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Preface 
 
This proceedings contains the contributions to the Workshop on Correctness of Model-based 
Software Composition, held in conjunction with the 17th European Conference on Object-Oriented 
Programming (ECOOP), Darmstadt, Germany on July 22, 2003.   
While most events concentrate on realisations of composition on the technological level this 
workshop aims at closing the gap of ensuring the intended composition result supported by the usage 
of models.  
 
Two important problems in composition are first how to model the different assets (such as 
components, features or aspects) and second the composition of assets such that consistency and 
correctness is guaranteed. The first problem has been addressed in the Workshop on Model-based 
Software Reuse (ECOOP 2002). The latter problem occurs when dealing with, e.g., component 
interoperability, aspect weaving, feature interaction and (on a more abstract level) traceability 
between different views or models. 
One approach to deal with the composition problem is to use models allowing to model the 
composition. This allows checking the interoperability of the different assets to compose, the 
correctness of the configuration of assets and predicting properties of the assembled system 
(especially compliance with user requirements). In case of problem detection suitable resolution 
algorithms can be applied. 
 
10 reviewed contributions give an overview about current research directions in correctness of 
model-based software compositions.  
Results from the discussions during the workshop may be found in the ECOOP 2003 workshop 
reader to be published by Springer LNCS. 
 
The web page of the workshop as well as the contributions of this proceedings may be found at 
URL:  
http://ssel.vub.ac.be/workshops/ECOOP2003/ 
 
Affiliated to previous ECOOP conferences a related workshop about feature interaction (ECOOP 
2001) and an additional about model-based software reuse (ECOOP 2002) have been held. Their 
contributions are published as technical report No. 2001-14 and as technical report No. 2002-4, 
respectively, at the Universität Karlsruhe, Fakultät für Informatik.  
URLs:  
http://www.info.uni-karlsruhe.de/~pulvermu/workshops/ecoop2001/  
http://www.ubka.uni-karlsruhe.de/cgi-bin/psview?document=/ira/2001/14 
 
http://www.info.uni-karlsruhe.de/~pulvermu/workshops/ECOOP2002/ 
http://www.ubka.uni-karlsruhe.de/cgi-bin/psview?document=/ira/2002/4 
 
We would like to thank the program committee for their support as well as the authors and 
participants for their engaged contributions. 
 
 
The Workshop Organisers 
Ragnhild Van Der Straeten, Andreas Speck, Elke Pulvermüller, Matthias Clauß, Andreas Pleuss 
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Verification of Software Composed From Components 
Martin Rösch, General Objects LTD 

Email: mr@generalobjects.com 
Tel. +49(177)773-9000 

 
Software components are much more similar to mechanical components than many software 
developers believe. Software components can be planned, verified, produced and assembled 
just like mechanical components. In fact, the only difference is that they are not visible. This 
paper describes how components can be verified individually and interacting in a 
composition. It reports about actual project experience where all the techniques described 
have proven to work technically though imposing some cultural challenges for the software 
developers involved. The paper presents techniques for describing components, guidelines for 
modelling, tools for verifying them, and finally a look at the human side of things. 

Background 
This paper is based on actual project experience which has been gathered since 1994 in about 
a dozen customer projects. The largest project involved over 100 developers, building 17 
components, based on 4,000 documented requirements and 11,000 automated test. 

Basics 
The following techniques are the basis for the work presented in this paper.  
 

- Technique: Complete and automated verification of individual UML models 
- Technique: Automated requirements tracing to UML classes (and vice versa) 

Basic techniques (Objects 9000) 

Verifying Component Software 
Building on the above mentioned basics it is technically possible to verify components – 
individually and interacting in a composition. The following techniques (as well as the basic 
techniques) have all been proven to work in real projects. So there is nothing speculative 
about them, even though some may sound unfamiliar or outright impossible at first glance. 
 

- Technique: Modelling a component, together with its interfaces, as 1 UML model 
- Technique: Automated identification of requirements that have impact on neighbours 
- Technique: Faking the behaviour of neighbouring components 

Techniques for verifying component software (Components 9000) 

With these techniques it is possible to describe and verify each component individually and 
interacting with other components, using views provided by other components (imports) and 
offering views on the inner workings of a component (exports) to be used by others.  
Because these techniques enable automated, thus reliable requirements tracing, developers of 
a component can identify those of their own requirements that are important to other groups 
of component builders who use their component (exports). But developers can also determine 
how their own component depends on requirements that must be fulfilled by others (imports). 
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Verification of Individual UML Models 
This technique, a part of Objects 9000, has laid the groundwork for everything else presented 
in this paper. It combines terminology from ISO 9000:2000[ISO9000] (e.g. verification, 
validation) with object-orientation and allows the verification of individual UML models. 
The verification process of Objects 9000 starts with the users’ requirements. Each of these 
requirements must be documented, together with tests. Then the UML model is constructed.  
In order to automate the verification of the UML model, it is implemented using a simple 
software architecture: 1 address space, no database, no user interface and no network. Then, 
the tests are programmed just the same, as scenarios: first a situation is set up, then an action 
is performed and finally the actual results of each test are compared to expected results. 
If all tests of a requirement produce their expected results, the requirement is considered to be 
fulfilled. And if all requirements for an UML model are fulfilled, the model itself is regarded 
as verified.  
Here is a short overview of ISO 9000 terminology[ISO9000] used for Objects 9000: 
 
verification: confirmation, through the provision of objective evidence, that specified 
requirements have been fulfilled (page 30) 
objective evidence: data supporting the existence or verity of something (p30) 
specified requirement: a specified requirement is one which is stated, for example, in a 
document (p19) 
requirement: need or expectation that is stated, generally implied or obligatory (p19) 
conformity: fulfilment of a requirement (p26) 
nonconformity: non-fulfilment of a requirement. (p26, the German term is „Fehler“) 

ISO 9000 terminology used in Objects 9000 

 
validation: confirmation, through the provision of objective evidence, that the 

requirements for a specific intended use or application have been fulfilled. (p31) 
defect: non-fulfillment of a requirement related to an intended or specific use. (p26) 

ISO 9000 terminology NOT USED 

It is vital to note two important differences between “verification” and “validation”:  
1. verification demands that specified requirements are fulfilled, whereas validation 

extends this to generally implied or obligatory requirements – even if they never were 
written down by anybody. 

2. verification does not refer to a specific intended use or application, whereas validation 
does – without demanding the intended use or application to be specified in writing. 

Actually the difference between the two is so great, that the text of the norm ISO 9000 
contains a warning against validation (p26): “The distinction between the concepts defect and 
nonconformity is important as it has legal connotations, particularly those associated with 
product liability issues. Consequently the term ‘defect’ should be used with extreme caution.” 
Objects 9000 was first applied in 1994 in Stuttgart at the Gebäudeversicherung Baden-
Württemberg: Since then it has been used in a number of projects, among others at 
Sparkassen Informatik in Duisburg and Credit Suisse in Zurich. The first commercial tool 
supporting it (with minor extensions), is Rational Suite (RequisitePro, Rose and 
TestManager) from IBM Rational[IBM]. 
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Limitations 
1. In order for Objects 9000 to work properly, the tests for each requirement must be 

formulated in a positive way, like “in situation a, if action b is performed, then the 
result must be c”. We have not found a way to automate negatively formulated tests 
like e.g. “the outcome of operation op1 should never be 100”. This reformulation from 
negatively formulated requirements and test into positively testable ones is where the 
“ingenious” mind of software engineers is challenged – much the same way as it was 
when industrial engineering was born, at the Ford motor works about 100 years ago. 

2. While a UML model can be verified against a set of requirements, we have not found 
a way to make sure that the requirements themselves are correct. This must remain the 
responsibility of those who specify the requirements, not of those who write the 
software. 

How the Other Techniques Build Upon Objects 9000 
Automated requirements tracing: The automated requirements trace uses information from 
the execution of the tests, and it records information about which test called which operation. 
Modelling a component in 1 UML model: By mapping 1 component to 1 UML model, the 
verification technique described above can be applied to components. 
Automated identification of requirements that impact other components: The imported 
classes from other components are verified as an integral part of a component’s UML model. 
Faking the behaviour of neighbouring components: By faking the implementations of 
neighbours, a component’s UML model can be tested unchanged, alone or in a composition. 

Automated Requirements Tracing 
The automated execution of the tests in Objects 9000 creates an interesting by-product: a 
reliable trace between the requirements and the verified UML model. This is possible because  

a) each test belongs to exactly 1 requirement 
b) each operation belongs to exactly 1 class of the UML model, and 
c) each test is performed by (directly and indirectly) invoking operations on objects 

 
 Requirement 

Test 

Class 

Operation 
 

 

Part of the internal UML-Model of Objects 9000 

In this picture the internal structure of Objects 9000 is shown as an UML model itself: The 
left half of this model shows Requirements and their associated Tests, while the right hand 
side shows the Classes and Operations that are part of the UML model of the software to be 
built. The big red link in the middle is maintained automatically while the tests are executed. 
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A trace of each test can also be shown visually, as shown in the following diagram: 
 

Explanations for the diagram: 
1. Time runs from top to bottom.
2. Each vertical line represents 

an individual object, e.g. the 
Order A1. 

3. The red zig-zag line is the 
flow of control during the 
execution of the tests. 

4. Its vertical sections denote 
the processing within 
individual objects.  

5. Its horizontal sections show 
method calls and their return.

Automatically generated sequence chart for one test, showing objects, operations & time 

This trace will be needed for the technique which identifies the impact of the requirements of 
a component on its neighbouring components. 

Modelling a Component in 1 UML Model 
When modelling a complete system, composed of multiple components, each component is 
represented by 1 UML model.  
The UML model for a component contains three types of classes: 

1. Kernel classes. The objects of these classes do the real work of the component. Their 
structure and their level of granularity represent exactly what and how the builders of 
this component think about its functionality. Example: the objects of a Customer class 
may be associated with one or more Address objects (street address, P.O. Box address, 
delivery address, etc.). 

2. Exported classes that this component makes available to other components. The 
exported classes may expose the kernel classes as-is, but in most situations so far they 
have provided some sort of simplified view upon the core classes. Example: An 
exported class (e.g. class Customer of component Customer) may pick one of the 
potentially many Address objects of its corresponding Customer object and make it 
available as an attribute of itself. This way of hiding the inner complexity of the 
Customer component makes life easier for other components and their builders. 

3. Imported classes. These classes are exported by other components and used by this 
one. The objects of an imported class usually are accessed via generated (CORBA 
style) proxy objects that pass on method calls to the exporting components’ objects. 
Example: The marketing department may have an Order component which needs to 
access a Customer object’s mailing address. To this end it imports the Customer class 
that is exported by the Customer component. 
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When compared to a component of an automobile (e.g. its motor), the similarities are obvious: 
1. A motor has its internal structure, most of which is irrelevant to other components 
2. A motor has exported features, e.g. the gear (Zahnrad) that transmits the power 
3. A motor has imported features, e.g. the electrical input for the starter (Anlasser). 
4. If a motor is to be tested standalone, the electrical input must be simulated 

Example: The following diagram shows an UML model with 2 kernel classes (left, Customer 
and Address), one imported class (Order) and one exported class (Customer)1: 
 

Explanations for the UML model:
1. The kernel contains 2 

classes: customers and 
their potentially many 
addresses 

2. The component demands 
(imports) that there be 
orders that can be asked 
for their value 

3. The component offers 
(exports) a view on 
customers that provides 
their main Address as an 
attribute 

UML model for a Customer component 

Identifying Requirements That Impact Other Components 
When this UML model is verified by its builders they will also, as a by-product of the 
verification, know which of their requirements, directly or indirectly (via other objects) use 
the Value attribute of the imported class Order.  
These requirements can then be communicated to the builders of the component that exports 
the Order class. Or, if the other group already has published requirements for the Order class, 
they can be compared to the local requirements for class Order, to see how they match. 

Faking the Behaviour of Neighbouring Components 
If the builders of the Customer component want to verify their component standalone, they 
need an implementation of the imported class Order. This implementation may have a 
reduced functionality compared to its corresponding kernel class of component Order because 
its only purpose is to take part in the verification of other components that have imported it. 
Example: The Value attribute of the imported class Order in component Customer may be set 
directly, whereas “at home” (in its exporting component Order), the value of an order is 
always computed by the operation Compute Value of the kernel class Order (see next page). 
If both implementations of Order (the reduced Export and the full-fledged Home implemen-
tation) fulfil the requirements of the Customer component, they can be used interchangeably. 
The verification of the Customer component should show the same, expected result, no matter 
whether it is verified standalone or interacting in a composition with the Order component. 

                                                 
1 Components as well as their kernel, import and export sections establish name spaces, so the name Customer 
can be used multiple times (for the component itself, for a class in the kernel and for an exported class).  
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Verification of Interacting Components (Many UML Models) 
The preceding paragraphs have described the techniques that have been used for verifying 
software composed from multiple components. 
On the basis of Objects 9000 for verifying individual UML models (which produces a trace 
from the requirements to the UML model) the internal structure of components can be 
mapped to 1 UML model per component. This makes it easy to verify components. 
In addition, the requirements tracing capabilities of Objects 9000 are used to identify those 
requirements that directly or indirectly depend on imported classes. These requirements are 
then communicated between the different groups of component builders.  
The following diagram shows how a second component, called Order can be combined with 
the Customer component from the previous page: 
 

 
Two interacting components 

An interesting aspect of this collaboration is, that verification only needs to take place within 
each component, using the imported classes as proxies for the remote components’ behaviour. 
As yet it has not been necessary to verify across component boundaries, even though we 
expected this to happen when we started to develop this technique back in 1998. 
For the communication between the builders of the different components it has been sufficient 
to communicate on the basis of requirements (accompanied by their tests) both of which are 
written in natural language – and translated to a programming language for verification. 

How Much Precision Can Be Achieved? 
Even though natural language seems to be quite imprecise we have not found this to be a 
problem in practice. We think this is due to the following factors: 

a) The tests for each requirement are written as scenarios in natural language. This helps 
humans to understand them easily, quickly and unambiguously. It also helps to detect 
special cases (which normally lead to new requirements). This activity already reveals 
(and corrects) most errors, omissions and misunderstandings in the requirements. 

b) When building the UML model (again using UML graphics and natural language) the 
modeller normally also finds a couple of errors in the requirements. If the modeller 
introduced new errors into the model, they usually are detected in the next step. 
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c) In order to verify the UML model, the model operations and the tests are coded in a 
programming language. If the execution of these tests exposes errors in the 
requirements or the UML model, these can be traced back easily because code and 
model elements correspond 1:1. 
Coding seldom leads to new errors because these pieces of code are very small, and if 
it does, they are practically always detected when running the tests: in nine years and 
many thousand requirements and tests we have found only one coding error that was 
not caught by the tests. (We think, it would have been detected by a Code Inspection) 

Our experience has shown that this way of building UML models leads to models that can be 
verified with very little effort. This is especially true for iterative development and in the 
maintenance phase of a software system. Because the tests are performed automatically they 
can ensure that no unintentional changes (i.e. errors) creep in.  
However, the gap between verification and validation remains, as outlined above.  
After the verification of the UML model, the next step is to write the production software. 
This is a very interesting topic[MDA][GEN], but I will avoid it here for the sake of brevity.  
The technique presented here has been named Components 9000.  

Lessons Learned About Modelling Components 
a) Software components should be treated much like mechanical components: just like 

these a software component encapsulates the knowledge of its builders and makes it 
available for others without requiring them to learn all the component’s inner details.  

b) There may be situations when the designated builders of a component simply don’t 
have the knowledge they would need to build the component. Situations like that often 
go undetected for a long time, and can lead to huge problems later-on. With 
requirements statistics these situations are detected early and easily, just by looking at 
the diagram of a component’s requirements over time. The following picture shows 
statistics for two components (these statistics are automatic by-products, too). 

 

A project managers dream A dead project 
These two diagrams show the number of requirements over time. They visualize the 
amount and the quality of the knowledge contained in a component’s requirements:  
dark green = verified, light green = modelled, yellow = ready to be modelled,  
orange = complete with tests, red = incomplete. 
Even without knowing anything about these 2 components one can easily see that 
team 1 did a perfect job, whereas team 2 practically stopped working after six months. 
These statistics allow further, interesting analyses like e.g. the Value Earned in a 
project and the rate of Value Creation, but this is beyond the scope of this paper[VAL]. 
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State of Development of Components 9000 
The IT company for which Components 9000 was developed to maturity and applied in full 
breadth, sadly has been sold to SAP by its parent company, and the project was abandoned. 
So this report is not the glorious success story that I would have liked it to be. It is rather an 
experience report that informs you about what went well and what did not. 
Organizations interested in getting the benefits of Components 9000 should plan about  
3 months’ time to set up the tool environment. 

Human concerns 
The techniques presented in this paper have polarized many audiences, because they 
fundamentally change the ways for building software.  

a) They make knowledge explicitly visible. Requirements document the knowledge 
flowing into the software development process, enabling non-IT experts to review it. 

b) The requirements of verified UML models also preserve this knowledge for the 
organization when software engineers change projects. 

c) The verification of UML models, be it standalone or for components, helps to make 
sure that software does exactly what it is supposed to do – and nothing else. 

Many experienced software developers and managers tend to be enthusiastic about these 
techniques’ potential for achieving clarity and efficiency through precision and automation.  
On the other hand, a considerable number of software professionals was not so enthusiastic: 
some voiced concerns that these precision techniques might take the fun out of writing 
software. Others just couldn’t imagine these techniques to be applicable to software at all. 

Summary 
The techniques presented in this paper make it possible to verify software components, 
individually and interacting in a composition. Under the names of Objects 9000 and 
Components 9000 all of them have been tried and tested successfully in large projects.  
None of the techniques presented here is really new. They have all been copied from early 
industrial techniques that were introduced into industrial engineering about 100 years ago. 
We found that all of these techniques worked well, technically. But we also noticed that they 
created quite a lot of anxiety and psychological resistance, much like they did when they were 
first introduced in the 19th century.  
Their biggest advantages – to explicitly make visible the knowledge that is automated by 
software – and to preserve it reliably over time – are feared by some and loved by others. 
                                                 
[ISO9000] Deutsche Norm „Qualitätsmanagementsysteme, Grundlagen und Begriffe (ISO 9000:2000)“ / „Quality 

management systems – Fundamentals and vocabulary“, trilingual version EN ISO 9000:2000, 
December 2000. Beuth Verlag GmbH, 10772 Berlin, Ref. Nr. DIN EN ISO 9000:2000-12, 60 pages, 
supersedes the norm EN ISO 8402:1995 

[IBM]  More information: www.rational.com, the academic program SEED which makes these tools available 
to universities can be found at http://www-3.ibm.com/software/info/university/ 

[MDA] Model Driven Architecture (MDA) is a current standardization effort of the Object Management Group 
(OMG): www.omg.org/mda/  

[GEN]  The website of General Objects contains further information on how to generate software following the 
principles set forth by MDA: www.generalobjects.com/begriffe/mda/  

[VAL]  Earned Value Management (EVM) is an established tool for project management. General information 
can be found at www.pmi.org (use their search function). For the application of EVM to software 
projects see www.acq.osd.mil/pm/paperpres/fleming1.pdf and www.generalobjects.com/begriffe/evm/  
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Architecture of an XML-based Aspect Weaver

Eduardo Kessler Piveta1,2 and Luiz Carlos Zancanella2

1 Centro Universitário Luterano de Palmas, Laboratório de Banco de Dados e
Engenharia de Software (LBDES), 1501 Sul SN,

77054-970 Palmas - TO, Brazil
{piveta}@ulbra-to.br

http://www.inf.ufsc.br/ kessler
2 Universidade Federal de Santa Catarina, Laboratório de Segurança em

Computação (LabSEC), Campus Universitário,
88040-900 Florianópolis - SC, Brazil http://www.inf.ufsc.br/ zancanel

Abstract. This paper proposes an architecture to enable the develop-
ment of an XML-based aspect weaver, providing ways to manipulate
programs using and XML representation of source code information. The
main advantages on using this approach when implementing an aspect
weaver is that there are several tools to support XML documents manip-
ulation and the use of XML provides a standard way to represent and
manipulate source code.

1 Introduction

Design processes usually consider a system as a set of small units, that are imple-
mented using the abstractions and composition mechanisms provided by a pro-
gramming language in order to produce the desired system [Becker and Geihs, 1998].

The programming language coordinates well with the design if the abstrac-
tions defined by the design process are available in a clear way in the language.
In [Kiczales et al., 1997], the authors claim that the abstraction mechanisms
provided by the most used languages (such as procedures, functions, objects,
classes) are not usually enough to implement all the design issues that arise in
a software project.

There are several systems’ characteristics that do not fit well into tradi-
tional abstraction and composition mechanisms, affecting the system’s semantics
and/or performance. As an example we could cite: exception handling, real-time
constraints, distribution and concurrency control.

If these properties are implemented using object-oriented approaches, their
code is usually spreaded over several classes, making the code harder to under-
stand, maintain or extend. This decreases the modularity of the system, making
difficult to separate such properties from the system’s basic classes.

These situations increase the software complexity and the dependency among
components, distracting the user about what is the main responsibility of a soft-
ware module. If the user wants to know how these properties affect the system’s
classes, he must search into several classes looking for references to that property.
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2 Eduardo K. Piveta and Luiz C. Zancanella

Aspect-oriented programming is an approach that allows the separation of
these properties that crosscut the systems basic functionality, in a natural and
clean way, using abstraction and composition mechanisms to produce executable
code.

An implementation based on the aspect-oriented programming paradigm is
usually composed of:

– a component language to program components (i.e. classes);
– one or more aspect languages to program aspects;
– an aspect weaver to compose the programs written in these languages;
– programs written in the components language;
– one or more programs written in the aspect language.

This paper proposes a architecture to enable the development of an XML-
based aspect weaver. This weaver is composed in four main modules described in
section 3. The idea is to provide mechanisms to manipulate the programs using
XML documents representing the source code information.

2 Aspect-Oriented Programming

In [Kiczales et al., 1997] is defined that a system property that should be imple-
mented could be seen as an aspect or as a component:

– the property is implemented as a component if it could be encapsulated in
a functional module (class, method, procedure). For instance, we could see
components representing users, persons, accounts and points as components.

– aspects are not usually derived from functional decomposition, they generally
affect several modules systematically. As example, we could cite: concurrency
control in processes scheduling, exception handling polices, session tracking
and real time constraints.

The main goal of aspect-oriented programming is to provide mechanisms to
separate components from aspects, components from components and aspects
from aspects, using abstraction and composition mechanisms to produce the
overall system, extending others approaches (object oriented, structured and
functional) that do not offer good abstractions to deal with crosscutting concerns
[Kiczales et al., 1997].

3 Aspect Weaver

An aspect weaver has the main task to process aspect and component programs
in order to generate the specified behavior. To make it possible, it’s essential the
concept of join-points: the elements of the component language semantics that
aspect programs coordinate with. Examples of join-points are method’s calling,
constructor’s calling and field’s read/write operations.
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Architecture of an XML-based Aspect Weaver 3

To design and construct an aspect-oriented system the developer must know
how concerns are described in both languages (aspect and component) as well as
common features in them. Although these languages have different abstraction
and composition’s mechanisms, they should use some common terms that would
allow the weaver to compose the different programs’ types.

An aspect weaver traverse the aspect programs and gathers information
about the join-points used in them. Afterwards, the weaver finds the shared
points between the languages, weaving the code to develop what is defined in
the languages [Böllert, 1998].

For instance, an aspect weaver could be implemented using a pre-processor
that scans the component program’s parsing tree and inserts the sentences spec-
ified in the aspect programs. This process could be done both in compile time
and in runtime.

4 The Architecture

The architecture described in this section has the goal to describe mechanisms
to develop an XML-based aspect weaver, in order to improve reuse of the parsers
and weaver’s implementation. The use of XML to represent the programs’ source
code allow the use of all the tools available to XML documents manipulation
and defines standard mechanisms to exchange information about programs.

Fig. 1. Aspect Weaver Architecture

It’s comprised into four main modules, as can be visualized in Figure 2:

– a converter from component language source code to an XML representation
of the programs implemented using it;
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4 Eduardo K. Piveta and Luiz C. Zancanella

– a converter from the aspect language source code to an XML representation
of the programs implemented using it;

– an aspect weaver that receives the aspect and component programs and
generates an XML tree representing them, generating a resulting component
language XML tree;

– a converter that translates the resulting XML tree to component language
source code.

4.1 Converter from Component Source Code to XML

The main responsibility of this module is to generate an XML tree to represent
the component language programs’ source code (Figure 2 - A). The most im-
portant element in this module is the Component Language Parser. It receives
a set of programs written in the components language and generates as output
an XML tree corresponding to these programs.

Implementing this module require the execution of the following tasks:

Define an XML representation to component programs The component
programs could be represented using a DTD or an XML Schema. This task
could be automated if the developer has a BFN grammar of the component
language.

Implementation of a component language parser Using the component lan-
guage grammar the developer could create a parser using one of the avail-
able parsers generator (such as: Javacc and Lex and Yacc) or implement
the parser from scratch. Semantic actions should be specified in order to
generate correctly the XML representation of the program.

4.2 Converter from Aspect Source Code to XML

This module aims to produce an XML tree representing the aspect programs
(Figure 2 - B). It is composed by an aspect parser, that receives the aspect
programs and generates the XML tree. To implement this module, the developer
should perform the following activities:

Define an XML representation for aspects A DTD or Schema must be
defined to represent the aspect programs. These representations could be
generated using the aspect language grammar.

Develop a parser to the aspect language A parser that identifies aspect
programs and generates an XML representation of the aspect code should be
implemented in the same way that the component language parser. Existing
parsers could be modified/extended to perform this task.

4.3 The Aspect Weaver

The aspect weaver should be able to recognize and manipulate XML trees rep-
resenting component and aspect code (Figure 2 - C). It receives the aspects
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Architecture of an XML-based Aspect Weaver 5

and components XML trees and generates a unique tree (using the component
language representation) applying the semantics described in both languages.

To produce this resulting tree, the aspect weaver should traverse the compo-
nents XML tree, modifying it according to the aspects semantics. This semantics
is usually described as a set of join-points and a set of actions. These actions
should be triggered every time the component code reaches the conditions spec-
ified in the join-points.

The weaver should be able to add state and behavior to the components tree
as well as to modify a method’s body. These transformations in the XML tree
could be done using existing techniques to manipulate XML documents, such
as: DOM, XSL, SAX. The developer could also use XML-binding tools (such as
JAXB) to help the generation of code to manipulate the XML tree in a more
natural way.

The code generated by the binding tool is similar to a meta-object protocol.
The program generated could add methods, fields, modifiers and obtain meta-
information. After the program is modified the XML tree can be easily generated
by binding methods.

4.4 Converter from XML to Component Language Source

This module is responsible convert the XML tree representing the entire system
and generate code in the component language. After that the resulting classes
could be compiled to produce executable code. All the techniques used in the
weaver implementation could be used here to generate the component languages
source code, such as: XSL, DOM etc.

5 Discussion and Future Work

The use of XML to represent aspect and component code could benefit the
entire system because the programs could be manipulated by existing XML
tools. Another advantage is that XML documents could be used to represent
meta-information about the programs.

The aspect weaver could be implemented in a way that the code manipu-
lating component languages is separated from the code that manipulates aspect
languages. The advantage is that individual modules could be replaced without
modifying the whole weaver. The only module affected is the aspect weaver cen-
tral module (Figure 1 - C). More than one aspect or component language could
be used simultaneously using the structure.

The architecture described here could be used to implement a weaver into
existing programming languages, such as AspectJ and Java. In Figure 2, we
could see a schema of how the architecture could be applied to work with these
languages. In this example, the component language is Java and the Aspect
Language is AspectJ. The developer should implement the parsers, the weaver
and the conversor from XML to source code in order to apply the architecture
described in this paper.
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Fig. 2. Implementing the architecture using Java and AspectJ
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Abstract. We are concerned with reasoning about the behavior of as-
semblies of components from models of components and their patterns
of interaction. Behavioral models of assemblies are “composed” from be-
havioral models of components; the (composed) assembly model is then
mapped to one or more reasoning frameworks, each suitable for a partic-
ular kind of analysis. Information relevant to each reasoning framework
must be faithfully rendered in the assembly model, and it must be pre-
served under interpretation to the reasoning framework. Our concern in
this paper is the faithful rendering of concurrency. Our approach makes
use of information provided by components and extracted from static
assembly topologies to faithfully model real concurrency. The result is
more effective analysis.

1 Introduction

Our work is concerned with predicting the behavior of assemblies of components
from the specifications of components and from their patterns of interaction.
Behavioral models of assemblies are “composed” from behavioral models of com-
ponents; the (composed) assembly model is then mapped to (interpreted in) one
or more reasoning frameworks, each of which is based on its own computational
model, and each of which is used to predict some directly or indirectly observ-
able behavior of an executing assembly. Information relevant to each reasoning
framework must be faithfully rendered in the (composed) assembly model, and
it must be preserved under interpretation to the reasoning framework.

Our concern in this paper is with the correct rendering of implementation
concurrency in assembly models that are mapped to temporal logic model check-
ers [1]. In particular, we are concerned that the composed model neither over-
nor under-approximates concurrency. Over- and under-approximation are the
inclusion of more or fewer processes (respectively) in a model than exist in the
corresponding implementation. Over-approximation leads to spurious counterex-
amples that take time and resources to eliminate and contributes to statespace
explosion, as it results in additional interleavings that must be evaluated. Under-
approximation is more insidious, since it leads to missed counterexamples and,
potentially, to runtime errors. Composing models that are faithful to real con-
currency is not trivial for the kinds of reactive systems that we are addressing.
These systems are concurrent and distributed but not massively so; in particu-
lar, components may exhibit internal concurrency, may execute behavior on the
caller’s thread of control, and may (and typically) do both.
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In this paper we outline our approach to composing assembly models that are
faithful to real concurrency. We require that some aspects of the internal con-
currency structure of components be exposed; we specify these aspects through
component reactions. Information gleaned from a static topology of an assembly
allows us to compose reactions in a way that is faithful to real concurrency.

The rest of this paper is structured as follows. Section 2 provides some back-
ground on our approach to predictable assembly and states our composition
problem in a bit more detail. Section 3 outlines our component specification and
assembly composition approach. Section 4 briefly touches on some related work,
and Section 5 summarizes.

2 Background

Our approach to predictable assembly is to construct prediction-enabled compo-
nent technologies (PECTs). The central idea of a PECT is that a construction
model of a system, specified in terms of an assembly of components [2], can
be mapped (via syntactic interpretation) to one or more analytic models, each
corresponding to a particular computational model and reasoning technique. A
construction model describes a component-based system in terms of these char-
acteristics:

– A component has interfaces, specified as pins, that accept stimulus from its
environment (sink pins), and can initiate stimulus on its environment (source
pins). Pins can produce and consume data, and are specified with a signa-
ture similar to conventional APIs. Pins are specified as supporting either
synchronous (call/return) or asynchronous (message based) interaction.

– An assembly is a set of components composed in a particular runtime en-
vironment. The runtime environment provides connectors to connect the
source pins of one component to the sink pins of another. Connected pins
must be conformant: their signatures and interaction modes must match.
The assembly must also obey other connector-imposed constraints (1:1, 1:N,
etc.).

Because components are composed with different combinations of other com-
ponents to form different assemblies, their exact behavior is not always knowable
based only on their own specifications. For example, assume that a component
has two sink pins, and that the behavior of each modifies some shared (inter-
nal) variable. This component may behave differently depending on the context
in which it is composed. There is no possibility violating mutual exclusion if
both pins execute on the same thread. However, if each pin can execute on a
different thread, then mutual exclusion violations are possible unless the call-
ing threads are coordinated. Each of these cases calls for a different composed
model of behavior, which can only be determined when the component’s context
is known.
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3 Approach

Our solution to systematically achieving correct composition with respect to
order dependent properties of concurrent systems relies on using the following
process, the steps of which are elaborated in the following sections:

– Allocate component behavior to potentially concurrent units called reactions.
– Model each reaction.
– Compose reactions in a way that preserves implementation concurrency.

3.1 Allocate Behavior to Reactions

We begin by examining a component’s implementation, which has some intrinsic
concurrency and some undetermined concurrency. Intrinsic concurrency comes
from threads created and managed by the component. Certain behavior of the
component only executes in these threads. Undetermined concurrency comes
from units of behavior that are not allocated to threads by the component, such
as function calls. The real concurrency of such units of behavior will depend on
how the component is composed with other components in its environment.

When modeling a component in a reactive system, we focus on how it re-
sponds to stimulation of its sink pins. A natural starting point would be to
produce one model for each sink pin that shows how the component responds
when stimulated on that sink. However, this approach could model more concur-
rency than is implemented in the component. Instead, we use our understanding
of the component’s potential concurrency to allocate the behavior for handling
each sink pin into potentially concurrent units called reactions.

A reaction is a model of a collection of behavior that always executes within
the same thread of control. A reaction describes the relationship between a
collection of sink and source pins by defining how the source pins are stimulated
in response to stimulations of the sink pins. For example, a particular reaction
could model a thread of a component that retrieves messages from a queue (sink
pin stimuli), performs some computation based on the type of message received,
and sends messages (source pin stimuli) based on the results of the computation.

Behavior is allocated to reactions following prescribed rules based on a com-
ponent’s intrinsic and undetermined concurrency:

– The behavior of each sink pin is allocated to exactly one reaction.
– All sink pins that are handled by the same thread of the component must

be allocated to the same reaction. Each such reaction is called a threaded
reaction and represents a unit of intrinsic concurrency in the component.

– Each sink pin that is not handled by a thread of the component is allocated
to a reaction of its own. Each such reaction is called a non-threaded reaction
and represents a unit of undetermined concurrency in the component.

Recall that a reaction is a potentially concurrent unit. Allocation of each
sink pin of undetermined concurrency to a separate reaction is a pessimistic
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decision. While two such pins may always be stimulated by the same thread in a
particular assembly and so could be allocated to a single reaction, this cannot be
determined from the implementation of the component. Such decisions are made
later in our process, when the context is known and reactions are composed.
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�
s3�
s4�

�
r3
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�
r1

R1

R2

R3

s2

Legend

� sink pin (message based)

> sink pin (function call)

� source pin (function call)

� source pin (message based)

Fig. 1. Allocation of component behavior to reactions.

Figure 1 is a graphical representation of a component and the allocation of
its behaviors to reactions. The dashed ovals represent an approximation of how
the behavior of the component is allocated to reactions R1 through R3.

This component has two threads (not shown graphically). The first handles
sinks s1 and s2 and may stimulate sources r1 and r2; therefore, all behavior
associated with these two sinks, including the circumstances under which this
thread will stimulate these sources, is gathered into a single threaded reaction,
R1. The second thread handles only sink s3 and may stimulate sources r2 and
r3; all behavior associated with s3 is allocated to the threaded reaction R2.

The last sink, s4, is a bit different. It is not handled by one of the compo-
nent’s threads; instead, it executes on the thread(s) of any clients interacting
with that sink. The implementation handling that pin is still part of the com-
ponent (e.g., a function call exported by the component), but the execution of
the implementation handling that pin is not on one of the component’s threads.
Consequently, the behavior associated with this sink pin is allocated to its own
non-threaded reaction, R3, and its true concurrency is not known until the com-
ponent is composed with other components.

3.2 Model Reactions

The sequential processing performed in each reaction is modeled using a state
machine based description. We use a variation of UML statecharts extended
with an action language based on a subset of C, much like the action language
of xUML [3].1

The level of detail found in each reaction varies. Due to model checking
limitations (notably the statespace explosion problem), reactions are usually
abstractions of the behaviors they represent. As our goal is an understanding of
1 Modeling reactions with statecharts is a modification to earlier work in which reac-

tions were modeled in CSP [4]. We adopted statecharts because CSP was found to
be too difficult for expected users.
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the potential sequences of pin stimulations and states during system execution,
we concentrate on the control structures within reactions, and how they influence
how a component interacts with its environment via its pins.

Typically, each reaction begins in an initial state in which it will accept input
(stimulation) on any of its sink pins. What happens next is dependent on the
component, but typically each reaction reaches a point where it concludes the
processing for that sink pin stimulation and returns to a state in which it will
again accept input on its sink pins.

^s3 / ^r2

$r2 / ^r3

$r3 / $s3

idle

interacting
on r2

interacting
on r3

Fig. 2. Statechart for reaction R2.

Figure 2 shows a reaction model for R2 from Figure 1. The behavior of this
reaction is rather simple. The reaction begins in the idle state, waiting for its
sink pin to be stimulated (^s3 is the event that represents a stimulation of s3).
Stimulation of s3 initiates an interaction, during which the reaction in turns
stimulates source pins r2 and r3. However, between stimulating r2 and r3, the
reaction waits for interaction on r2 to complete by waiting for the $r2 event,
which indicates completion of the interaction on r2. After stimulating r2 and
r3, the reaction concludes the interaction on s3 by generating the $s3 event and
returns to the idle state where it waits for the next sink pin stimulation.

3.3 Compose Reactions

When components are composed in a particular topology, we have sufficient
context to correctly model the real concurrency of a concrete system. To produce
this model, we compose reactions using the following rules:

1. Recursively eliminate all reactions that are not used in the assembly. That is,
if no sink pins of the reaction are connected to source pins of the environment
or other components that are used in the assembly, then the reaction will
never be stimulated, and does not need to be included in the composition.

2. Determine which reactions stimulate each non-threaded reaction. A reaction
stimulates another if one or more of its source pins are connected to one or
more of the other reaction’s sink pins.
(a) For each reaction that stimulates a non-threaded reaction, make a copy of

the non-threaded reaction and compose it sequentially with the stimulat-
ing reaction. The result is that each stimulating reaction grows larger by
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incorporating the behavior of the non-threaded reaction. As part of this
composition, any source pins stimulated by the non-threaded reaction
should now be stimulated by the reaction with which it is composed.

(b) When finished, eliminate the original non-threaded reaction.
3. Combine the remaining reactions, each of which corresponds to a thread in

the implementation, using parallel composition.
4. Add statecharts defining the interaction (connector) semantics used in the

assembly. For example, two components communicating via message passing
would use statecharts defining the semantics of message passing in their
runtime environment (e.g., a FIFO message queue that blocks when full).
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Fig. 3. An assembly of components with component behavior allocated to reactions.

Figure 3 shows a sample assembly and the allocation of behavior to reactions.
Applying the above composition rules, we get the following results at each step:

– No reactions are eliminated in step 1, as we assert (but do not show) that
each sink pin of the left-most component is connected to the environment.

– The three non-threaded reactions in this example are R3, R5, and R7. Rule
2 is applied to each of these reactions in turn.
• R3 is stimulated only by the environment. Therefore a copy of R3 is

sequentially composed with the environment. R3 is then eliminated.
• R5 was stimulated only by R3. However, after the above step, R3 was

eliminated, and R5 is now stimulated by the environment due to the
sequential composition of R3 with the environment. Consequently, a copy
of R5 is sequentially composed with the environment, and R5 is then
eliminated.

• R7 is now stimulated only by R1, R2, R4, and the environment (via R5

and the above step). A copy of R7 is sequentially composed with each of
these models, and R7 is then eliminated.

– After the preceding steps (and ignoring the environment, which is a sepa-
rate topic), we are left with only four reactions–R1, R2, R4, and R6. These
reactions are now composed in parallel, and each now correctly corresponds
to a real thread of execution.
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– Finally, the resulting model is composed with models of the connectors,
which supply the correct interaction semantics for each type of communica-
tion used in the system (e.g., function calls vs. message queues).

4 Related Work

There has been some interest in composing heterogeneous model fragments, e.g.,
various diagram types in UML [5]. Our concern is composing homogeneous frag-
ments, e.g., executable UML statecharts with the particular end-goal of using
the composed models as input to multiple reasoning frameworks. Liang et. al.
adopt model composition of Petri nets, and likewise preserve information about
real concurrency, although their interest is restricted to RMA schedulability and
therefore leads to a coarser treatment of concurrency [6]. Sora et. al. also con-
clude that the internal flow structure of components must be made explicit for
faithful composition, but concurrency is not addressed per se [7]. There are nu-
merous examples of using process algebras to define the semantics of composition
languages [8, 9]; however, these efforts adopt simplifying assumptions about real
concurrency such that a faithful rendering of concurrency is not a concern. While
we have explained how we preserve real concurrency during model composition,
we have not addressed a related problem–preserving real concurrency during the
interpretation to the input language of a model checker. Work in faithful model
translation such as that in [10] is expected to be of great use.

5 Conclusion

Reasoning about the concurrent behavior of arbitrary assemblies, and reasoning
from the perspective of multiple computational models, imposes new require-
ments on the techniques used to specify and compose behavioral models. This is
true whether our concern is with e.g., model checking, as in this paper, or with
fault tolerance, reliability, or timing analysis.

The approach outlined has drawbacks, and several open questions remain.
One drawback is that the explicit modeling of connection mechanisms introduces
artificial concurrency under our current interpretations to model checkers. We
minimize excess interleavings by combining connection models where appropri-
ate (e.g., when involving shared resources such as message queues), but a more
accurate approach may yet be defined. Pragmatically, it is not clear how readily
end-users will adopt this approach to specifying potential component concur-
rency via reactions.

However, there are clearly benefits to this type of approach. By preserving
the actual concurrency of a system in its model, we gain confidence that con-
currency errors will not be missed and that counter-examples that are reported
are indeed relevant (because they, by definition, represent interleavings that are
possible in the implementation). We may even open up an opportunity to ex-
ploit knowledge of the implementation’s scheduling policy. For example, if we
know that a thread is only pre-emptible at certain points or that a lower priority
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thread can never pre-empt a higher priority thread, this knowledge can be used
to eliminate classes of model process interleavings that are not possible in the
corresponding implementation.

A last point worth noting is that our emphasis on model composition reflects
the distinction between compositional reasoning and reasoning about composi-
tions. The benefits of compositional (and the stronger modular) reasoning are
simple: divide and conquer. As noted elsewhere, however [2], the criteria that
must be satisfied for compositionality and modularity of reasoning are often too
strong to achieve in practical settings. It is in these circumstances that com-
positional modeling becomes necessary. Nonetheless, an important element of
predictable assembly is, and will continue to be, expanding the frontiers of com-
positional and modular reasoning.
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Abstract

Biological systems are known for their complexity and nowadays a challenge
of bioInformatics is to design them by computer programs. For a long time,
computing procedures have only been calculus procedures and data are often
represented in simple matrix without any semantics. Recent works try to use
object oriented models and so to improve the design of such biological systems.
Such models were described using specific XML-like languages. We have studied
a model currently used for modelling metabolic pathways into the E-cell project
and translated in SBML language. E-cell is an ambitious project which focuses
on “in silico” cell modelling. But, although object oriented model was chosen,
we have shown that a final miscomposition of a few main classes completely
locked the design and so forbade the re-using and extension of modules. We have
proposed a new architecture which integrates the original classes and part of the
old organization. Then, some new classes have been added to explicit hidden
concepts (a part of causes of miscomposition) and the model root was changed.
We have tested this architecture within a specific intra-cellular organelle, the
“mitochondria” and we worked on design of several pathways belonging to this
organelle.

1 Introduction

BioInformatics is a large research area and although public attention has focused
on comparison of genes, there is also another domain : simulation of biological
process where many problems have been addressed by the computer science for a
long time. Usual computing programs are based on mathematics equations. The
interface of such programs allows users to insert their own formula and/or matrix
of data, lists of parameters and so on, to simulate different biological functions
or metabolic pathways. The main purpose of these programs is to search the
parameter values of steady states but not really to simulate complex connexions
between several pathways. Biologists themselves must aggregate the results to
conclude what happen in the core of the organism (or organelle).

Some new international projects try to design the biological systems using
object oriented methods. So, these complex systems can be divided into small
parts and recombined to form complete biological mechanism. Moreover, object
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oriented systems allow to represent data semantics from abstraction and reduce
complexity of some process descriptions. E-cell and Virtual cell are such projects.
People implied in the E-cell project have defined an XML-like language : SBML,
to design their model. So, we can consider that the grammar of SBML gives the
architecture of the object model. To simplify our explanation, we will present
the model through the SBML composition of TAGS.
After a small description of metabolic pathways principles (the biological view),
we will explain how to design a simple metabolic pathway with SBML and then
we will show the composition problems induced by the SBML organization. In a
second part, we will propose modifications to unlock the model and addition of
some new concepts missing inside SBML. Finally, we will describe a new object
oriented architecture more suitable to the design of complex biological systems.

2 At the beginning, many good ideas

Biological pathways are generally described by a set of equations. One equa-
tion is the representation of one reaction triggered by an enzyme meeting one
or several reactants fig.(1). The result of this reaction is a product which can
become in turn an incoming reactant for a new reaction. The reaction can be
weighted by some parameters (kinetics parameters) or by the presence of in-
hibitors/activators(ligands).
One of our studied example is the TCA cycle which is characterized by a set of
8 equations. The two first equations are :

1. citrate synthetase :
oxaloacetate + acetyl coA + H2O −→ citrate + CoASH + H+.

2. aconitase : citrate −→ + H2O −→ isocitrate.

where citrate synthetase and aconitase are the two enzymes in the reactions
and the others metabolites are reactants or products whether they are input or
ouput elements.
Like biological systems work at the steady state ; mathematical design often
uses differential equation to calculate the parameter values which lead to this
steady state. A metabolic pathway is a chain of reactions (equations) identified
by their role inside the organism. Each computing program has its own data
structure and biologists need to change the data format when they change their
computing procedures. So, due to the time consumed to copy data again and
the risk of mistakes, they have no guarantee that data (and results) have the
same interpretation through different programs. Obviously, comparison among
results and re-using of design efforts can not be automatically performed.

Projects like E-cell [3] have built an object oriented design of metabolic path-
ways. Their goal is to reduce the description load, to share data between proce-
dures due to modularity of modules and to build tools to easily design different
versions of biological system parts.
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Fig. 1. A metabolic reaction

The need to describe data (structures and value) is addressed by XML-like lan-
guages. XML (Markup eXtended Language) allows to put into a text file all the
information about the data. It is a structured language with marks (tags) defin-
ing concepts or object classes. SBML [2] (System Biology Markup Language) is
an augmented version of XML including tags for biology and specifically for
describing metabolic process, kinetic equations . . .
The SBML grammar get as the root frame the TAG model and all the com-
ponents are associated to this frame. A model is defined by a name, a set of
species which participates to the reactions and a set of mathematic formula
(with its parameters). As shown in fig.2, this organization easily matches with
classic calculus software like Gepasi. In order to use these programs, only a list
of parameters, reactions and species must be defined.

3 Where is the problem ?

Firstly, it appears that the model described in SBML is a great advance from
several points. Now we can shared dictionaries of elements belonging to the
studied organism and simply address them to build a new pathway. SBML is
programming language independent and the whole data structure is in a text
file, external to the program. Data structure gives the semantic and allows to
manipulate an abstract level.
Problems appeared when we have tried to translate our own metabolic pathways
in SBML. Independently to the E-cell model, we have begun to find our useful
objects and some of them do not appear as TAG in SBML. The most important
is the enzyme object. We could not understand how such an important element,
the master of the reaction could not be explicitly represented. The answer is that
the enzyme was present but not as an element of the reaction. They put all the
concept inside the object reaction itself. So, it is not possible to separate data
directly attached to a specific enzyme (static) and data attached to a specific
situation of the reaction (depending on concentration, a few ad-equation with
the environment . . . ). Finally, in SBML a model is a version of a particular
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Fig. 2. SBML model

pathway.
The main lacks of this design are :

– It is not possible to re-use enzyme data to build a new version (new biological
hypotheses) of the reaction : different composition of reactants/inhibitors/activators.

– The same biological function can be realized by different enzymes following
disponibility of the enzyme or context species (human, yeast . . . ). It is not
possible to express this situation without re-writing the model.

– In a organism, metabolic pathways can have several “version” depending on
metabolic pathway object. Several composition could be defined. Since the
model is the root of the arborescence, a composition is not possible.

In fact, only a part of the object architecture is used to re-make the “old known-
how” : one model with a list of equations and parameters (see fig) and the whole
architecture is task oriented.

4 Model re-arranging

Our goal is not to throw away SBML model but to modify what we need and to
add some important things. The new architecture fig.3 addresses two main prob-
lems : to improve semantics and to allows composition of treatments. With our
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solution, the separation of concerns : data design and polymorphism of treat-
ments, is possible. Our model has a different root : the object Application

which links the two model parts. Now, the description of several instance of
Metabolic pathways can be take into account and Organism is explicitly rep-
resented as a composition of description of several Metabolic pathway objects.
The Biological function has two roles : a static description of some generic
behaviors (generic reaction chain) and definition of specific procedures to com-
pute the reaction chain. The Scenario addresses the definition of computing
procedures and Enzyme class addresses the static description of functionalities.
The Scenario object allows to define several version of the same function, for
example taking into account more or less reactions in the chain. The Generic

operation allows an implementation of heterogeneous systems.
So, we can expect to share and to communicate some informations to another
programs which are designed with original SBML. We also plan to propose these
modification to the SBML consortium for an extended version of the language.
This model is used to describe some parts of mitochondrial metabolism [1]
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5 Conclusion

The great complexity of biological systems impose to the design of adaptive
systems. The hierarchy of components and tree structures are the first elements
that take into account complexity of compositional behaviors or organization.
Separation between data and treatments are the second principle that must be
respected and Object Oriented Methods are useful tools in order to reach this
goal. The use of marked-up language like SBML to make visible the description of
the whole knowledge and put it into text file without any link with programming
language is an evident way to allow exchange and multiplicity of treatments. But
as we have shown, it is easy to lock a model even if the base objects are right and
main concepts present. Composition and error in this domain can compromise
the results obtained by the benefits of object oriented design.
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Abstract. This paper describes a composition mechanism for the dynamic 
hyperslices model outlined in [1]. This mechanism composes primary concerns, 
directly aligned with requirements and designs (decomposed in accordance with 
the Hyperspaces approach), maintaining each concern unchanged as a first class 
entity all through its lifetime. Consequently this mechanism allows for dynamic 
change and re-configureability of the resultant systems.  

1. Introduction  

Recent work in the field of Software Engineering has resulted in a set of approaches 
collectively termed Aspect-Oriented (AO) Techniques [2]. AO introduces yet another 
level of decomposition: separation of crosscutting properties in software, and brings 
to light the notion of concern. A primary concern – a matter of interest in a software 
system that cannot be decomposed into smaller meaningful parts, can now be 
identified as the atomic unit of any software artefact1. It has been shown that it is the 
inappropriate separation of these concerns [3]  that results in monolithic designs [4] 
and code, which are difficult to understand, maintain and reuse. 
Some research has already been carried out on modelling concerns [5], mapping them 
to design [6] and implementation units [7].  
Our work on the Dynamic Hyperslices model [1] follows this line of research, aiming 
to preserve the unchanged primary concerns as first class entities all through the life 
cycle of software that concerns form part of – from concern modelling to software 
run-time. This path leads to flexibility in concern manipulation, reuse and 
maintenance, as well as dynamic change and re-configureability of the resultant 
systems. However it shifts the complexity of development and maintenance into 
concern composition. In view of the increasing importance of composition, we have 
proposed [1] to distinguish it as a separate developer-related concern (i.e. a concern 
which arises due to specific development-related activities carried out by software 
developer). 
In the present paper we provide some detail on the composition mechanism of our 
Dynamic Hyperslices model: section 2 describes the background work upon which 
the Dynamic Hyperslices model is based, section 3 briefly outlines the model 
followed by the outline of the composition mechanism in section 4 and analysis of 
possible change scenarios and correctness of composition in section 5. We conclude 
with brief summary and future work in section 6. 
                                                           
1 Conceptual concern, not programming language expressions, such as variable declaration etc. 
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2. Background 

As software becomes ever more closely integrated in our everyday life, on one hand 
costs of interruptions for maintenance and change of some systems become 
disproportionately high (e.g. safety critical systems), on the other hand demand for 
higher adaptability of systems grows (e.g. mobile and disappearing computing). We 
suggest that dynamically composeable systems could provide a solution for these and 
other similar problems by providing for dynamic changeability and context-sensitive 
re-configureability. One such approach – A Model for Dynamic Hyperslices – is 
discussed below. 
In developing the Dynamic Hyperslices model we draw on the concern decomposition 
mechanism of the Hyperspaces approach, message interception and manipulation 
ideas of the Composition Filters approach and component integration mechanism of 
Connectors. The present section provides a brief description of these technologies.  

2.1 Hyperspaces 

This approach [8], [9] proposes to use a set of modules each of which address a single 
concern (called hyperslice). Hyperslices can overlap, i.e. a given unit in a hyperslice 
can appear, possibly in a different form, in other hyperslices and dimensions of 
concerns2.  All the concerns of importance are modelled as hyperslices, which are 
then composed into hypermodules (i.e. compound hyperslices with a composition rule 
specifying how the hyperslices must be composed) or to a complete system. At the 
composition stage issues such as overlapping are resolved via composition rules. 
Composition is based on commonality of concepts across units: different units 
describing the same concept are composed into a single unit describing that concept 
more fully. To compose one needs to match units in different hyperslices that describe 
the same concepts, reconcile their differences and integrate the units to produce a 
unified whole. Composition rules specify the relationships between composed 
hyperslices. 
In HyperJ [10] (a composition tool developed for OO instantiation of Hyperspaces) 
composition-related concerns are not treated as first class entities.  Although hyper-
module composition is specified in a separate composition file, it is only a transitory 
unit. Consequently, when the elementary concerns are composed, they get 
contaminated with properties of the composite concern3.  
In the Dynamic Hyperslices approach we differ in composition from HyperJ (see 
section 3) but we maintain the decomposition principles of Hyperspaces. We also 
clearly define two types of concerns: user and developer-related, both of which are to 
be treated as first class entities all through the software development and maintenance 
process.  

                                                           
2 Dimensions of concerns are ways of decomposition, such as for instance per object classes, 

per viewpoints, per features etc. This concepts stem from the multi-dimensional 
decomposition approach, for which Hyperspaces approach is an instance. 

3 More discussion available in [1] 
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2.2 Composition Filters 

The Composition Filters (CF) model [11] extends the Object-Oriented model in a 
modular and orthogonal way. Since behaviour in the OO model is implemented by 
exchanging messages between objects, the CF model proposes to use a set of input 
and output filters for message interception and manipulation. By wrapping these 
filters around the objects, CFs are able to manipulate object behaviour without 
directly invading object implementation.   
The CF model is very well suited to implementing concerns that lend themselves to 
modelling through message-coordination and introduction of actions executed before 
or after executing a method (e.g. intercept message, put record of message arrival in 
Log file, execute message).  
Our Dynamic Hyperslices utilise the message interception and manipulation 
capabilities of Composition Filters. Filters form part of our composition connectors 
(see section 3). 

2.3 Architectural Connectors 

The concept of connectors originates from the area of software architecture [12] [13]. 
Connectors were proposed to facilitate component integration by catering for specific 
features of interactions among components in a system. The current work in this area 
argues for giving connectors a first class entity status because they contribute towards 
the better understandability of system architecture [14] through localising information 
about interactions of components in a system; capturing the design decisions and rules 
of interactions amongst components; handling incompatibilities between components 
and so on. In [15] the idea of connectors as run-time entities is discussed. 
Unlike the previous work on connectors, the composition connectors in our model are 
connectors for hyperslices (sections 3&4), i.e. not (necessarily) for complete object 
classes or (OO) components. Our connectors don’t simply match provided/required 
services, or specify roles for connected components, but rely on dynamically 
updateable composition strategy to build up functionality of coarser-grain components 
(e.g. object classes) from primary hyperslices4, as well as carry out the 
communication between the member hyperslices at run time.   

3 Brief Outline of the model for Dynamic Hyperslices 

The model for Dynamic Hyperslices [1]  intends to provide a composition mechanism 
that will allow all the primary concerns, decomposed in accordance with the 
Hyperspaces approach, to endure in the composite concerns after composition.   
The model: 

                                                           
4 Thus, the composition strategy in the connectors can be perceived as a kind of “merger 

algorithm” for producing higher order artifacts. Here the “merger” is performed through run-
time message manipulation within connectors, without physically merging the hyperslices. 
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• Uses the Hyperspaces decomposition approach in separating concerns into single-
minded hyperslices (or primary concerns).  

• Requires that an additional dimension for Composition concerns is specified in 
each Hyperspace-type decomposition. This additional dimension contains 
connector-concerns. At the composition stage the connector concerns are used to 
compose other concerns.  

• Utilises a composition connector to integrate any primary/composite concerns. 
Consequently, any interaction between other concerns will be channelled through a 
set of connectors.  

• Provides connectors with capability to reflect upon their immediately connected 
concerns, while still keeping these internals hidden from all other connectors and 
hyperslices. 

Figure 1 below provides a high-level diagram for the model. In this model 
composition concerns are first class entities (depicted as ovals) which also retain 
hyper-slice integration information. All user-related concerns used in the system are 
retained unchanged at runtime (depicted as squares with solid borders) and all 
interactions between the concerns are resolved through their connectors (depicted as 
solid arrows). This model is aimed to be open and extensible, as concerns can be 
added/updated/removed by simply adding/updating them and their respective 
connectors. 

primary 
concerns

composite 
concerns

composition 
concerns / 
connectors 

interactions/ 
communications

 
Fig. 1. An outline of the Dynamic Hyperslices model 
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4 Connectors 

Our connectors decouple hyperslices in a hypermodule and promote reuse of 
individual concerns and their compositions. Since at any level each of the primary 
concerns remains intact, changing requirements can be easily mapped onto a 
composite hyperslice by modifying the out-of-date primary concern. In the process of 
primary component change only its immediate connectors will be affected, other parts 
of the model will automatically adjust to changes, if necessary. Similarly a composite 
part of a hyperslice can be updated/replaced with change introduction localised in its 
immediate connectors. This locality attribute of our architecture arises due to 
structuring it around dynamically updateable composition strategies and hiding all 
(levels of) hyperslices, except for the directly participating ones, from composition. 
A connector structure is depicted bellow in Figure 2. It consists of the following 
elements:  

m1
m2

H1

m1
m3

H2

c1

H4

m1
m3
m4

H3

c2

H5

observes

m3m3

m2m2

m1+m1m1

H2+H1H4

Composition 
Strategy = 
mergeByName 
(H1, H2)

Manag
er

appliesmaintains

observes

m4m4

m3+m3m3

m2m2

m1+m1m1

H3+H4H5

Composition 
Strategy = 
mergeByName 
(H4, H3)

applies
maintains

Composition Table Composition Table

Input filterOutput filter Input filter

H5.m1

Output filter

H4.m1

Manag
er

uses uses

 
Fig. 2. Elements of a Composition Connector 

Sets of input/output filters: these are used to intercept incoming/outgoing messages 
sent to the hyperslice and manipulate the message in accordance with filter 
specification. Filters are similar to those defined in the Composition Filters approach 
in that they can manipulate or substitute the target and selector of the intercepted 
message. Thus, for instance, a certain filter type (lets call it dispatch filters as in CF) 
will be able to re-direct the intercepted message to a different hyperslice or put it 
through for execution to the initially intended target. 
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Composition table contains the records of the subjects that constitute the composed 
hyperslice. The first column in the table displays the hyperslice public interface. Each 
of the following columns contains the references to the hyperslices immediately 
connected by the present connector (top row of the table) and the elements of the 
connected hyperslices that contribute to the corresponding unit of interface in the 
resultant hyperslice (all but top row in the table). The composition operators between 
the column elements represent the operations required to compose the individual 
hyperslice elements into that of composed hyperslice. The operators are applied in 
accordance with the Composition Strategy specification.  
Composition Strategy is the specification of how exactly should the constituent 
hyperslices be composed. For instance the mergeByName strategy is used in the 
example shown in Figure 2, stating that all elements with same names in constituent 
hyperslices should be merged into one element of the resultant hyperslice. 
Connector Manager: as suggested by its name, this element is responsible for overall 
“management” of the connector. It uses the Composition Strategy and the public 
interfaces of the contributing hyperslices to fill in the Composition Table. It also 
keeps the other elements under observation and updates the composition table content 
when any of the contributing constituents gets updated. 

5 Consistency Preservation and Correctness Checks 

5.1 Change Scenarios and Consistency Preservation 

The following set of scenario analyses illustrates how our composition model will 
deal with some possible changes in the constituent hyperslices. All scenarios are 
based on the case illustrated in Figure 2. 
Scenario 1: The implementation of one/several methods in constituent hyperslices is 
changed, but their interface is maintained. No change is required to any part of any 
connector, the updated method will be used when a call is directed to it.  
Scenario 2: The interface of a method has changed - method m1 in H1 has been 
renamed to met1 - but met1 is still to be part of m1 in H4, i.e. the composition has not 
changed. In order to maintain the consistency of the Composition Strategy (since it 
did not change) the c1 Connector Manager adds a new clause to Composition 
Strategy, indicating that met1 is an equal name for m1. Then it updates the 
Composition Table in the connector. The second row of the Composition table will 
change from [m1|m1|+|m1] to [m1|met1|+|m1], indicating that the m1 in public 
interface of H4 consists of the merge of methods met1 in H1 and m1 in H2. No further 
change is required.  
Scenario 3: Method m2 is deleted from H1. The Connector Manager of c1 removes 
m2 from its composition table. The Connector Manager of c2 detects that the interface 
of H4 has changed and updates its composition table by first removing H4.m2, then 
since H5.m2 has no constituent parts, it is also removed. Thus m2 is removed from 
the interface of H5.  
It should be noted that subtractive changes to the hyperslices’ interfaces will be 
guarded by use counters. Before a subtractive change use counters of respective 
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hyperslices will be checked to verify that the items marked for deletion are not 
currently in use. If they are – the change will be postponed till use counter is reduced 
to 0. Principles of pertinence from [16] could also be beneficial here. 
Scenario 4: Method m7 is added to H1. The Connector Manager of c1 adds m7 to its 
composition table, then c2 Connector Manager updates its composition table with m7, 
thus m7 appears in the interface of H5. 
In all the above scenarios changes introduced to the primary hyperslice are either 
localised within the immediate connectors of these hyperslices, or automatically 
propagated to the coarser granularity connectors by respective Connector Managers. 
Consistency preservation is also a task of the respective Connector Managers, 
supported by a set of composition rules. 

5.2 Factors Facilitating Correctness Checking 

Several properties of this model facilitate correctness checking of compound 
hyperslices yet allowing for good changeability (discussed above) of its constituents:    
• Reduced complexity of checking: smaller single-minded concerns reduce the 

complexity of the specification, design and implementation, and verification tasks; 
• Checking individual concerns: since the composition does not affect the concerns 

in any way, each concern can be checked and tested against its own specification 
initially, independently of its composition context. This helps to assure correctness 
of constituents in the composite. 

• Incremental correctness check: since the larger modules are built by incrementally 
composing individual concerns, incremental verification of composition is also 
supported, easing the testing of larger composite units. 

• Direct mapping of change: as traceability of artefacts at different levels is 
preserved (due to use of the Hyperspaces decomposition), change in any of the 
requirements will be directly reflected in its design/implementation concern, and 
will be easier to trace and validate. 

All of the above factors could facilitate correctness checks in our model; however the 
precise techniques for checking need to be developed.   

6 Summary & Future Work  

We have observed that simplification of software development through new software 
decomposition techniques (such as those provided by  Aspect-Oriented paradigm)  
tends to move complexity into the composition process. Consequently, we are 
working to produce a model to separate composition concerns themselves into first 
class entities and simplify the composition process. In this paper we have discussed 
our model for Dynamic Hyperslices, which closely follows the spirit of AO, and 
outlined its composition approach. 
There are a number of open issues in our model that need to be addressed, for instance 
we are working on providing a clear structure for Connector Manger elements, 
refining the composition mechanism, defining techniques for verifying correctness of 
composition, and developing a meta-model for the Dynamic Hyperslices Model. 
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Some of our future work will include implementation of a system that realises this 
model, investigating ways of incorporating domain-specific knowledge into the 
composition process. 
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Abstract. We present a methodology for designing component-based systems
and verifying their temporal behavior properties. Our verification method is mostly
automatic, and is not susceptible to the well-known state-explosion problem,
which has hitherto severely limited the practical applicability of automatic ver-
ification methods. Our method specifies the externally visible behavior of each
component � as several behavioral interface automaton (BIA), one for each of
the other components which � interacts directly with. A BIA is a finite-state
automaton whose transitions can be labeled with method calls. For each pair of
directly interacting components, we compute the product of the BIA. These “pair
machines” are then verified mechanically. The verified “pair properties” are then
combined deductively to deduce global properties. Since the pair-machines are
the product of only two components, they are small, and so their mechanical veri-
fication, e.g., by model checking, does not run up against state-explosion. The use
of several BIA per component enables a clean separation between interfaces, so
that the interactions of a component � with several other components are cleanly
separated, and can be inspected in isolation. This in itself promotes the under-
standability of a design. Our method also enhances extensibility. If a component
is modified, only the pairs in which that component is involved are affected. The
rest of the system is undisturbed. To our knowledge, our method is the first ap-
proach to behavioral compatibility that does not suffer from state-explosion.

1 Introduction

Software components [17] are supposed to make software less fragile and more reliable.
In practice, however, part of the fragility is merely shifted from the component artifacts
to the connectors and the composition process. When the composition is unreliable,
component systems are just as fragile and unreliable as monolithic software. Improving
the theoretical and practical foundation of third-party composition techniques [21] is
thus essential to improving overall component software reliability.

In this paper, we make initial steps toward a new component model which supports
behavioral interoperability and is based on the use of temporal logic and automata to
�

This work was supported in part by the National Science Foundation (NSF) under Grant No.
CCR-0204432, and by the Institute for Complex Scientific Software (www.icss.neu.edu)
at Northeastern University.
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specify and reason about concurrent component systems. Unlike other temporal logic
and automata-based methods for software components, our work avoids using exhaus-
tive state-space enumeration, which quickly runs up against the state-explosion problem
where the number of global states of a system is exponential in the number of its com-
ponents.

We present formal analysis and synthesis techniques that address issues of behav-
ioral compatibility amongst components, and enable reasoning about the global behav-
ior (including temporal behavior, i.e., safety and liveness) of an assembly of compo-
nents. By avoiding state-explosion, our technique is not restricted to small, unrealistic
applications.

1.1 Component interoperability

Components are “units of independent production, acquisition, and deployment” [17].
In component-based software engineering (CBSE) [10], software development is de-
coupled from assembly and deployment. Third party composition (assembly) is the ac-
tivity of connecting components, which originate from different third party component
providers in binary format and without their source code. During assembly, the appli-
cation (or component) is assembled from other (compiled) components. The activity
takes place after the compilation of the components and before the deployment of the
application (which might be itself a compound component).

For two components, which were independently developed, to be deployed and
work together, third-party composition must allow the flexibility of assembling even
dissimilar, heterogeneous, precompiled third-party components. In achieving this flexi-
bility, a delicate balance is preserved between prohibiting the connecting of incompat-
ible components (avoiding false positive), while permitting the connecting of “almost
compatible” components through adaptation (avoiding false negative). This is achieved
during assembly through introspection, compatibility checks, and adaptability.

1.2 Interface compatibility

Parnas’s principles [16] of information hiding for modules emphasize the separation
of interface from implementation: components providing different implementations of
the same interface can be swapped without having a functional affect on clients; two
components need to agree on the interface in order to communicate. This works well
in object-oriented programming where the design is centralized, but is not practical in
component-based designs [14]. Agreement beforehand is possible only if third-party
component providers were coordinated.

Extending Parnas’s principles to component-based programming (CBP), the com-
ponent clients (i.e., other components) must be provided with composition information
and nothing more. Even agreement on the interface is no longer an accepted level of
exported information. Components gathered from third parties are unlikely and cannot
be expected to agree on interfaces beforehand. For third-party composition to work,
components need to agree on how to agree rather then agree on the interface.

Indeed, CBP builder environments typically apply two mechanisms to overcome
this difficulty and support third-party composition [13]. First, to check for interface
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compatibility, builders use introspection. Introspection is a means for discovering the
component interface. Second, builders support adaptability by generating adapters to
overcome differences in the interface. Adapters are a means of fixing small mismatches
when the interfaces are not syntactically identical.

1.3 Behavioral compatibility

The goal of work in behavioral compatibility for components is to develop support in
CBP for behavioral introspection and behavioral adaptability that can be scaled up
for constructing large complex component systems. While there is progress in address-
ing behavioral introspection and adaptability [22, 20, 23, 19, 18] there is no progress in
dealing with the state explosion problem. The main focus of this work is in addressing
the latter in a manner that can be applied to event-based components.

Currently, the introspector reveals only the interface, and adapters are used in an
ad-hoc manner relying on names and types only. There are emerging proposals for han-
dling richer interface mechanisms that express contractible constraints on the interface,
e.g., the order in which the functions should be called, or the result of a sequence of
calls. These methods typically rely on defining finite-state “behavioral” automata that
express state changes. When two components are connected, the two automata can be
tested for compatibility by producing their automata-theoretic product. This fails to pro-
vide a practical foundation for software growth, because of sate explosion; computation
of the product of � behavioral automata, each with ���
	�� states, generates a product
automaton of size ���
	��� . We address the challenge of avoiding state explosion. Else-
where [3, 4] we present a pairwise design of an elevator system which, when scaled up
to ����� floors, requires an upper bound of only ����������������� states, instead of the ������� �
that an approach which computes the product of all components would require. This is
well within the reach of current model checkers.

2 Formal methods for components and composition correctness

Our interest is in large systems of concurrently executing components. A crucial aspect
of the correctness of such systems is their temporal behavior. Behavioral properties
can be classified as follows [12]: (1) Safety properties: “nothing bad happens” — for
example, when an elevator is moving up, it does not attempt to move down without
stopping first, and (2) Liveness properties: “progress occurs in the system” — for ex-
ample, if a button inside an elevator is pressed, then the elevator eventually arrives at
the corresponding floor. The required behavioral properties are given by a specification,
which precisely documents what the system must achieve. Formal methods are those
that provide a rigorous mathematical guarantee that a large software system conforms
to a specification. Formal methods can be roughly classified as (1) Proof-theoretic: a
suitable deductive system is used, and correctness proofs are built manually, or using
a theorem prover, and (2) Model-theoretic: a model of the run-time behavior of the
software is built, and this model is checked (usually mechanically) for the required
properties. In our work, we emphasize model-theoretic methods, due to their greater
potential for automation.
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Interface
compatibility

Automaton (BIA)
compatibility

Behavioral
compatibility

Export interface interface + automaton complete code
Reuse black box adjustable white box
Encapsulation highest adjustable lowest
Interoperability unsafe adjustable safe
time complexity linear polynomial for finite state undecidable
Assembly properties none provable from pair

properties
complete but
impractical

Assembly behavior none synthesizable from
pairwise behavior

complete but
impractical

Table 1. The interoperability space for components

3 The interoperability space for components

A behavioral interface automaton (BIA) of a component expresses some aspects of
that components run-time (i.e., temporal) behavior. Depending on how much informa-
tion about temporal behavior is included in the automaton, there is a spectrum of state
information ranging from a maximal BIA for the component (which includes every
transition the component makes, even internal ones), to a trivial automaton consisting of
a single state. Thus, any BIA for a component can be regarded as a homomorphic image
of the maximal automaton. This spectrum refines the traditional white-box/black-box
spectrum of component reuse, ranging from exporting the complete source code (max-
imal automaton) of the component—white-box, and exporting just the interface (trivial
automaton)—black box. Table 1 displays this spectrum.

In practice, it is unrealistic to expect the programmer to provide the maximal BIA,
just as precisely specified semantics are rarely part of programming practices. As long
as the most important behavioral properties (e.g., the safety-critical ones) can be ex-
pressed and established, a homomorphic image of the maximal automaton (which omits
some information on the components behavior) is sufficient (Table 1 middle column).

The BIA can be provided by the component designer and verified by the compiler
(just like typed interfaces are) using techniques such as abstraction mappings and model
checking. Verification is necessary to ensure the correctness of the BIA, i.e., that it is
truly a homomorphic image of the maximal automaton. Alternatively, the component
compiler can generate a BIA from the code, using, for example, abstract interpretation
or machine learning [15]. In this case, the BIA will be correct by construction. We
assume the first option for third party components, and will explore the second option
for components assembled in our builder.

4 Avoiding state-explosion by pairwise composition

In [1, 2], we present a method for the synthesis of finite-state concurrent programs from
specifications expressed in the branching-time propositional temporal logic CTL [8].
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This method avoids exhaustive state-space search. Rather than deal with the behav-
ior of the program as a whole, the method instead generates the interactions between
processes one pair at a time. Thus, for every pair of processes that interact, a pair-
machine is constructed that gives their interaction. Since the pair-machines are small
( ���!	#"�� ), they can be built using exhaustive methods. A pair-program can then be ex-
tracted from the pair-machine. This extraction operation takes every transition of the
pair-machine and realizes it as a piece of code in the pair-program [2, 9]. The final syn-
thesized program is generated by a syntactic composition of all the pair-programs. This
composition has a conjunctive nature: a process $&% can execute a transition if and only
if that transition is permitted by every pair-program in which $'% participates. Thus, two
pair-programs which have no processes in common do not interact directly. Two pair-
programs that do have a process $(% in common will interact via $(% : the pair-programs
in effect must synchronize whenever $(% makes a transition, so that the transition is ex-
ecuted in both pair-programs simultaneously. For example, if $ �

) $ " , $ "
) $+* , and

$ �
) $+* are three pair-programs which all implement a two-process mutual exclusion

algorithm, then they can be composed as discussed above into a single program which
implements three-process mutual exclusion. In this program, when $ � wishes to ac-
cess the critical section, it must be permitted to do so by both $ " (as per the $ �

) $ "
pair-program) and by $ * (as per the $ �

) $ * pair-program).
Due to the complexity of the synthesis and verification problems for finite-state con-

current programs, any efficient synthesis method is necessarily incomplete: it may fail
to produce a program that satisfies a given specification even though such a program ex-
ists. In the synthesis method of [1, 2], the incompleteness takes the form of two technical
assumptions that the pair-programs must satisfy in order for the synthesized program to
be correct. One technical assumption requires that after a process $&% executes, either it
can execute again (i.e., is enabled), or it does not block any other process. This prevents
deadlock. The other technical assumption requires that a process cannot forever block
another process if the second process must make progress in order to satisfy a liveness
property in the specification. This guarantees liveness.

We refer the reader to [1, 2] for examples of synthesis of solutions to the following
problems, all for an arbitrarily large number of processes: , -process mutual exclusion,
dining philosophers, drinking philosophers [5], - -out-of- , mutual exclusion, and two-
phase commit.

4.1 Applying pairwise composition to component assembly

To apply the pairwise method to components, we must be able to define the pairwise
interaction amongst components. We do this by extending the component model so
that each component . is accompanied by several BIA [7, 20], one for each of the
other components that . interacts directly with. The BIA provides information about
the externally observable temporal behavior of the component. For example, such an
automaton could provide information on the order in which a component makes certain
method calls to other components.

Given two components and their BIA, we construct the pair-machine for their inter-
action by simply taking the automata-theoretic product of the BIA. We can then model
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check the pair-machine for the desired behavioral compatibility among the two compo-
nents. If successful, we can then use this pair-machine as input to the pairwise method,
as discussed above.

4.2 Discussion

The pairwise architecture enables a clean separation between interfaces. In the usual
approach, a component has a single interface, through which it interacts with all other
components. Thus, different interactions with different components are all mediated
through the same interface. This results in an “entangling” of the run-time behaviors
of various components, and makes reasoning (both mechanical and manual) about the
temporal behavior of a system difficult. By contrast, our architecture “disentangles” the
interactions of the components, so that the interaction of two components is mediated
by a pair of interfaces, one in each component, that are designed expressly for only
that purpose, and which are not involved in any other interaction. Thus, our architec-
ture provides a clean separation of the run-time interaction behaviors of the various
component-pairs. This simplifies both mechanical and manual reasoning, and results in
a design and verification methodology that scales up.

Our architecture also facilitates extensibility: if a new component is added to the
system, all that is required is to design new interfaces for interaction with that com-
ponent. The interfaces between all pre-existing pairs of components need not be mod-
ified. Furthermore, all verification already performed of the behavior of pre-existing
component-pairs does not need to be redone. Thus, both design and verification are
extensible in our methodology. We can also apply our approach at varying degrees of
granularity, depending on how much functionality is built into each component.

Vanderperren and Wydaeghe [22, 20, 23, 19, 18] have developed a component com-
position tool (PascoWire) for JavaBeans that employs automata-theoretic techniques to
verify behavioral automata. They acknowledge that the practicality of their method is
limited by state-explosion. Incorporating our technique with their system is an avenue
for future work.

DeAlfaro and Henzinger [7] have defined a notion of interface automaton, and
have developed a method for mechanically verifying temporal behavior properties of
component-based systems expressed in their formalism. Unfortunately, their method
computes the automata-theoretic product of all of the interface automata in the system,
and is thus subject to state-explosion.

5 Conclusion

We have presented a methodology for designing components so that they can be com-
posed in a pairwise manner, and their temporal behavior properties verified without
state-explosion. Our method specifies the externally visible behavior of each compo-
nent . as several behavioral interface automaton, one for each of the other components
which . interacts directly with. Finite-state automata are widely used as a specification
formalism, and so our work in compatible with the mainstream of component-based
software engineering.
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Ensuring the correct behavior of large complex systems is the key challenge of soft-
ware engineering. Due to the ineffectiveness of testing, formal verification has been
regarded as a possible approach, but has been problematic due to the expense of carry-
ing out large proofs by hand, or with the aid of theorem provers. One proposed approach
to making formal methods economical is that of automatic model checking [6]: the state
space of the system is mechanically generated and then exhaustively explored to verify
the desired behavioral properties. Unfortunately, the number of global states is exponen-
tial in the number of components. This state-explosion problem is the main impediment
to the successful application of automatic methods such as model-checking and reach-
ability analysis. Our approach is a promising direction in overcoming state-explosion.
In addition to the elevator problem, the pairwise approach has been applied success-
fully to the two-phase commit problem [1] and the dining and drinking philosophers
problems [2].

Large scale component-based systems are widely acknowledged as a promising ap-
proach to constructing large-scale complex software systems. A key requirement of an
successful methodology for assembling such systems is to ensure the behavioral com-
patibility of the components with each other. This paper presents a first step towards a
practical method for achieving this.
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Abstract. One of the challenges of software development regards en-
suring that the code implements the specifications precisely (code veri-
fication). This study focuses on a framework designed to enable a “di-
rect” manual translation of sufficiently detailed natural language use
case specifications into code, whose equivalence with the specifications
should be easy to establish. The experimental framework Simple Inter-

facing+ (SI+) provides components for writing applications with use
case-oriented architectures. Software produced with SI+ centers around
use case components, that implement the different use cases of the appli-
cation. It is therefore relatively easy to trace the specification to which
each piece of code belongs. This is useful when it is required to modify
the code, as we readily know the use case specification, that the modi-
fied code must satisfy. The user interface is produced by an SI+ com-
ponent, named use case displayer, which implements an environment,
where the user can execute the various use cases. SI+ has been used to
implement small information systems. The code based on the high level
SI+ abstractions was sufficiently close to the natural language use case
specifications to facilitate the verification. The implementation of more
complex applications with SI+ is planned to obtain a more complete
evaluation.

1 Introduction

This study is concerned with the design of a framework for construc-
tion of use case-oriented interactive information systems (IS). A use
case is a single kind of usage of an application by its user(s) [1].
Also, [1] states, that “the set of all use case descriptions specifies
the complete functionality of the system”, i.e., with use cases it is
possible to provide a complete specification of the system.

We are especially interested in use case specifications, as they
facilitate the manufacturing of systems with high usability, i.e., sys-
tems that enable the users to accomplish their work in a pleasant and

IPD
55



efficient way. This is achieved by employing usability considerations
in the design of the use cases [2]. We consider therefore software de-
velopment processes, where the system is specified by its use cases.
An example of such a process is the Unified Software Development
Process (USDP) [3], which was designed in connection with the quite
popular Unified Modelling Language (UML) [4].

The USDP process begins with requirements elicitation and con-
tinues with the specification of the application’s functionality by its
use cases. First the use cases of the system and their users (actors
in UML terminology) are identified and specified by UML use case
diagrams. Each use case is thereafter designed and described in full
detail from the user’s point of view, i.e., without implementation de-
tails. The use cases are designed to have good usability properties,
for example by employing the approach of [2]. The resulting use cases
are described in a sufficiently detailed natural language and include
detailed drawings of the graphical user interface. The natural lan-
guage specification may say such things as “hitting the OK button
initiates the computation of . . . ”.

The use cases are specified by a natural language in order to en-
able validation by domain experts and usability experts, who may
not be familiar with formal specification languages. Sometimes a
prototype of the user interfaces is prepared from the use case spec-
ification [5, 6], enabling a more intensive validation. In the USDP
process, the validated natural language use cases are then trans-
lated into formal UML diagrams. The USDP process continues with
the analysis of the formal use cases specification, system design, im-
plementation and testing. Since this USDP process is based on use
cases that have been designed and validated for their usability, the
produced application is expected to have the same good usability.

The USDP testing phase includes verification, i.e., checking that
the code implements the use case specifications precisely. This is
usually done by testing each one of the different use cases with sets
of test cases, that ideally cover all the different kinds of possible
scenarios (black box testing).

The verification may also be accomplished with formal meth-
ods. This requires that the natural-language use case specification
is translated into a formal specification. In this case, an additional
verification of the correctness of the translation from the natural
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language into the formal specification language is required. Using
formal methods, e.g., [7], to show that the code implements the for-
mal specification is thus not a trivial task.

The high costs of verification by either testing or by formal meth-
ods may be avoided in situations, where it is possible to produce the
code automatically from the specifications. One example is a state
charts specification of reactive systems [8], that may be translated
automatically to code [9]. Another powerful and interesting approach
is the Play-In/Play-Out approach of [10]. Here the system is speci-
fied by a set of scenarios, entered directly via a GUI (play-in). Later,
the specification may be tested and debugged by operating the GUI
and checking the system reactions, again via the GUI (play-out). In
some cases, play-out may actually serve as the final implementation.
This promising approach focuses on reactive systems. Its suitability
for information systems has not yet been investigated.

We are not aware of a general method for automatic generation
of the code of information systems from their specifications. We em-
ploy therefore a less ambitious verification costs reduction approach,
that was introduced in [11]. In this approach the sufficiently detailed
natural-language use case specification is translated directly by pro-
grammers into high-level code, which implements the use cases. The
verification effort in this approach is reduced to showing the equiv-
alence between the natural-language use case specification and the
code. A framework that enables such a direct manual coding of the
specifications is called a specification-oriented framework.

The approach was tested [11] with an experimental framework
called SI. In one experiment 2.5 SI-based Java code statements
were required on the average for each English statement in the use
case specification. This was considerably less than the 7 Java state-
ments required when coding in the traditional way, i.e., using Java’s
Swing and JDBC packages. The SI-based Java code was thus con-
siderably shorter, which indicates its high level of abstraction. The
SI-based JAVA code had furthermore a higher level of resemblance
to the English language use case specification, which facilitated the
establishing of their equivalence.

In this paper we report the results obtained with a redesigned
version of SI called SI+. The new improved SI+ framework ex-
ploits experiences gained from using SI.
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2 The Model

The SI+ framework assumes that an interactive information system
application has

– A database that represents the state of the domain of the appli-
cation

– A GUI that facilitates the communication between the human
user and the application

The use case specifications of such an information system must
therefore have instructions for input and output through the GUI
as well as instructions for database manipulations. The SI+ was
therefore designed to have high level abstract classes for the coding
of these two kinds of instructions. SI+ is not supporting use case
instructions beyond these two kinds. The developer must either find
ready frameworks for the implementation of the use case instruc-
tions, that are not supported by SI+, or develop the code for their
implementation.

An application developed with the SI+ will have a separate soft-
ware component (object) for each one of its use cases. Such a use
case component may incorporate a number of different sub-use cases
(objects, again), which may be reused in different use cases. A use
case component contains the code obtained by the manual transla-
tion of the natural language use case specification into Java. The use
case component also contains an abstract specification of the GUI
that serves the use case. This GUI specification lists the employed
controls (buttons, menus, list boxes etc.) and their purposes. The
geometrical shape of the controls, their color and further properties,
are not specified in the use case component, but in a separate in-
teraction style component [12]. Each pane (rectangular screen area)
of the GUI may employ a different interaction style, and each in-
teraction style component may be reused in different use cases and
in different applications. Having the GUI details hidden in separate
interaction style components makes the code of the use case short
and easy to check.

Figure 1 presents the code, that constructs the GUI of the Trans-
late use case in a simple Hebrew-English dictionary system. The pro-
grammer instantiates panes (which are interaction style components)
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and adds GUI controls or another panes to them. When adding a con-
trol to a pane, the programmer gives the control a symbolic name,
specifies its instantiation parameters (defaults are provided for all
controls), and provides the name of the method that will be invoked
when the control is operated. Controls are created by control facto-
ries (see Factory design pattern in [13]), that configure the controls
correctly according to the instantiation arguments. The GUI of the
Translate use case is presented on Figure 2.

SIPane word_to_translate_pane = new SIPaneOneRow(null, this);

word_to_translate_pane.addControl(SIDefaultFactory.TEXTFIELD,

"word_to_translate", 20, null);

word_to_translate_pane.addControl(SIDefaultFactory.BUTTON, null,

"Translate!", "translate_pressed");

SIPane translate_pane = new SIPaneOneColumn("Translate:", this);

translate_pane.addSIPane(word_to_translate_pane);

translate_pane.addControl(SIDefaultFactory.LISTBOX, "translations",

null, null);

SIPane main_pane = new SIPaneOneColumn(null, this);

main_pane.addSIPane(translate_pane);

main_pane.addControl(SIDefaultFactory.BUTTON, null,

"Add Translation", "add_trans_pressed");

setMainSIPane(main_pane);

Fig. 1. Constructing the GUI of the Translate use case

The use cases are executed by a component called use case dis-
player. The displayer organizes the GUI’s of the different use cases
in a single desktop. The geometrical layout of these GUI’s is com-
puted by the displayer in accordance with interaction styles speci-
fied. Figure 3 demonstrates one of the displayers available in SI+.
On this figure the displayer is used to visualize the use cases of
MP3 Manager application. Currently the user executes three use
cases—Manage MP3 List, Play MP3 Files and Edit ID3 Tag—and
views online help for the Edit ID3 Tag use case.

A further component of an SI+-based application is an of-the-shelf
database management system. In the experimental system we em-
ploy relational database systems. These mature, widely available sys-
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Fig. 2. The GUI of the Translate use case

tems come with a powerful structured query language (SQL) and a
mechanism for managing concurrent transactions. SI+ provides sev-
eral high-level components, that simplify database access operations.
In Figure 4 the programmer executes a query that presents personal
details and benefits of employees whole salary is above 50,000. The
result set of a query is passed directly to one of SI+ table models
and presented in the table (table model is a Swing concept; table
models control the contents of GUI tables).

3 Evaluation

The experimental framework has been tested on a number of small
systems. Testing with larger, more realistic applications is necessary
in order to make valid conclusions.

Based on the observations already made we shall now explain
why we expect that use case-oriented structure facilitates the design
of correct applications. The few SI+-based applications made hith-
erto suggest, that the different use cases can be designed and imple-
mented (almost) independently of each other (“low coupling”). One
explanation for this fortunate property is that the different use cases
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Fig. 3. The MP3 Manager application utilizing one of SI+ displayers

SIMutableRSTableModel model = new SIMutableRSTableModel();

//...

ResultSet rs = DBProxy.getDBProxy().executeQuery("SELECT FIRSTNAME, LASTNAME, BENEFITS " +

"FROM EMPLOYEES, EMP_STATS WHERE " +

"EMPLOYEES.EID=EMP_STATS.EID AND EMP_STATS.SALARY > 50000");

model.setDataFromResultSet(rs);

Fig. 4. Direct presentation of a query in a table
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usually do not communicate directly with each other. Typically a use
case communicates only with its human user and with the database.
The communication with the database is done by atomic transac-
tions, which should be designed, in information system fashion, to
retain the consistency of the database. Since the database represents
the state of the application, this strategy retains the consistency of
the state of the application.

The use case organization facilitates both verification by compar-
ing the code to the natural language specifications and by black-box
testing, where each use case component is tested with all its different
kinds of scenarios.

Software applications tend to evolve over the years, which re-
flect additions and modifications to the original specifications. A
discussion of ways to ensure the correctness of an application must
therefore also consider the situation of changes and additions to the
specifications. For an SI+-based application the addition of new use
cases may in some cases be done without touching or even knowing
anything about other use cases. This is due to use case indepen-
dency phenomenon discussed above, which is likely to occur when the
added new use case communicates directly only with the database
and the users. Using the terminology of [14] the proposed architec-
ture seems to have an extension complexity of O(1), i.e., the effort
required to add a new use case is independent of the number of
already existing use cases.

The schema of the database must of course be designed to repre-
sent the application domain precisely, such that it may be employed
by “any” unknown future use case. Techniques for designing such
database schema are well established [15].

The structuring of the software into use case components is ex-
pected to facilitate future code modifications. If we have to modify
some code, we know that the resulting code must meet the specifi-
cation of the use case component in which it is located.

The observations made and the above analysis suggest that the
proposed use case program structures facilitate in a number of dif-
ferent ways the manufacturing of correct interactive information sys-
tem. More experience with more complex system is needed to vali-
date these expectations.
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Abstract. Temporal logic, and especially the Temporal Logic of Actions
(TLA), allows the specification of the correct behaviors of a system. This
position paper outlines a practical approach to verify that components do
not violate their TLA specification at runtime.

1 Introduction

This position paper deals with specification and verification of component-based
systems. First, we describe an approach for producing observers from TLA specifica-
tions of a system [8]. Such observers are useful at runtime, for testing or monitoring
purposes, to detect temporal faults by checking an actual implementation of a sys-
tem against a formal and verified behavioral model. Then, we discuss why we believe
that component-based systems help to enforce the correctness of software system.
This discussion is illustrated with Fractal [2, 3], a workable component framework.
Section 2 discusses the role of observation. Section 3 provides an overview of our
design choices to implement TLA observers. Section 4 discusses the implication of
observation in component frameworks. Section 5 concludes.

2 The role of observation

The role of observation, as discussed in this paper, should be understood as follows
(cf. figure 1). The actual implementation of the system is continuously checked
against a formal and verified model of some adequately selected aspects of the sys-
tem behavior [5]. Ideally, observation could be avoided by proving that an actual
implementation of a system is consistent with an abstract specification. However, in
practice, even if this specification has been formally verified using theorem prover
or model checker tools [4, 7], the designer often lacks formal support to check for
the correctness of an actual implementation. Indeed, refinement analysis requires
nontrivial proofs to show that properties demonstrated at an abstract level are
preserved when considering actual implementation details. Also, although some
specification languages, such as B [1], propose methodologies and tools that enable
designers to translate formal specifications into an executable language, refinement
reasoning is often available only at a specification level. This motivates the need for
observation. Of course, testing the observable behaviors of an implementation is not
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2 N. Rivierre, T. Coupaye

a panacea. It fails to provide guarantees for all possible situations (even considering
continuous monitoring) and addresses only safety properties (whose violation can
be illustrated on finite behaviors). But it is a common way to increase confidence
that a system is correct. At least, it provides counter-examples when the design is
incorrect and certainly does not exclude other complementary techniques (proof,
animation, simulation. . . ). Unit-level tests are well adapted for local debugging,
tuning or performance evaluation but fail to check behavioral requirements. Ex-
ecutable assertions based on pre-post conditions and invariants [12], whose main
reference is Eiffel, are more expressive and well understood by developers but they
cannot assert temporal properties. Another approach is to check observable behav-
iors against a formal and verified model. This latter approach seems advisable for
behavioral testing since it relies on formal specifications to decide which temporal
properties to ensure. However, its practical application can be quite difficult since
formal specification (temporal logic, process algebra. . . ) are executable at model
level. Formally, if the specification of a system is represented by a temporal formula
F , the execution of F consists of computing whether a (finite) model M of the sys-
tem satisfies F (M |= F ). For this reason, there has been some interest in deriving
observers or oracles from the formal specification of the system [5, 6, 13, 15, 16].

Spec

Behavior

Checker

Target

Observer

Report

instantiate observeuse

report

check

useinstantiate

verifies ?

Fig. 1. Observation: Spec is a specification of the correct behaviors of some aspects of
the system. Target is the actual component of the system that is to be checked against
Spec (Target => Spec is not provable). Observer perceives the behaviors of Target and
translates them to be understable by Checker . Checker is an oracle (a runtime checker)
that raises a Report whenever a Behavior perceived by Observer violates Spec.

3 TLA observers

This section outlines a practical approach to implement TLA observers and illus-
trates the process with a simple example.

TLA overview The Temporal Logic of Actions (TLA) has been proposed by Lam-
port [8] for the specification1 and verification of concurrent and reactive systems.
1 The specification language is TLA+. It combines the temporal logic TLA with full

first-order logic and ZF set theory. We abbreviate TLA+ by TLA in the sequel.
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Observing Component Behaviors with TLA 3

TLA allows the specification of the correct behaviors of a system, the composition
of sub-system specifications and refinement reasoning about a system specified at
multiple levels of abstraction. A behavior models an execution of the system as an
infinite sequence of states. A state is an assignment of values to state variables. An
action formula expresses the relation between the value of variables in two succes-
sive states, using a prime notation as in Z [14] (e.g. if x represents the value of a
state variable in the current state of a step, x ′ represents its value in the successor
state). TLA specifications are usually written in the canonical form

Spec ∆= Init ∧2[Next ]x ∧ L (1)

where Init is a state predicate that characterizes the system’s initial states, Next
is an action formula representing the next-state relation (typically written as a
disjunction of possible moves), x is the tuple of state variables of interest and L
is a formula that describes the liveness requirements. This specification represents
all behaviors satisfying formula 1. Compared to other temporal logic, TLA differs
in that the notion of action allows to specify both the system and its temporal
properties within the same formalism. The verification of TLA specifications has
been amply studied2. The book [9] introduces TLA from a user perspective and
serves as a reference manual for several TLA Tools. In particular, it introduces
TLC, a model checker tool for debugging a large class of TLA specifications [11].

Approach. An approach to implement TLA observers can be sketched as follows.

Specification. Let Spec be a specification of a system (Spec is formula 1) and Obs be
a specification of the expected observable behaviors of this system. Obs represents
correct and incorrect behaviors of the system.

Obs ∆= InitObs ∧2[NextObs]x (2)

We produce an Oracle specification (cf. formula 3) as a simple form of composite
specification of the system Spec and its observer Obs. Oracle is a noninterleaving
specification since the conjunction of the two initial state predicates and the two
next state-relations represent the simultaneous advance of any observable behavior
against a correct behavior of the system. It is a shared-state specification since
all parts of the state attributed to the system component can be changed by the
observer component (the state is not partitioned).

Oracle ∆= (InitObs ∧ Init) ∧2[(NextObs ∧Next)]x (3)

Runtime. The definition of formula Obs requires specific TLA operators to be
satisfied by a single (observed at runtime) behavior when evaluated by a checker.
These operators are evaluated as follows. Instead of computing a value from a
model of the system, the checker reads a value perceived by an actual observer of
2 References to the literature can be found at http://lamport.org/.
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an implementation of the system. That way, formula Oracle can be used to check
the behaviors of an actual implementation of a system against its correct behaviors.
Any observable behavior satisfying Obs but not Spec will not satisfy Oracle, and
be reported as a deadlock, which is the expected behavior from an oracle.

Specifying the system. This process is illustrated with a simple mutual exclusion
protocol, due to [7] but reformulated in TLA. The first step is as usual and consists
of specifying and validating whether a behavioral model of a system satisfies some
expected temporal properties. Several concurrent processes share a resource. The
protocol must ensure a trivial safety property: only one process is allowed to be
in critical section at any time. Each process undergoes transitions in the cycle
n → t → c → n → . . . (where n stands for non-critical section, t for trying to enter
critical section and c for critical section), but processes interleave with each other
as illustrated in figure 2 in the presence of two processes.

Fig. 2. Interleaving

The specification of this protocol appears in figure 3. It should be easy to un-
derstand, even without detailed knowledge of TLA. The constant parameter N is
the number of concurrent processes. The single state variable prc represents the
concurrent processes. Formula Spec is similar to formula 1, ignoring liveness re-
quirements. Its initial state predicate Init sets all processes in non-critical section.
Its next-state relation Next is a disjunction of possible moves for any process i .

– Try(i) represents process i trying to enter critical section. It is enabled if process
i is in non-critical section.

– Critic(i) represents process i moving into critical section. It is enabled if process
i is trying to enter critical section and no other process j is in critical section.

– Free(i) represents process i moving into non-critical section. It is enabled if
process i is in critical section.

To define a model, we must assign a value to the constant parameter N (e.g. 1,
2, 3,. . . ). The model checker tool TLC allows us to verify that this model satisfies
the expected safety property by generating all possible behaviors (as illustrated by
figure 2 in the presence of two processes).
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module MutExclu
constant N
variable prc
Proc

∆
= 1 . . N

Init
∆
= prc = [i ∈ Proc 7→ “n”]

Try(i)
∆
= prc[i] = “n” ∧ prc′ = [prc except ![i] = “t”]

Critic(i)
∆
= prc[i] = “t” ∧ ∀ j ∈ Proc : prc[j ] 6= “c” ∧ prc′ = [prc except ![i] = “c”]

Free(i)
∆
= prc[i] = “c” ∧ prc′ = [prc except ![i] = “n”]

Next
∆
= ∃ i ∈ Proc : Try(i) ∨ Critic(i) ∨ Free(i)

Spec
∆
= Init ∧ 2[Next]prc

Fig. 3. The mutual exclusion specification

Observing the system. We specify now in module MutExcluOracle (cf. figure 4)
an oracle for the mutual exclusion protocol. MutExcluOracle first incorporates3 the
definitions from modules MutExclu (cf. figure 3) and IO . The TLA operator ioStr
used in MutExcluOracle is defined in module IO as follows

ioStr ∆= choose val : val ∈ string (4)

This operator represents some arbitrary string and is evaluated by the (runtime)
checker as the reading of an actual string value4. This value is obtained by an
interaction between the observers and the checker, as depicted in figure 1.

module MutExcluOracle
extends MutExclu, IO

InitObs
∆
= prc = [i ∈ Proc 7→ ioStr ]

NextObs
∆
= prc′ = [i ∈ Proc 7→ ioStr ]

Obs
∆
= InitObs ∧ 2[NextObs]prc

Oracle
∆
= (InitObs ∧ Init) ∧ 2[NextObs ∧ Next]prc

Fig. 4. The observer specification

Obs and Oracle are formula 2 and 3 introduced above. According to the defini-
tion of the initial state predicate InitObs and next-state relation NextObs of formula
3 In TLA, the EXTENDS statement leads to incorporate other TLA modules into a

module. That is, to make visible their parameter and operator definitions
4 This requirement is achieved by the model checker tool TLC that allows a TLA operator

to be overridden by an executable Java method[9]. The generalization requires to define
such specifics operators in module IO only for simple TLA values (boolean, integer. . . )
since other TLA values are construction of simple values.
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Obs, and to the specific evaluation of the operator ioStr by the checker, each state
of an observable behavior of the mutual exclusion protocol is an assignment of some
(observed at runtime) string value to each process. This can be compared with the
only correct behaviors of the protocol depicted in figure 2. The composite formula
Oracle of the system and its observer allows to check such observable behaviors
of the protocol against its correct behaviors5. Any behavior (perceived by an Ob-
server of an actual implementation of the protocol) satisfying not Spec will not
satisfy Oracle, and be reported as a deadlock by the (runtime) checker. The same
approach holds with more sophisticated TLA specifications.

Discussion. This approach relies on TLA for the main part. It requires trivial
TLA specifications (at least from the observer side) and an executable form of few
simple TLA operators (to allow the interaction between a checker and an observer).
We tried out this approach with the model checker tool TLC. In this way, TLC acts
as a runtime checker. So, the same tool can be used to check behaviors from the
specification to the implementation phases of a system. Among several drawbacks:
this approach addresses only safety properties (whose violation can be illustrated
on finite behaviors) and the provided oracle specification requires to describe the
full state at each step. This latter point can be improved but at the price of more
complex observer specifications.

4 Observing in a component framework

This section discusses some features of component-based system that make them
adequate for both correctness specification and observation, as depicted in figure 1.
We use the Fractal component model and framework as an illustration [2, 3].

Observation in component models. One of the most stringent challenge con-
cerning a software system is probably the correctness assessment of its dynamic
behaviors, i.e., the verification that its execution satisfies some formal specification.
That imposes to be able i) to specify the correct behaviors of the target system as
a composition of interacting sub-systems, ii) to ”attach” a specification to each of
these sub-systems by instrumenting the target system and iii) to actually observe
the system as depicted in figure 1. We believe structural features of component
models make them very suitable with respect to these points, much more than
previous approaches such as object-orientation for instance. Interesting structural
features in the Fractal component model are the following (cf. Figure 5)

5 Note that formula Obs can also be used. However, this would be rather silly since
this formula does not allow to check the observable behaviors against Spec, the correct
behaviors of the mutual exclusion protocol. For example, even in presence of only one
process (i.e. without considering concurrency) the behavior n → c → t → . . . would be
acknowledged by the checker. It should not since formula Spec of figure 3 specifies that
each process undergoes transitions in the cycle n → t → c → n → . . ..
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– Interfaces and bindings: components can only interact with their environment
through operations at identified access points called interfaces which can be
server (provided) or client (required). Some bindings must be established be-
tween components (more precisely between their interfaces) so that they can
interact. Bindings are communication paths (externalized from components)
that can be local/distributed, synchronous/asynchronous, secured. . .

– Recursion: the model is fully recursive. A component is composed out of two
parts: controller and content. The content of a component is composed of other
components, which are under the control of (the controller of) the enclosing
component. The model allows components to appear at an arbitrary level. The
recursion ends up with components with an empty content (these are called
primitive components). Their implementation is provided in an underlying pro-
gramming language, out of the scope of the component model .

– Reflection and Control : the model is fully reflexive. It allows a programmatic
manipulation of software architectures. Fractal components are runtime enti-
ties manifest during system execution that exhibit introspection and interces-
sion capabilities: they provide (meta)information and constructs which allow
applications to dynamically access and control their structure and behavior.

Fig. 5. A Fractal configuration of three components with their sub-components.

What make these features especially interesting with respect to behavioral ob-
servation is that observers can be localized anywhere, i.e., component behaviors can
be observed at an arbitrary granularity by navigating in component structure.

Instrumenting components in Fractal. An essential concept in Fractal is that
the controller of a component (its ”membranes” in figure 5) is fully responsible of
its content structure and behaviors. A controller is in fact an abstract entity actu-
ally implemented (in the reference implementation) by interceptor and controller
objects organized in a graph of collaborating objects. The Fractal framework comes
with a library of controller objects such as binding controller, content controller,
life-cycle controller . . . which provide (structural) dynamic control over components.
Much of the Fractal framework is devoted to controllers manipulation. Controllers
are very good places where to introduce instrumentation for components behavior
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observation (i.e., Observer, Checker, Behavior and Report from figure 1) in a non
intrusive way . It is worth noticing that instrumentation can also be done in a more
”applicative” way by building, introducing and binding explicitly an Observer com-
ponent into the content of the target component. One way or the other, we believe
component frameworks such as Fractal are very suitable platforms for component
correctness observation as they offer infrastructures (concepts, languages, tools...)
for the support of flexible and non intrusive instrumentation of target systems.

Experiments. We are currently conducting several experiments for validating the
approach. The first experiment takes place in the implementation of the Fractal
framework itself. Temporal logic is used to specify the correct behaviors associated
with i) controller aspects composition and ii) shared component (as depicted in fig-
ure 5). Observation will be of great help in this context to check faulty behaviors.
The second experiment takes place in the development of Jabyce [10], a software
framework for compiled Java program (i.e. bytecode) transformations. Jabyce is im-
plemented as a Fractal system (program transformations are Fractal components)
and uses Design by Contract [12] to assert constraints (pre-post conditions and
invariants) on valid program transformations. However, these constraints are not
sufficient to ensure correctness in all cases for they cannot express constraints be-
tween several actions of a transformation. This again lets room for temporal logic
specification and observation.

5 Conclusion

We believe component models provide structural concepts that i) help reasoning
about individual components and component configurations and ii) allow instru-
mentation of observations to be localized almost anywhere. This in turn helps to
check the adherence of components’ implementations to their specifications. Of
course, observation is not a panacea but we believe a benefit is to (partially) over-
come the gap between formal specification and software implementation of a system,
especially when considering temporal properties. To apply this idea, we have tried
out an approach that enables TLC, a model checker tool for TLA, to be used as a
runtime checker. So, the same tool is used to check behaviors from the specification
to the implementation phases of a system. Our aim is to use this approach in a
practical setting and we are currently conducting experiments in that respect with
the component framework Fractal. This work is still in progress and needs further
validation. Our main concern remains the applicability of the approach. Indeed, if
we consider a complex distributed system, it is not quite reasonable to assume that
every component would need a temporal logic specification (nor that programmers
would enjoy this job!), nor that this would be without effect on the overall per-
formance of the system. Therefore the goals we are pursuing with our experiments
are: i) to assess the cost of the approach in terms of performance degradation, ii)
to define in which situations it is worth using temporal logic and iii) to make sure
that observation with temporal logic fits well with other mechanisms for correctness
assessment when cohabiting in the same system.
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Abstract. The eCommerce system development of Intershop is based on differ-
ent models on various levels of abstraction. The software engineering tool ARIS
represents most of these models. In this paper we focus on the validation of the
business process models on an intermediate abstraction level of the ARIS model.
The business processes may be derived from process patterns and have to follow
specific rules (best practices). The validation of the compliance with these rules
and the consistency with the original business process pattern is the focus of this
paper.

1 Introduction

Workflows are a common technology to define the dynamic behavior of software like
business systems. An almost classical application for workflow models is the applica-
tion logic in eCommerce applications. These specific business-oriented workflows are
business process models. The steps of the processes provided by an eCommerce appli-
cation could ideally be modeled as business processes.

In order to support the workflow-driven system development specific tools have
been invented. One of these tools isARISwhich has been developed at IDS Scheer
Saarbr̈ucken [14], [13].

ARISdistinguishes between four different levels of abstraction in software specifi-
cation. It is used as a tool for specifying the customers‘ requirements and for modeling
the business processes of the applications. However,ARISdoesn‘t provide means to
validate the models which is the focus of our work. It is very desirable to identify errors
and problems in an early state of the system modeling.

TheARISmodels are introduced in section 2. The problems to be checked are dis-
cussed in the following subsection. In section 3 we elaborate the problem of validating
business process models which is one of the issues for validation. Others like the consis-
tency check of the static relationships of the functions in the level two is not taken into
consideration in this papers since it has already been discussed in previous publications
like in [16] or [12].
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2 ARIS Models

The concept ofARISis to support the different levels of abstraction. The genericARIS
House of Business Engineeringarchitecture (HOBE) is the base for an eCommerce spe-
cific adaptation ofARISsupporting the Intershop eCommerce development –ARIS for
Enfinity (cf. figure 1). This eCommerce version ofARISapplies the three upper lev-
els of HOBE without modifications. Only the lowest and most concrete layer has been
adapted to the Intershop-specific eCommerce development. The detailed workflows on
the lowest level are implemented as IntershopPipelinesconsisting of different types of
connectors andPipeletswhich provide small, reusable elements of the application busi-
ness logic. ThesePipelinesare manipulated by theVisual Pipeline Manager(VPM)
which has been integrated inARIS for Enfinity.

BuyerScenario MarketplaceScenario SellerScenario

2 Business Process
   Overview

3 Business Processes

4 Workflow Design
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Fig. 1.ARIS for EnfinityeCommerce Model [1].

The different levels ofARIS(or ARIS for Enfinity, respectively) are:
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1. Business Scenarios
In the layer with the highest degree of abstraction the basic functionality of the
system is described as scenarios. The set of scenarios provides an overview over
the system to be developed.

2. Business Process Overview
In the second layer the basic functions are divided into more detailed parts. This de-
tailed functionality is arranged hierarchically in a tree (actually network) structure.
Each of these detailed function blocks represents one ore more workflows (business
processes) which are defined in the third level.

3. Business Processes
The business process level presents the basic workflows derived from the func-
tion blocks and specifies their behavior. The notation used for these comparatively
abstract workflows is the EPK (the abbreviation stands for the German word for
Event-driven Process Chain, namelyEreignisgesteuerte Prozeßkette). This nota-
tion has been developed at the University of Saarbrücken in cooperation with SAP
and IDS Scheer [8].

4. Workflow Design
In this layer the business processes are more detailed and the different activities of
the processes are attached to specific actors. The actors are arranged in swim lanes
like the actors in the UML activity diagrams.
Each of the functions in the EPKs are specified in detail with one or morePipelines.
In some cases aPipelinemay also cover two or more functions.Pipelinesconsist
of Pipeletswhich represent small reusable code elements.

2.1 Issues of Validation

On each level of theARISmodel there are specific issues to be validated. Moreover,
the overall consistency between the different layers needs to be checked. In detail this
means:

– Business Scenarios
Here it has to be assured that a sufficient number of reusable code elements ex-
ists for each scenario offered. Since a customer should have a real choice between
different alternatives it requires more code than just to realize one scenario.

– Business Process Overview
Although the functions are arranged in a hierarchical tree order they are actually a
complex network with different “cross-tree” constraints. It has to be assured that all
these constraints are met, that mutually required functions are part of the configura-
tion and that mutual exclusive functions are not both in the system. The consistency
of the static relations between the functions has to be assured.

– Business Processes
The business processes are based on basic patterns describing the standard pro-
cesses and rules (best practices) defining the knowledge of what is a correct system.
Errors resulting in a wrong customization have to be addressed.

– Workflow Design
Since one singlePipelinedoes not necessarily represent one function of the detailed
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EPK the consistency between the workflow of the EPKs and thePipelinesneeds to
be assured.
Additionally there is no mechanism preventing the modification of thePipelets
code. This may result in the problem that services and data required byPipelets
may not be provided by the precedingPipeletsin the workflow.

Finally the different layers have to be kept consistent between each other which
means that a pattern or structure in a more abstract level has to be found in the lower
layer. Therefore explicit rules for a transition from models in one layer to the other have
to be given.

3 Validation of Business Processes

Intershop has presented a new strategy for implementing eCommerce systems:Unified
Commerce Management(UCM). One aspect of UCM is the development of a set of
business process patterns for different typical requirements of customers. These busi-
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ness process patterns may then be customized to specific systems. They may be seen as
a similar concept as architectural or analysis patterns in software engineering.

In a first step we focus on the level of business processes and the adaptation of busi-
ness process patterns. A concrete application scenario may be that a consultant creates
an eCommerce system. A set of business process patterns for characteristic activities
and rules for specific details (in UCM terminology this is calledBest Practices) are
supporting this activity.

3.1 Example of Business Process Adaptation

A pattern for an eCommerce process may look like the login pattern depicted in figure 2.
The pattern starts with the eventCustomer is on Home Pagefollowed by the func-

tion Registrationwhich leads to the eventStart Login Process. The following function
namedCustomer Data Checkmay either lead to the event that theCustomer is cen-
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tralized Buyeror that theCustomer is registered Customer. Both events will be mutual
exclusive which means that a customer may belong exclusively only to one of both
groups1. After both events (Customer is centralized BuyerandCustomer is registered
Customer) an undefined number of parallel functions must follow (indicated by the
dashed line) which are concluded by the last eventOffer presented to Customer.

Figure 3 presents a real business process which could be derived from the process
pattern in figure 2. In this example a large number of functions have been added to the
pattern, i.e.Display Welcome Page, Personal Content, Direct Order, Catalog Choice,
Item SearchandPersonalized Offer. Moreover, the process has a new path for anunreg-
istered Order. This path is for customers which are not yet registered and who, however,
should also get a chance to use the web shop.

3.2 Issues to be Checked

The example presented in the previous section 3.1 is a comparatively small process.
However, it demonstrates some of the problems that may occur when a pattern has to
be customized. New functions and events have to be added at the right position. New
paths have to be added without violating rules and experiences. Since the usual size of
the Intershop eCommerce business processes is much larger than our simple example,
the business process diagrams may become difficult to examine.

Rules to be checked may help to validate the dynamic behavior of the system. We
apply model checkers such as SMV (Symbolic Model Validation[11]) in order to val-
idate the business processes. These checking tools usually need a model of the issue
to be validated (in our case the business processes) described as finite automata. The
specification which the model is checked against is formulated in temporal logic such
as CTL (Computational Tree Logic) or CTL* (an extension of theComputational Tree
Logic).

Examples for concrete rules to be checked my look like:

– the customer may alway have aChoice:
in CTL*: AF Choice F ( F indicates thatChoiceis a function)

– there is at least one path toSearch:
in CTL*: EF Search F

– acentralized Buyerwill always get aPersonal ContentandPersonalized Offer:
in CTL*: AG (centralized Buyer E -> AF (personal Content F &
personalized Offer F))
E represents an event and the arrow (-> ) symbolizes the logical implication oper-

ator.

The procedure of business process validation is depicted in figure 4. Here the busi-
ness process is transformed into a finite automata. The specification is expressed in
CTL* (extended version of the first specification example above). Both are given to the
model checker (actually they are copied into one file which is then processed by SMV).

1 The logicalAND, OR andXOR operators are used for branches in the workflow (c.f. fig-
ure 2).
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Fig. 4.Model Checking of Business Processes

The result produced by the model checker is then presented at the bottom of the pic-
ture: the positive validation that the customer will have aChoicein the given business
process model.

For this problem model checking seems to be an ideal technique since we have only
a very limited number of states to be considered. Therefore, the probability of running
into the state explosion problem is quite low in contrast to other checking issues like
code.

4 Related Work

The application of model checking in hardware-related domains is wide-spread and has
already industrial relevance since several years [3]. The usage of this formal method
in the domain of software products, however, is still in its very beginnings (the first
steps may be found in [10]). This is due to the state explosion problem as well as the
model construction problem. Both are even more difficult to deal with for software
as compared to hardware systems [5]. In [5] first approaches to apply model check-
ing for software systems are distinguished into monolithic approaches and translation
approaches [6]. Monolithic approaches provide dedicated model checkers for a spe-
cific programming language. Translation approaches translate programs directly into
a relatively expressive verifier input language likePromela reducing the semantic gap
between software and model.

Bandera, an integrated collection of program analysis and transformation compo-
nents [5], allows to validate Java code to a certain extend (e.g. limited lines of code and
limited set of Java methods to be verified). Besides SMV, we appliedBandera for the
validation of the Java code against thePipelines andPipelets on the lowest level of the
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ARIS model. In contrast toBandera we focus on the business process models in this
paper. These are much more abstract than the Java source code.

The transformation from state charts to the model checking language SMV is sys-
tematically investigated in [2]. Despite the fact that state charts are usually quite close
to the code, this approach deals with similar problems (building finite automata from
dynamic models).

Assuming the system is developed starting with manually produced state charts (as
realized in [4], for instance) it is possible to translate programs and requirements apply-
ing this technique. However, the consistency problem arises. If the model is produced
independently to the implementation these different views on the same system may
vary. In [4] model checking is employed to realize the composition of layers. There-
fore, similar to our approach the composition of system units is supported. Each layer
in [4] realizes a feature which may lead to a feature / layer explosion problem in larger
systems.

The validation of the behavior of components is also related to this work since it
meets the problems in the lower abstraction levels. In [17] an approach called PACC is
presented. It allows component certification. The approach considers to enforce prede-
fined and designed interaction patterns and is therefore based on comparable software
analysis and documentation techniques. The focus in their work is on certification and
documentation. Another approach to model and validate the dynamic activities of com-
ponents may be found in [15]. In this approach model checking is explicitly applied in
order to validate the behavior of the components and composites.

Some approaches deal with the validation of workflows in general by applying
model checkers. [9] is a quite formal approach focusing on finite automata models.
However, it does not provide a mapping between business process models such as EPKs
and finite automata. Another example for a workflow checking approach is [7]. Here
web service workflows are to be validated.

5 Conclusion

The paper proposes an approach to validate business processes against rules and pat-
terns. This validation is done by applying model checkers like SMV. In contrast to other
applications of model checking the validation of business processes doesn’t bear a high
risk of getting too many states.

From the viewpoint of theARISsystem development model the paper presents only
a limited solution for the validation of business processes on level three. However, fur-
ther validation techniques have to be found to compare the models and the code and to
assure their consistency. Our current steps towards this issue are first investigations of
the comparison of code against the most concrete models (PipelinesandPipelets), the
consistency withinPipelinesand the development of an eCommerce-specific specifica-
tion language with allows to express the standard requests in the eCommerce domain.
The latter work implies that the temporal specification languages CTL, CTL* as well as
LTL have to be considered and a mapping from these languages to the standard classes
of problems have to be built.
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