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Abstract. We introduce curvature continuous regular free-form surfaces
with triangular control nets. These surfaces are composed of quartic box
spline surfaces and are piecewise polynomial multisided patches of total
degree 8 which minimize some energy integral. The Bézier nets can be
computed efficiently form the spline control net by some fixed masks, i.e.
matrix multiplications.

§1. Introduction

Most methods known for building G¥-free-form surfaces need polynomials of
relatively high degree, namely O(k?), see for example [1,2]. Only recently in
1995 this high degree was beaten by two methods giving G*-free-form surfaces
of bidegree 2k 4 2 with singular [5] and regular [3] parametrizations, respec-
tively. These low degree surfaces can be represented by a control net [3] or a
quasi control net [5] and can be designed so as to allow for subdivision.

In this paper we will transfer the method given in [3] to triangular box
splines. Here we restrict ourselves to G2-surfaces which are the most important
for practical applications besides G'-surfaces. Further details and the general
case are presented in [4,6].

This paper is organized as follows. In paragraph 2 we introduce n-sided
G?-patches. These patches are used together with generalized C2-box spline
surfaces to build surfaces of arbitrary topology. How the free parameters in
the construction can be used to generate G?-splines that minimize certain
energy functionals and how these GZ-splines can be generated efficiently will
be discussed in paragraph 3.

§2. P-Patches

The simplest C'?-box splines are those over the three-directional grid of total
polynomial degree four. In this paper we consider only these box splines. A
quartic box spline surfaces has a regular triangular control net and each of its
polynomial patches is determined by 12 vertices (called control points) which
are arranged as in Fig. 1.

Furthermore, we can identify in any triangular net regular subnets of the
form of Fig. 1. These subnets determine patches forming a generalized box
spline surface. A generalized box spline surface has holes corresponding to the
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Fig. 1. Schematic illustration of a quartic box spline patch (gray) and its
control net.

Fig. 2. A triangular net with a vertex of valence 8 (left) and the cor-
responding generalized quartic box spline surface with an 8-sided hole

(right).

irregular vertices in the net. An example is shown in Fig. 2: The control net
(left) contains an irregular vertex of valence 8 and the generalized box spline
surface (right) has an 8-sided hole.

If every irregular vertex is surrounded by at least three rings of regular
vertices, every irregular vertex corresponds to exactly one hole in the general-
ized quartic box spline surface. In this case an n-sided hole is surrounded by
a complete surface ring consisting of 3n patches.

How to fill such holes with regular G?-surfaces is described in the follow-
ing:

First for any n > 3,n # 6, we define a special generalized box spline surface
that lies in the zy-plane and has the control net shown in Fig. 3 (left) for
n = 5. Its control points are the points

I Cit+1

Cijk =] |:31:| Tk [8i+1]

fore=1,...,nand j =0,...,3 and k =0,...,3 — j, where ¢; = cos(2ni/n)
and s; = sin(27¢/n). Thus this surface consists of 3n patches, say x,41, ..
X4n, which are shown schematically in Fig. 3 (right).

Second we construct n patches xq,...,x, filling the hole left by the patches
Xn+1,---,Xan, see Fig. 3 (right). Let

x(u, v, w) = Z bgjkB?jk(uv v, w)

)
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Fig. 8. The control net of x;41,...,X45 (left) and the 4n planar patches
X1,...,X4n (right).

be the quartic Bézier representation of the patch x;, where u, v, w are barycen-
tric coordinates with respect to some reference triangle, i.e. u > 0,0 > 0, w > 0
and u + v + w = 1. The Bézier points of x; are determined such that x; has
C?-contact with x,4;. This fixes, say bﬁjk, for : = 0,1,2. Further we set
bly, = 0 and béjk = bé72j72k/2. Fig. 4 shows these Bézier points for n = 5.
Note that the scaling differs from Fig. 3.
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Fig. 4. The Bézier points of xy,...,x, for n = 5.
Lemma 1. The patches x1,...,Xy, are regular and form a surface without
self intersections.
A proof of this Lemma can be found in [4].
Third for any polynomial p : R*> — IR® we call the union of all patches

pi(u,v,w) = p(x;(u,v,w)), i=1,...,4n,

a p-patch. In the sequel we only consider p-patches of degree (4 or) 8 deter-
mined by a (linear or) quadratic polynomial p. The Bézier points of such a
p-patch are illustrated schematically in Fig. 5 for n = 5.
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Since for 1 = n + 1,...,2n the patch x; has C%-contacts with X;_,,, X1,
and X;1 2, the patch p; also has C?-contacts with p;_,, pitr and pitr2,. Sim-
ilarly, p2nti and psnii+1 have C*-contact for i = 1,...,n, where pynii =
P3n+1. Moreover, since a p-patch is part of a polynomial surface each p;,1 =
1,...,n, has G*-contact with p;_;, where pg := pn.

The Bézier points that define the G?-conditions between the patches
P1,--.,Pn are marked by the underlying dark area in Fig. 5. We call them
the G-points of the p-patch. Leaving these points fixed and changing the
other Bézier points arbitrarily such that all C'?-joints between adjacent p;
are preserved we obtain a modified p-patch. In general, it does not lie on a
polynomial surface, but we will still call such a modified p-patch a p-patch.

B G-points
[ ] B-points
[ ] R-points

Fig. 5. The Bézier points of a p-patch for n = 5.

Theorem 2. Any n-sided hole of a generalized box spline surface can be filled
by a p-patch having a C*-joint with the generalized box spline surface.

Proof: The boundary and the cross boundary derivatives up to order two of
an n-sided p-patch are determined by 45n Bézier points. We call these the
B-points of the p-patch. In Fig. 5 they are marked by the grey area.

The B-points can be changed such that the p-patch fits into an n-sided
hole of a generalized box spline surface with a C*-contact. The remaining
points without the G-points, here called R-points, can then be adjusted such
that any patch ppa1,...,Pan of the p-patch has C'?-contact with all its neigh-
bours. Namely all C'?-conditions involving R-points form a linear system for
the R-points. The matrix of this system is square if we add enough zero
rows. After an appropriate permutation of its columns it is even a block-
cyclic matrix. This system has an 18n parametric solution. Hence there are
18n R-points that can be chosen arbitrarily. We call them A-points. The
other R-points are then determined by the A-,B- and G-points via the C?-
constraints. We call these the D-points.
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Fig. 6. A possible arrangement of the A-, B-, D- and G-points of p; U
Pi+n U Pi+2n U Pi4+3n, t = 1

Fig. 6 shows a possible choice for the A- and D-points. Note that this
choice is not unique. O

63. Fair p-Patches

The construction of a p-patch that fills a hole of a generalized box spline
surface in Theorem 2 is such that different coordinates do not interfere with
each other. So, without loss of generality, we restrict ourselves to scalar valued
p-patches in the sequel. Thus a point is no longer a point in R?, but in R
The G-points of a p-patch are certain Bézier points of a reparametrized

2 2— o
:ZZqijxly].

i=0 j=0

quadratic, say

Hence the G-points depend linearly on the six coefficients ¢;;, which we call
the Q-points.

Further, as explained in the proof of Theorem 2 the D-points depend
linearly on the A-, B- and G-points. Thus if we consider the B-points fixed,
all other Bézier points of the p-patch depend linearly on the six values ¢;; and
the 18n A-points.

To obtain good looking surfaces we determine these 6 + 18n free pa-
rameters such that the p-patch minimizes a quadratic fairness functional. In
particular, we have worked with the functional

3 3

0 o 2
F = Z/wa 1( 3pz‘|‘av3pi‘|‘aw3pi> du dv dw.

u,v,w>0

The D-points of the p-patch depend linearly on the A-, B- and Q-points.
So we can view F' as a quadratic functional in the A-, B- and Q-points.
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Since F'is positive definite it is minimal for fixed B-points if its derivatives
with respect to the A- and Q-points are zero. Differentiating F' = 0 with
respect to the A- and Q-points leads to equations that are linear in the A-, B-
and Q-points. Solving for the A- and Q-points shows that the Bézier points
of the p-patch minimizing F' depend linearly on the B-points. In other words,
there is a matrix M,, depending only on F' and n such that M, b is the vector
of all Bézier points if b is the vector of all B-points.

Fig. 7 shows an example for the G*-p-patch construction. The initial
triangular control net has an irregular vertex of valence 5. The isophotes
confirm that the resulting surface is G*.
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Fig. 7. An initial control net (left), parameter lines of the resulting G*-
surface (middle), top-view of the surface showing isophotes (right).

Fig. 8 shows a similar example. The control net is the same as in Fig.
7. However, here we used a p-patch consisting of 9n, n = 5, rather that 4n
patches to fill the n-sided hole of the generalized box spline surfaces.
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Fig. 8. Parameter lines of the resulting G?-surface (left), top-view of the
surface showing isophotes (right).

A more complex example is shown in Fig. 9. This G*-surface was com-
puted by the same method as Fig. 7.

Remark 3. The matrices Mz, My, Ms, M, Mg and My can be found on the
website http://133www.ira.uka.de.

Remark 4. The construction above can be generalized for generalized box
and half box spline surfaces of smoothness order 2k and 2k — 1, respectively,
see [4].
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Fig. 9. An initial control net (left), the generalized quartic box spline
surface with several holes (middle), the resulting surface where every hole
is filled with a p-patch (right).
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