not demonstrated in the example.) As men-
tioned before, index elements may be arbitrary Java objects
that result from the expression’s evaluation. In the exam-
ple below $this$.getID() is used to specify elements of the
Subscriber-index as ID-Strings. The use of objects instead
of natural numbers is sufficient because index elements only
need to be checked for equality (see Definition 6). At cache
generation time, the code fragments will be embedded in the
generated cache classes.

In the following paragraph, the model’s correctness is briefly
discussed on an intuitive level: basically, the two given in-
dexes represent the list of Subscriber and Subscription

objects that exist on the server side (Lines 2 and 3). As
those objects are uniquely identified by their ID or their re-

5In the sample XML file, methods are identified by their
unique names. However, there are additional mechanisms
for identifying methods, whenever their names are not
unique because of overloading.



1 <cachemodel>
2 <index name="Subscription"/>
3 <index name="Subscriber"/>
4
5 <interface name="Subscription">
6 <method name="getTitle" access="r" >
7 <model index="Subscription"
8 ifun="$this$.getTitle()"/>
9 </method>
10 <method name="getSubscriberList" access="r"
11 mapstrategy="collection"
12 containedclass="Subscriber">
13 <model index="Subscriber" ifun="all"/>
14 </method>
15 </interface>
16
17 <interface name="Subscriber">
18 <method name="getID" access="r">
19 <model index="Subscriber"
20 ifun="$this$.getID()"/>
21 </method>
22 <method name="getSubscriptionList" access="r"
23 mapstrategy="collection"
24 containedclass="Subscription">
25 <model index="Subscriber"
26 ifun="$this$.getID()"/>
27 </method>
28 <method name="addSubscription" access="w">
29 <model index="Subscriber"
30 ifun="$this$.getID()"/>
31 </method>
32 <method name="removeSubscription" access="w">
33 <model index="Subscriber"
34 ifun="$this$.getID()"/>
35 </method>
36 </interface>
37 </cachemodel>

Figure 6: Cache model for the subscription service
in XML.

spective title, the applied index functions $this$.getID()

and $this$.getTitle() simply return those values. The
model tries to reflect changes that occur on the extent of
the Subscriber and the Subscription class: e.g., the anno-
tation for method addSubscription() states that adding a
subscription writes the subscriber object from which
addSubscription() was invoked (Lines 26, 27). The re-
sult of method getSubscriberList() changes, if the corre-
sponding Subscription-object is added to or removed from
a Subscriber using addSubscription() or
removeSubscription(). As this could happen to any sub-
scriber, getSubscriberList() is invalidated whenever a sub-
scriber is written (Lines 22, 26 and 30). Note that every
subscription list object is considered as a component of a
subscriber object and the list object’s state forms a part of
a corresponding subscriber object’s state.

The use of the attributes mapstrategy and containedclass

will be explained in Section 4.1.

3.4 Interfaces and Data Structures for Cache
Invalidation

This section discusses data structures that are used in our
implementation for efficient cache management and invali-
dation. Also, we highlight the interface methods that are
used for cache management and how they are accessed from
generated cache classes.

+getMethodCallResult(in key : MethodCallKey) : MethodCallResult
+registerMethodCall(in key : MethodCallKey, in result : MethodCallResult)
+invalidateIndexElementReader(in indexElement : IndexElement)
+registerReaderOnIndexElement(in key : MethodCallKey, in indexElement : IndexElement)
+removeMethodCall(in methodCallKey : MethodCallKey)

CacheManager

MethodCallEntry

-value : Object

MethodCallResult

-methodID : int
-interfaceID : int
-arguments : Object[]
-thisObject : Object

MethodCallKey

IndexElementEntry

1

0..*

-value1

1
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1 1

1

0..*
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**

-indexElement : Object
-indexID : String

IndexElement

-indexID : String

IndexElementMap

1
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MethodCallMap
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1
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1

Figure 7: Data structures for efficient cache invali-
dation.

In Figure 7 the UML notation is used to depict a simplified
version of the cache manager’s interface and its data struc-
tures for storing cache content. The related CacheManager

has already been mentioned in Section 2. It offers five meth-
ods that are crucial for runtime cache management:

getMethodCallResult() tries to lookup the result of cached
read method call from the cache’s store. In order to do so, it
accepts an instance of the class MethodCallKey which repre-
sents a method call. For this reason, a related MethodCallKey

object holds IDs to identify the method that has been in-
voked. The interfaceID attribute refers to the method’s in-
terface and methodID identifies the method itself (within the
respective interface). Moreover, the attributes thisObject

and arguments store the this-object on which the method
was invoked and respectively the method call’s argument
list.

getMethodCallResult() uses an instance of the class
MethodCallMap to lookup a cached method result. The cor-
responding MethodCallMap instance belongs to the cache
manager and is implemented as a hash table whose keys
are MethodCallKey objects and whose values are
MethodCallResult objects. getMethodCallResult() returns
the MethodCallResult object that is bound to a method call
key. If none is found, it returns null.



registerMethodCall() stores pairs of MethodCallKey and
MethodCallResult objects in the cache manager’s
MethodCallMap hash table.

In order to state that a stored method call depends on a
certain index element, one has to call
registerReaderOnIndexElement(). The method accepts a
method call which is represented by a MethodCallKey object
and associates it with an index element of class IndexElement.
An IndexElement object simply holds the index to which it
refers (attribute indexID) and the index element itself (at-
tribute indexElement). The cache manager has to store this
information to be able to invalidate the respective method
call at a later point of time. For an efficient lookup at invali-
dation time, an index element and the method call keys that
depend on the index element are stored in a hash table of
class IndexElementMap. Thereby, the index element is used
as the key and the set of MethodCallKey objects represents
the respective value. Note that a set is required since many
read method calls might depend on a single index element.

The cache manager keeps several index elements maps –
one for each cache index. The reason for this that an in-
validation that is based on the keyword all from Section
6 invalidates all read method calls that are associated with
a cache index. In order to delete the corresponding read
method calls, the system simply operates on all entries of
the IndexElementMap object for the respective cache index.

invalidateIndexElementReader() provides the task of in-
validating method call results who are associated with a cer-
tain cache index (because of a previous call of
registerReaderOnIndexElement()).
invalidateIndexElementReader() takes an IndexElement

object as an argument and looks up the respective entry in
the corresponding index element map. It iterates over the
list of method call keys that might be bound to the index
element and removes the corresponding MethodCallKey ob-
jects and its values from the MethodCallMap hash table. It
also removes the method call key from the index element
map itself.

removeMethodCall() is required to implement replacement
strategies for the cache. After passing in a MethodCallKey

object, the method deletes all entries referring to the method
call key. removeMethodCall() first looks up the respective
method call entry in the MethodCallMap table and deletes it
from there. With the entry it also finds the stored
MethodCallKey object which holds references to all related
IndexElement objects (via the value association from Fig-
ure 7). Based on these references, the corresponding in-
dex element entries can be updated or deleted from the
IndexElementMap tables.

Figure 8 shows the Java pseudo code of a generated cache
class for the Subscriber interface from Section 3.3. The
code clarifies the use of cache manager’s methods such as
discussed above. Taking the inserted comments into account
it should be self-explaining.

public class CachableSubscriber implements Subscriber ... {

private Subscriber delegate;

private CacheManager manager;

...

// Example of a write method.

public void addSubscription(String title) {

// Delegate call to server.

delegate.addSubscription(title);

// Invalidate dependent read method calls.

manager.invalidateIndexElementReaders("Subscriber",

// The respective index element is computed here.

this.getID());

}

// Example of a read method.

public Vector getSubscriptionList() {

// Compute the method call key for this method call.

// (The argument list is empty and the respective

// interface and method ID are assumed to be 1.)

MethodCallKey key =

new MethodCallKey(1, 1, delegate, new Object[]{});

// Try to get the result from cache and return it.

MethodCallResult result =

manager.getMethodCallResult(key);

if (result != null) return (Vector) result.value;

// Delegate call in case of a cache miss.

Vector value = (Vector) delegate.getSubscriptionList();

...

// Register the result.

manager.

registerMethodCallResult(key,

new MethodCallResult(value));

// Computer and register the index element for

// invalidation.

manager.

registerReaderOnIndex(key,

new IndexElement("Subscriber",

// The respective index element is computed here.

this.getID()));

return value;

}

}

Figure 8: Java pseudocode for a generated cache
class.

4. FURTHER ISSUES OF METHOD-
CACHING AND THEIR SOLUTION

This section discusses a list of important challenges and
problems that occur when implementing a method-based
cache.

4.1 Mapping of Result Objects
Once a cache is working for a service interface class, the
client using the cache should not get direct access to the
corresponding application server objects but act on related
cache proxy objects instead. Direct access of application
server objects by the client might harm the cache’s consis-
tency and leads to bad system performance due to the cache
being bypassed.

A problem in this context arises when service methods in-
voked by the client return (handles to) application server
objects as results. In this case, the cache has to detect the
returned value and map it to a proxy object, which is even-
tually returned to the client. However, this strategy fails if
the returned application server objects are wrapped in run-



time objects that should not be cached, e.g. arrays or lists.
In this case, the cache needs to create copies of runtime ob-
jects in which all references to application server objects are
replaced by references to proxy objects.

E.g. the method Subscriber.getSubscriptionList() from
Section 3.3 returns a Vector of application server objects
with type Subscription. The cache maps the method’s re-
sult to a Vector of corresponding proxy objects and passes
it on to the client code. It recognizes the required map-
ping strategy by means of the attributes mapstrategy and
containedclass in the cache model’s XML file.

4.2 Correctness of Cache Models
An important issue is to assert the correctness of a cache
model and, with it, the cache’s returned results.

We have implemented a special ”correctness check” mode for
the cache, in which it runs as usual, but, in case of a cache
hit, it also delegates a corresponding method call to the
application server. After that, the result coming from the
cache’s store and the result returned from the application
server are tested for equality. If they differ, the cache model
is incorrect and must be reworked. If, on the other hand, no
inconsistencies can be detected for a set of typical test cases,
there is strong evidence that the cache model is correct.
Still, the approach does not guarantee the cache model’s
correctness.6

In order to perform equality tests for a correctness check,
the application programmer might have to provide compar-
ison strategies for complex method results. In our imple-
mentation, the strategies may be customized via the cache
model’s XML file. The default comparison strategy is based
on Java’s java.lang.Object.equals() method. However,
the corresponding results might be misleading or inappropri-
ate in respect to a correctness check. E.g., consider a service
method that returns a list of unordered result values origi-
nating from an SQL database query. Due to the behaviour
of the underlying database system the order of the list’s en-
tries might differ between two identical method calls, even if
the actual entries remain the same. A suitable comparison
strategy has to take this into account and must check the
result list’s values irrespective of the their particular order.

As part of our prototype, we have developed a tool that
is used to observe a method cache’s behaviour. It allows
for connecting to a client’s cache at runtime and presents
the cache’s profile and correctness data which is collected
during cache operation. Further, profiling and correctness
checks may be turned on and off on a per method basis via
the tool’s user interface.

The tool may also assist a developer in finding out whether
the applied cache model is reasonably precise (according to
Definition 8). If the cache model is too imprecise, the stored
cache results might have to be invalidated too often which
leads to poor cache hit rates. The related inefficiencies can

6Another more theoretical option would be to prove cache
model correctness by analyzing the related method imple-
mentations. However, this task cannot be (well) automated
and is extremely difficult to handle for a typical application
programmer.

be detected by observing cache hit rates and invalidation
rates at cache runtime. Based on the corresponding results,
the developer may adjust the cache model to improve the
its precision.

4.3 Cache Bypassing
Cache bypassing is any event that changes the application
server’s state without notifying the cache. The proposed
cache concept clearly faces the bypassing problem for rea-
sons, which are discussed next.

As in classical client server scenarios, there might be more
than one client invoking service methods at a given applica-
tion server.

A solution to this situation is an extension of the cache com-
ponent and the application server such that a client’s cache
must register at the application server when starting up.
If the application server encounters a write method invoca-
tion from a certain client, it notifies all registered caches of
the event, so that they can handle related invalidations. A
drawback of this solution is that it is invasive since the appli-
cation server system or at least some contained components
must be adapted.

A second solution is to place the cache right in front of the
application server. Then, the cost of potentially performing
remote method calls by the client cannot be avoided. How-
ever for a cache hit, one still saves all computation costs
that otherwise would arise inside the application server. If
there is more than one application server, e.g. a cluster of
servers, this approach requires communication between the
server for exchanging invalidation methods.

We are currently working on a client side solution where the
clients exchange invalidation messages by communicating
with a central invalidation server. The invalidation server
receives invalidation messages from any client and forwards
them to all other clients that potentially need the invali-
dation messages. We assume that this method is efficient
since the messages are short and the related communication
protocol is simple.7 Still, related experimental results are
yet missing. The described mechanism is well applicable to
Web application scenarios where there is a fixed but rela-
tively low number of clients (represented by servlet-enabled
Web servers).

Another problem occurs if a subsystem of the application
server (e.g. an underlying database) potentially changes its
state but the application server is not (immediately) notified
about the change. In this case, the subsystem should be
customized so that it notifies the application server which
in turn may trigger notifications of client-side caches: e.g.
if an application server accesses a relational database, some
other process might perform updates on that database too.
Database triggers may then be used to notify the application
server of the changes. It is important to note that related
invalidation message must refer to the invalidation model
instead of the changed server state itself. (Thus it must
have the form (index number, index element).)

7A related message is just a tuple of the form
(index number, index element) (see Definition 4 in Section
6).



Obviously, a time-out-based approach can also be followed
to solve this problem. Method results are then automat-
ically invalidated after a certain time limit has been ex-
ceeded. However, the time-out strategy has the potential of
delivering stale results whenever an application server state
changes before a related cached method result times out.

Many other so called weak replication consistency approaches
might be applicable in our context and have been consid-
ered in the literatur (see [6, 34] for a list of related refer-
ences). Much like a time-out-based approach, they provide
for weaker cache consistency and coherency strategies such
that results from the cache are not always equal to results
from direct server access. Furthermore, transactional cache
consistency mechanisms come into play when transactional
behaviour should be supported on the client side, e.g. when
using the Java Transaction API (JTA) (see [12] for a dis-
cussion of transactional cache protocols). Including such
aspects in our system is part of our future work.

4.4 Cache Size
Controlling cache size is a topic that has been extensively
dealt with in the literature. For the sake of completeness,
we would like to mention that standard cache replacement
strategies such as LRU, LFU or LRD can also be used for
the method cache.

For our current prototype, we have implemented replace-
ment strategies based on LRU and LFU. Experimental re-
sults show that the performance loss of LRU replacement is
minor when compared to an ideal ”no replacement” strategy
(see also Section 5).

5. PERFORMANCE EXPERIMENTS
This section discusses experimental results from the usage of
a method cache in a realistic E-commerce Web site scenario.

5.1 Experimental Setup
In order to drive our experiments we relied on RUBiS v1.2
[29], a performance test suite for application server systems
developed at Rice University.

RUBiS authentically models an auction Web site based on
eBay.com [9]. The Web site is implemented several times
with different implementation variants. Among others, RU-
BiS comprises three variants based on EJB and Java servlet
technology. Persistent user data, which is typical for an auc-
tion Web site, is stored in a relational database whose size
and structure is comparable to the one used at eBay.com.8

The test load on a running RUBiS Web site is generated
through a set of HTTP client emulators, modelling typical
page access patterns of Web site users. To accomplish this,
the emulators run on separate machines and create HTTP
requests for a certain number of virtual users, where each
user’s behaviour is emulated individually. Internally, the
clients model user behaviour by means of a state engine. A
transition from one user state to the next is chosen randomly

8The research group behind RUBiS compares scalability and
other criteria of different applications server technologies
and implementations. For further information, please refer
to their papers ([5, 4])

based on a given probability table. The resulting URLs
are potentially parametrized and cover the entire Web site’s
functionality such as browsing, logging in, bidding, adding
items etc. The load on the auction Web site can then be
varied by changing the number of virtual users on the client
emulators.

About 15% of the resulting requests produce write access on
the server side (in other words, updates on the underlying
database). According to [5] this is accurately reflects the
read-write mix at eBay.com and is quite typical for user
access patters of Web applications.

In order to get relevant experimental results we had to adjust
the code of the RUBiS client emulators in the following way:

• When accessing a dynamic page a client emulator orig-
inally does not only download the respective HTML
page but also scans the the page for image references
and tries to download the images. We turned this fea-
ture off for the following reasons: In a case of a real
Web application a Web browser typically downloads
frequently accessed images only once and stores them
in its local cache. Thus, downloading (the same) im-
ages over and over again at every page access does not
accurately reflect of a comparative ”real” Web site.
Besides, we wanted to focus our experiments on the
client side effects of the method cache on HTML page
generation and transmission.

• We have noticed that the client emulators were imple-
mented in way such they gave up on trying to down-
load the same dynamic page after five unsuccessful re-
quests. After that, the related client-side user session
was terminated and the total number of active virtual
users decreased. As an effect, the number of virtual
users was continuously reduced at the client emulators
until there existed just as many users as the web ap-
plication could still well process. In other words, the
number of virtual users slowly dropped to a level where
no user sessions exceeded the limit of five unsuccessful
requests. While this might reflect user behaviour in a
realistic way, it does not fulfill the intended require-
ment of constantly stressing the Web application with
a well defined number of virtual users. For this reason
we turned this feature off and set no upper limit for
the number of unsuccessful page requests.

For our experiments, we chose to use an EJB variant from
RUBiS, which is entirely based on stateless session beans,
as it is the best performing EJB variant according to [5].
We tested it both with and without a method cache, while
keeping other hard- and software settings fixed.

In order to develop the cache model, 35 service methods
had to be considered for model dependencies and thereof, 30
were considered as read methods. Ten abstract indexes were
defined according to Section 3 and one auxiliary Enterprise
Java Bean had to be written to improve the cache model’s
precision.9

9The additional enterprise bean is required for the definition



Figure 9: The two variants for the experimental
setup: a) Web and application server on two ma-
chines (RMI variant) b) Both servers in-process and
on the same machine (in-process variant)

Before starting any performance experiments, we checked
the correctness of the cache model according to Section 4.2.

The experiments were performed in a closed network with up
to 6 PCs running under MS Windows XP. For the first vari-
ant of the experimental setup one machine acted as the Web
and application server hosting Tomcat v4.0.3 [36] and JBoss
v2.4.6 [13]. In this configuration JBoss and Tomcat ran
within the same Java virtual machine process. Further, in-
vocation of bean methods happened via regular method calls
and not over Java’s Remote Method Invocation (RMI).10 In
the following, we are going to refer to this configuration as
the ”in-process variant”.

For the second variant of the experimental setup one ma-
chine acted as a (separate) Web server and another ma-
chine hosted the JBoss application server. In this case, bean
method invocations happened over RMI and over the net-
work. We are going to refer to this variant as the ”RMI
variant”. Figure 9 depicts the two setup variants.

The Java Developer’s Kit (J2SDK) v1.4 from Sun was used
as the related Java environment. The Java Virtual Machines
(JVMs) for the respective server processes were started with
an initial and maximum heap size of 256MB. Apart from
this, the JVM’s default parameters were used.

A separate machine acted as the database server, running
the auction site’s database under MySQL v3.23.38-max [24].
The database’s file size is about 1 GB. It contains 1 million
user entries, 33000 items for sale and around 10 auction bids

of certain index functions. E.g., one cache model index is de-
signed in a way such that its index elements are represented
by user IDs of registered web site users. However, not all
service methods whose cache model annotations refer to this
index allow for direct access of a related user ID via their ar-
guments or results. Instead, some methods only offer access
to a user’s nick name. As there is a one-to-one relationship
between a user’s IDs and its nick name, every nick name can
be (uniquely) mapped to a user ID by querying the related
user table of the underlying database. The auxiliary enter-
prise bean just preforms these kind of computations and so
it was easy to implement. In particular, it does not alter or
interfere with any RUBiS application code. The auxiliary
bean’s methods are included in the cache model and so the
related method results are cached. This way, the evaluation
of index functions referring to the bean remains efficient in
case of a cache hit.

10This tight integration of Web and application server is a
special feature of JBoss.

0

1

2

3

4

5

6

7

8

100 300 500 700 900 1100 1300 1500

Number Of Virtual Users

A
ve

ra
g

e 
S

er
vl

et
 E

xe
cu

ti
o

n
 T

im
e 

in
 s

No Caching Home Interface Caching Only

No Replacement Caching LRU Caching

Figure 10: Average servlet execution time in sec-
onds as a function of the number of virtual users for
the RMI variant.

per item. (For further details about the database see [5]).
Moreover, three machines acted as client emulators.

All machines had the same hardware configuration: a 1.18
GHz Pentium 4 Processor, 512 MB RAM, and a standard
PC hard disk drive. By monitoring the related system re-
sources, we ensured that neither network bandwidth nor
process load on the client emulator machines represented
a potential bottleneck for the experiments.

5.2 Results
Figure 10 and 11 show the average servlet execution times
for the two setup variants as a function of the number virtual
users that hit the site in parallel from the client emulators.
The average values are based on all servlet executions that
were performed during a run. Every data point represents a
run of 5 minutes with a ramp up time of 1 minute. Servlet
execution was timed by inserting code for measuring system
time right before and right after the code for the respective
servlet execution.

In addition to the ramp up time, we granted the Web site
a warm-up-phase of 4 minutes when running it with the
method cache. The warm-up-phase is required to fill the
cache with an initial set of method results, so that the cache
hit rate remains constant for a related run. When using the
method cache we tried an LRU as well as a no replacement
strategy. For LRU the maximum cache size was set to 2000
entries. This means that no more than 2000 method results
were stored in the method cache at any point of time.

In respect to the RMI variant, we also distinguished be-
tween no caching at all and caching of EJB home interfaces
only. In the latter case EJB home interfaces are cached
after looking them up through the Java Naming and Direc-
tory Interface (JNDI). Caching home interfaces is a common
EJB programming technique and so we wanted to compare
its performance benefits with the additional benefits of the
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Figure 11: Average servlet execution time in sec-
onds as a function of the number of virtual users for
the in-process variant.

method cache. (Please note that home interface caching is
also provided by the method cache.)

As one can see, the execution times increase with the load
of virtual users. However, the average execution times when
using the cache remain considerably lower than the corre-
sponding times without the cache. E.g. at a load of 1100
virtual users, the average execution time with the cache is
still under 1 second for either variant while it is over 6 sec-
onds when not using the cache.

”Home interface only caching” has a positive effect on servlet
execution times for both the RMI and the in-process variant.
As discussed below, Figures 14, 17, 16 and 17 lead to simi-
lar results. Thus, from a performance perspective, caching
home interfaces must be well recommended.

Figure 10 illustrates that for the RMI variant, ”home inter-
face only caching” is out-performed by the use of a method
cache. (Figures 14 and 16 from below lead to the same con-
clusion.)

Surprisingly, ”home interface only caching” has a tremen-
dous effect on the in-process variant (Figure 11) although
the corresponding JNDI look-ups are in-process and should
be rather efficient. In this case, the use of the method cache
still improves servlet execution times but obviously the ma-
jor gain is provided by caching home interfaces.

Figure 12 and 13 illustrate the average method execution
times of EJB method calls as a function of the number vir-
tual users. While for the RMI variant the execution time
gain is very significant, the respective gain for the in-process
variant is considerable but lower. The reason for the differ-
ence are the savings related to time-consuming RMI calls in
case of the RMI variant which do not exist for the in-process
variant.
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Figure 12: Average method execution time in sec-
onds as a function of the number of virtual users for
the RMI variant.
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Figure 13: Average method execution time in sec-
onds as a function of the number of virtual users for
the in-process variant.

Figure 14 and 15 present the throughput in requests per
second for the two variants on the side of the client emula-
tors. The corresponding data was recorded during the kind
of runs that have been described above. For both variants
the throughput was considerably improved when using the
method cache. E.g. for the RMI variant, the maximum
throughput was raised from about 90 to over 150 requests
per second. Much as for servlet execution times the impact
of ”home interface only caching” is relatively small for the
RMI variant but noticeable for the in-process variant.

When comparing the two setup variants from Figure 14 and
15 one can see that in all cases, the RMI variant scales con-
siderably better as it reaches and sustains higher levels of
throughput. This result supports the common practice of



0

20

40

60

80

100

120

140

160

180

100 300 500 700 900 1100 1300 1500

Number of Virtual Users

T
h

ro
u

g
h

p
u

t 
in

 R
eq

u
es

ts
 p

er
 s

No Caching Home Interface Caching Only

No Replacement Caching LRU Caching

Figure 14: Throughput in requests per second on
the client emulator side as a function of the number
of virtual users for the RMI variant.
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Figure 15: Throughput in requests per second on
the client emulator side as a function of the number
of virtual users for the in-process variant.

running Web and application server on separate machines
in order to reach better scalability.

Figures 16 and 17 show the average response times for HTTP
requests on the client emulator side. Here, the performance
improvements of using method caching (and home interface
caching) are striking: E.g. at a load of 1100 clients, the
RMI variant without caching requires about 9 seconds in
order to serve a page while it needs under 1 second when
using the method cache. Again, the benefit of ”home in-
terface only caching” is very distinctive for the in-process
variant. Adding method caching for this case still leads to
a further improvement, but it is rather low.

For all performance measures we have presented, the LRU
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Figure 16: Average response time per request on
the client emulator side as a function of the number
of virtual users for the RMI variant.
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Figure 17: Average response time per request on
the client emulator side as a function of the number
of virtual users for the in-process variant.

replacement strategy performs about as good an ”ideal” no
replacement strategy.

Note that for very long lasting runs of the client emulators
the performance of the no replacement strategy slowly de-
grades. The reason for this is that the JVM heap space is
exhausted by storing more and more method results. As the
JVM runs short on memory, a lot of CPU time is consumed
by garbage collections and eventually the system runs out of
memory. Still, the described effects did not affect the data
points from above, since the related test runs only last for a
few minutes.

Figure 18 depicts the average cache hit rate as a function of
the number of method calls when using LRU caching. The



Figure 18: Average cache hit rate in respect to the
number of EJB method calls produced by the emu-
lator clients when using the LRU replacement strat-
egy.

hit rate was observed for different LRU cache sizes ranging
from a maximum of 30 to 4000 cachable method results. It
is interesting that even small cache sizes result in long term
hit rates of over 50%. By increasing the cache size the long
term hit rate can be raised of up to almost 80%.11

6. OUR CONTRIBUTION IN RESPECT TO
RELATED WORK

6.1 Web Application Caching
In the last two years, research as well as industry has made
various efforts to improve the performance of Web applica-
tions by means of caching. It is beyond the scope of this
paper to discuss all the related approaches in detail (please
refer to [23] and [16]). Instead we will compare our approach
against existing systems on a more general level and briefly
discuss the advantages and disadvantages.

Figure 19 shows the tiers of a typical Web application ar-
chitecture and highlights where caches potentially come into
play:

• Application data caching happens somewhere in be-
tween the database and the application server tier. If
it is done right in the front of the database ([8, 17, 35]),
abstractions of database queries are associated with
query results in the cache. In case of a cache hit, the
query result is immediately returned by the cache as
opposed to running the database query engine. At the
application server side, application data is cached ei-
ther programmatically through runtime objects whose
structure has been designed by the application devel-
oper ([15, 19]) or it is controlled by an object-relational
mapping framework ([11, 25, 28]).

11The initial peaks in the diagram relate to the fact that
the first steps of the virtual users are often similar at the
beginning of the experiment (e.g. entering the website via
the home page) but diverge from each other later on. This
way, especially good hit rates are reached during the first
500 method calls.

Web Server

Web Client

Application Server

DBMS

App. Data Cache

Web Page Cache

Method Cache

Web Application

Figure 19: Common tiers of Web application archi-
tectures and related options for caching.

• Web page caching usually occurs in front of a servlet-
or script-enabled Web server. Beyond the simple task
of caching static pages, there are also many approaches
for caching dynamically generated Web pages ([1, 27,
30, 38]).

• In contrast, the method cache is inserted at the ”back-
end” of a servlet- or script-enabled Web server from
where application server calls are initiated. To the
best of our knowledge our approach is the first one
enabling caching at this position.

One major question that all dynamic Web caching strategies
must deal with is when and how to invalidate cache content.
Related solutions are discussed below:

In [3, 16] and [18] URLs of dynamic pages on the Web
server side are associated with dependent SQL queries on
the database level. If a database change affects a corre-
sponding query, the related pages in the cache are invali-
dated. In [3, 16] dependencies between queries and URLs
are automatically detected through sniffing along the com-
munication paths of a Web application’s tiers.

A general flaw of this URL to SQL query mapping strategy
is that it does not account for states from intermediate tiers
such as an application server. Although such states might
be relevant for dynamic page generation, they can only con-
tribute to a related invalidation policy if they are reflected
in the database state. A good example for this problem
are stateful session beans from EJB. Clearly, our approach
does not encounter this problem as it explicitly deals with
application server states.

Other cache strategies for dynamic Web page caching re-
quire a developer to provide explicit dependencies between
URLs of pages to be cached and URLs of other pages that
invalidate the cached ones ([27]). Much as in our approach,
the dependencies are declared as abstract named events that
may be parametrized. An event parameter usually repre-
sents a request parameter of the cached page’s URL.

Often, server-side page generation scripts or database sys-
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Figure 20: Execution steps of an integrated Web
cache and method cache at a Web page miss.

tems may also invalidate a cached page by invoking invali-
dation functions of the Web cache’s API ([1, 30, 38]).12 Un-
fortunately these strategies are invasive which means that
application code (e.g. page generation scripts) has to be
changed. Finally, time out-based invalidation policies such
as discussed in Section 4.3 are adopted by most dynamic
Web caches.

An explicit fragmentation of dynamic Web pages via anno-
tations in page generation scripts helps to separate static
or less dynamic aspects of a page from parts that change
more frequently ([7, 10]). Also, dependencies such as de-
scribed in the previous paragraph can then be applied to
page fragments instead of entire pages. In this respect, our
approach enables an even more fined grained fragmentation
as it treats dependencies on a level where page scripts invoke
service methods from the application server. A great bene-
fit, is that explicit page fragmentation annotations (such as
supported by [10]) may then become obsolete.

However, when just using the method cache, the correspond-
ing page generation scripts still have to be executed at every
page access as only the results of service methods being in-
voked by the script code will be cached. In the next section,
we discuss how page generation can be avoided by integrat-
ing dynamic Web page caches with our approach.

6.2 Integration of Web Page Caches
The presented method-based cache can very well improve
URL based caching strategies for dynamic Web pages. The
basic idea is that invalidation information which is provided
by the method cache can not only be used to invalidate
method results but also to invalidate cached Web pages.
This way, no further invalidation policy is required for the
related dynamic web page cache.

12Typical examples for server-side script languages are Active
Server Pages (ASP, [20]) and Java Server Pages (JSP, [33]).

Figure 20 illustrates how a dynamic page access is processed
in a related system architecture: first, a Web client’s HTTP
request with the URL of a queried page reaches the Web
page cache (1). We assume that the corresponding page is
not (yet) cached (2). In order to facilitate integration of
the two caches, the Web page cache registers the requested
URL at the method cache (3). Then the request is dele-
gated to the Web server (4). A servlet or script runs to
generate the requested page and, as an effect, service meth-
ods are called from inside the servlet or script code (5).
The method cache receives the related method calls and,
as usual, either returns cached method results or delegates
the calls to the application server (6a). Moreover, it at-
taches every newly cached or looked up method result with
the URL that has been registered in step (3). Hence, be-
sides mapping read method calls to corresponding method
results, the method cache now also maps method calls to
URLs from dymamic pages whose generation caused those
calls (6d). After the page generation has been completed (7,
8), the page is cached inside the Web cache (9). Finally the
Web cache unregisters the URL from the method cache (10)
and sends the generated page to the Web client (11).

Assuming that no state for generating Web pages is kept at
the Web server, a cached page only needs to be invalidated
if one of the service method results that were computed
during page generation becomes invalid. As the URLs of
pages depending on certain service method calls are stored
by the method cache at step 5, consistent page invalidation
is straight forward: if the method cache invalidates a read
method result, it takes all URLs associated with it (at step
(6d)) and triggers invalidation of the related pages at the
Web cache.

If a page computation invokes a model write method (see
Section 3), the corresponding page is not cachable, since it
(potentially) has side effects at the application server: E.g.,
in an E-commerce scenarios, this typically happens when
users add an article to a shopping cart or submit an order.

We would like to stress that this strategy is only consistent
if all state for page generation (e.g. important user session
information) is kept at the application server or in subor-
dinate systems. Thus, it demands a natural separation of
tasks where the Web server focuses on web page rendering
and the application server is responsible for business logic.

6.3 Other Related Approaches
Our approach is heavily influenced by the concept of func-
tion materialization as first presented in [14]. In the follow-
ing, we will briefly highlight the assumptions made in [14]
and explain why the related technique cannot be applied in
context of service interfaces.

In their paper, the authors discuss the precomputation of
function results (or in our terms read method results) for
a given set of objects which is stored in an object-oriented
database (OODB).

They assume that a function’s parameter list is relatively
short and that the corresponding parameter types are re-
stricted to persistent object types. Since the number of ob-
jects in the database is finite, the set of argument combina-



tions for a function is also finite when considering a certain
database state. Thus, precomputation of all potential func-
tion values may be possible. Further, a precomputed func-
tion exclusively operates on database objects, so that its
result depends on database states only. This enables an au-
tomated extraction of potential data dependencies between
functions by analyzing on the functions’ implementations
code.

Unfortunately, none of the related assumptions apply to the
case of application server scenarios. The dependencies be-
tween method implementations may be arbitrarily complex
and in general they cannot be automatically analyzed. Also,
the set of objects involved in method calls is usually not
known until method execution time.

A rather simple approach to method result caching could
be found as part of the Torque framework in the Apache
DB Project ([2]). In order to cache data of business ob-
jects, Torque allows for caching attributes as well a method
results.

In the Torque framework, the support for method result
caching is quite basic as only manager classes for storing
and retrieving method call results are offered. The actual
code for accessing the cache and transparently delegating
method calls must be written by hand. Also, there is no
concept of automatically generating a transparent layer of
cache classes that implement a set service interfaces such as
in our approach. Furthermore, an invalidation strategy must
be manually implemented for every cachable service method
by following an event notification design pattern. Hence,
in contrast to our approach, there is no generic invalidation
model which allows for expressing invalidation dependencies
on a descriptive level and in a central place. Besides, a
built-in support for checking the correctness of invalidation
strategies is missing.

7. CONCLUSION AND FUTURE WORK
This paper has presented the concept of a method cache
— an approach for caching results of method-based service
interfaces on the client side of an application server system.

A typical use case is a Web application whose performance
needs to be improved. As our experimental results show, the
overall throughput of a realistic test system can be consider-
ably increased and its response time extremely reduced when
using a method cache. Furthermore, the presented approach
is applicable to real world programming languages and de-
velopment standards such as Java and EJB-based applica-
tion servers. Still, method cache access is almost seamless
to the client code as well as to the server because the cache
implements the application server’s service interface. This
allows for integrating a method cache even in late cycles of
project development. The fact that we tested the method
cache on the basis of an existing Web application is good
demonstration of this feature.

The presented technology helps to overcome performance
and scalability issues for existing application server stan-
dards such as EJB. Future experiments will have to reveal
if any performance oriented design patterns for EJB such
as ”Session Façade” or ”Value Objects” (see [19]) may even

become obsolete this way. In this context we are currently
working on a cache extension that provides a prefetching
mechanism for results of read method calls.

It should be stressed that the concept of a method cache is
not restricted to application server systems: even the imple-
mented prototype can be applied to any software component
that is abstracted by a set of method-based Java interfaces.
Obviously, it can be realized for middleware technologies
other than EJB such as CORBA ([26]), DCOM ([21]), .NET
([22]) or SOAP ([37]).

A cache model, which must be developed by an applica-
tion programmer, ensures that cached method results are
consistent with the state of an underlying software system.
Based on our experience, we believe that developing such a
cache model is a manageable task for a reasonably qualified
developer and that it can be done at affordable cost.

We have presented a run time test for checking the correct-
ness of a cache model (Section 4.2). It is up to the appli-
cation developer to choose a proper set of tests and to run
them for assuring cache model correctness.

The suggested cache model semantics are well suitable for
the service interfaces we have dealt with so far. However,
future experience might show that the model semantics must
be refined in order to accomplish special or more complex
dependencies between service interface methods.

In the context of Web application systems, we have sug-
gested a way to integrate a typical front tier Web cache
with a method cache: basically, the dependencies for invali-
dating method results on the method cache level are reused
for triggering invalidation of cached Web pages. In order
to enable this integration, only two features are required on
the Web cache-side: a mechanism for programmatically in-
validating cached pages and allowance for observing URLs
which are accessed via the Web cache (see Section 6.2).

Due to the integration, conventional invalidation techniques
for dynamic Web cache systems become obsolete. The Web
application as a whole is then based on a two-level cache
strategy, where level one caches entire Web pages and level
two caches results of service method calls. The caching fea-
ture is still transparent to the application code and from
a programming point of view the invalidation policy for the
caches is located in a single document (the cache model XML
file from Section 3.3).

Examining the performance impact of the integration of a
Web page cache and the method cache will be part of our fu-
ture work. Furthermore, we are in the process of implement-
ing and studying consistency protocols for multiple client-
side method caches (see Section 4.3).

In the terms of aspect oriented programming (AOP), the
presented caching feature may be considered as a separate
concern. In essence, the cache model can be regarded as
an aspect language to define the cross cutting points of the
caching aspect with the rest of the application. The cache
class generator then represents an aspect weaver.
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