
The Software Station

A System for Version Controlled Development

and Web Based Deployment of Software

for a Mobile Environment

Lei Liu Philipp Obreiter

lei.liu@web.de, obreiter@ipd.uni-karlsruhe.de

August 5, 2003

Technical Report Nr. 2003-16

University of Karlsruhe
Faculty of Informatics

Institute for Program Structures and Data Organization
D-76128 Karlsruhe, Germany





Abstract

As mobile devices become more wide spread, making available software
for such devices is crucial for making use of their capabilities. However, due
to the inherent constraints of mobile devices, it is highly non trivial to do
so. Especially for larger software projects, additional support for the de-
velopment and deployment phase is required. Therefore, in this paper, we
propose a system that provides such support, i.e., the Software Station. The
system’s requirements result from the analysis of our project environment.
On the one hand, the development of software components is based upon
a version control system. On the other hand, a web based interface facili-
tates the automated yet flexible deployment of software components to the
respective mobile devices. We highlight design and implementation issues
of the Software Station. In this context, our experiences with the applied
technologies and tools are shared.





1. Introduction 

Over the past ten years, there was a trend towards smaller and higher processing power of mobile 

devices on the market. Advanced technologies have made the mobile devices smaller while increasing 

their processing power and memory capacity. The technology advances enable also mobile devices to 

run applications which existed only on a desktop computer before. Another trend is that mobile devices 

go wireless. Many devices are equipped with a WLAN card to enable the access to resources in the 

internet or on a central data repository at any time, from anywhere and using any system.  

According to the equipments, mobile devices can be divided into two main categories: high end, 

such as Notebooks and Tablet PC and low end, such as PDA and other appliances. All of these devices 

share the following characteristics up to a certain degree: 

Restricted screen size and, thus, restricted screen resolution makes it difficult to design and 

develop a complex GUI for mobile applications. The information which can be displayed on 

the screen at the same time is limited. 

Because of their diversity, mobile devices usually require complex settings for the operating 

system. 

The communication modules of these devices (such as the WLAN card, Bluetooth, IrDA) 

normally consume much more energy than the processor itself. In addition, the battery power 

implies inherent limitations of the device’s usage patterns. Consequently, the mobile devices 

are prevented from being connected to the internet all the time. Furthermore, due to the nature 

of the wireless communication, it might make it difficult to connect to the internet or to some 

other devices. 

Most devices are difficult to handle with. 

Users of these devices are normally not professional users. They are interested in accessing 

distributed information in the internet but not in the related technical know-how. 

These characteristics imposes severe burdens for the management of mobile applications.  

In this paper, we will discuss the problem and a possible solution in context of the DIANE project 

[1] [4], in fact the project where this paper is from. In schools and universities, mobile devices like 

laptops, PDAs, and in particular cell phones become more and more popular. This fact has driven us to 

find out a way to support the students to use these devices for their studies. The basic idea of the 

project is to enable students to form ad hoc networks on demand and have access to the available 

resources in the network. 

The aforementioned problem becomes very critical in DIANE project. In order to form an ad hoc 

network on demand, new protocols have been conceived in the project [2] [3]. Apart from them, there 

are a lot of program libraries which act as service providers in the ad hoc network. All of these program 

libraries should be present on the mobile devices so that it becomes possible to share resources in the 

network. How will these programs be delivered to the mobile devices? And how about the update of a 

single program? From the database point of view, we have a central data repository. The problem is 

how data can be delivered to the client and how a single component or even all components can be 

updated? Obviously, all of these problems should be resolved under the aforementioned constraints of 

mobile devices. 

The remainder of this paper is structured as follows: In Section 2, we briefly describe some 

background knowledge about the lifecycle of an application from the software engineering point of 

view in order to be able to discuss the problems from inside of the mobile application lifecycle. In 

Section 3 and 4, we introduce our solution to resolve these problems. We share our experiences with 

the applied technologies in Section 5. The usage of the Software Station is exemplified in Section 6. 

Finally, we conclude our paper in Section 7.  

2. Lifecycle of Mobile Applications 

From software engineering we know that the lifecycle of applications can be divided into several 

phases [11]. There are the Analysis Phase, the Design Phase, the Development Phase and the 

Maintenance Phase. In case of application updates, it is a repetition of the whole lifecycle, maybe 

without Analysis Phase. Figure 1 illustrates the lifecycle. 

Software DesignSoftware Analysis Software Development

Software Update

Software Maintenance

Uninstall Software

Software DesignSoftware Analysis Software Development

Software Update

Software Maintenance

Uninstall Software

Figure 1: Lifecycle of mobile applications 



In the context of this paper, we interested in mobile applications. Hence, among the four phases, 

only the Software Development Phase and the Software Maintenance Phase are within our scope. 

Therefore, we focus on these two phases. For this purpose, we adjust the standard lifecycle by 

aggregating the Analysis Phase, the Design Phase and the Development Phase to a single Development 

Phase. In the following, the problem is defined from phase to phase in more detail.  

In the Software Development Phase, after a developer has finished his work and has compiled all 

the program files into a single software component, the new software component is checked in a 

version control system. How does the administrator know that there is a new component available and 

how can he get the new component? If many new components have arrived, how does he know which 

component should be forwarded to the client? 

In the Software Maintenance Phase, all the components on the server are available to the client. 

How does a common user know about the components that are needed for his purpose? How can he 

determine the relations between the components so that all of the components work properly? If all of 

the required components are determined, how does he install them under the inherent constraints of his 

mobile device? 

After this analysis, we can get a few design requirements for our solution: 

1. In the Software Development Phase, there has to be some automating process which 

recognizes new components and subsequently makes it available in the central data repository. 

2. An administrator should be able to organize the software components into several basic 

software packages and then into several installation profiles. Consequently, the user decides 

which profile to use instead of choosing among several components. 

3. A client application for the automation of the software installation process should also be 

available to the user. Hence, the user does not have to install every component manually. 

In Figure 2, the global architecture of our solution is shown. It matches the requirements that we listed 

above. The component filter we used in this architecture blocks the software components which should 

not be published by the software component service at all. And the additional software repository is 

used to increase the performance for our software component service. It stores all available versions of 

the components. Since the communication with the version control system is much more expensive 

than the direct access to the local file system. 

uninstall
Software Maintenance

Software Update

Software Development Software in Use

Software

Repository

Software

Component

Service

New 

Software

versions

Client

Application

Add Get

Component

Filter

Response

Request

Design

Figure 2: Global Architecture 

3. Support for the Software Development Phase

In the DIANE project, we use a version control system to maintain the software components and to 

resolve version conflicts. Consequently, we have access to all of software components on a single 

central place. On the other hand, the update notification service of the version control system enables 

us to know about the availability of new updates on the server. Under these preconditions, we are able 

to design the part of our solution that automates the component update process. 



Init.

Watcher

Process

Watcher

Process

Get Name of 

new Compoent

Component

Registered?
Stop

Check out

New Component

Add Component to

Data Repository

True

False

Receive 

Update Event

Figure 3: Automating process for the Software Development Phase

As shown in Figure 3, a watcher process is initialized and started by the main process. This 

watcher process checks regularly if an event has been fired by the version control system. If an update 

event is found, it will start the update process as a sub process. The update process parses the event and 

retrieves the component name. Using this name, the process makes sure that the component has been 

registered by the administrator before. In case of a negative result, the process terminates itself; 

otherwise it checks out the new component version from the version control system and add it directly 

to the data repository. At the end of the process, a new log entry is created in the log file and the sub 

process is terminated. 

Apparently, the whole update process for new component does not require any intervention by the 

administrator. He only has to administer the component register file used by the component filter. This 

is done via the program interface provider of the component service. 

4. Support for the Software Maintenance Phase

In this section, we take a closer look at how the deployment process is automated for the 

administrator and the user. The key problem is how the components are organized while considering 

the dependence between different software components. For this purpose, we have to introduce a new 

deployment configuration document the structure of which is illustrated in the following Figure 4. 

Profile

Module

Component

«call»

+made up of0..1

+belongs to1..*

+made up of0..1

+belongs to1..*

Profile A Profile B

Module A Module B Module C

Component A.1

Component A.2.1

Component A.3.1

Component A.2.2

Component A.3.2

Component C.1

Component C.2

Component C.3

belongs to

belongs to

called by

called by

Component:

Basic Entity

Profile:

Composition

of

Modules

Module:

Composition

of

Components

UML Tree View

Figure 4: Structure of the deployment configuration document 

A deployment configuration document is divided into three sections: the component section, the 

module section, and the profile section. Furthermore, there are three different data objects available in 

this document: component, module, and profile. The basic entities are components. A component entry 

in the configuration document corresponds to a component in the data repository. In this entry, the 

administrator should specify the name of the component and, if necessary, also the version of the 

component. Without any version input, the newest available version will always be used. By using the 

attribute dependsOn, the called-by relation between two components is explicitly specified. A module 

object in the module section is composed of component objects. As shown in the UML diagram a 

module must contain at least one component. It may reference to any component which is defined in 

the component section so that a module can contain any node or even the leaves of the component tree. 



Similarly to modules, a profile in the profile section is a composition of modules. Every profile 

includes one or more modules which are defined in the module section. 

After having explained the structure of the deployment configuration document, we take a look at 

the process in the Software Maintenance Phase. Again we explain the process by the means of a 

flowchart. It is illustrated in Figure 5. 
Init.

Main

Process

Get Name of 

Requested Profile

Valid Name? Stop

Get Required 

Component(s) 

Prepare Component(s) 

for Transport

True

False

Receive 

Client Request

Main

Process

Init.

Component

Service

Init.

Wathcer

Process

Componet

Service
…

Send Result

to Client

Throw

Exception

Figure 5: Automating Process for the Software Maintenance Phase

After initialization by the main process, the component begins to wait for a request from the client. 

On receiving a client request, the component service verifies if the given profile name is valid. If it is 

not, the component service throws an exception and stops itself; otherwise it gets all components of this 

profile from the central data repository. Before the required data is sent back to client, it will is 

serialized for the transport over the internet. Afterwards the transport back to the client takes place and 

the sub process is stopped. 

Figure 6: Sample GUIs from the Client Application 

After having talked about server processes, we take a look at the client side. On the mobile device 

there is a client application which supports the user in installing, uninstalling, and managing the 

software components. Figure 6 shows three selected screenshots from the Client Application. On the 

left, the three panels are indicated. From the mode combo box of the configuration panel, the user 

chooses between the automatic, the professional and the view history modes. In the middle, Figure 6 

shows the automatic mode. It is for the majority of users who do not worry about which components 

are installed. In this mode, a user just need to select an existing profile from the profile combo box and 

then the installation is done automatically for him. On the right, the professional mode is illustrated. It 

aims at users with a stronger technical background. In this mode, the user is free to combine 

components as he likes. This also includes the choice of which version of the component to use. In the 

view history mode (not shown in the figure), the user takes a look at the installation history on the 

respective mobile device. 



5. Applied Technologies and the Experiences with Them 

As it is true for desktop computers, there is competition between runtime environments and 

developments tools for mobile devices. The two main competitors are J2ME [6] from Sun 

Microsystems and .NET Compact Framework [7] [8] from Microsoft Cooperation. Both are compact 

versions and promise “write once, run everywhere” by building upon the integrated Byte-Code 

interpreter.  

With regard to the time-to-market factor, .NET Compact Framework gives better support to new 

technologies like web services, since it has just been published by Microsoft this year. 

Furthermore .NET Compact Framework offers better access to the resources of the operating system 

since it is usually provided by the same company. 

In the DIANE project, we implement two applications for the mobile devices (Pocket PC 2002), 

one in unmanaged native code (the so-called Initiator) which runs directly on the operating system and 

the other one in managed code (the so-called Client Application) which runs on the base of compact 

framework. According to our experiences, the development time for the managed application is shorter 

than the one in native code because of the support from the compact framework and the advance of the 

programming language VS C#. Due to the extra steps that the compact framework needs to compile the 

byte code on the fly, it takes longer to execute a managed application. Yet, this additional delay seems 

to be acceptable. 

During implementation of the Initiator and the Client Application, we have  not only debugged on 

the emulator included in the Pocket PC 2002 SDK [9] but also on a real device. The Pocket PC 

emulator worked fine during the whole development phase but the real device has raised problems 

during the debug process. It often failed because the development environment can not establish a 

connection to the mobile device. According to our experience, the only solution is to reinstall the whole 

development environment. It is not very efficient but effective. 

The aforementioned version control system manage the concurrent versions of the software 

components. For this purpose, we deploy a CVS server converted for the use under Windows 2000 in 

our project [10]. 

We have chosen Web Services [5] as the technology for the implementation of the software 

component service. As a machine-readable web application, Web Services are language and platform 

independent because of their common industry standards: XML, SOAP, and WSDL etc. Their self-

descriptive and self-discoverable characteristics facilitate deployment and use of Web Services. Using 

the development pack, it is seems to be feasible to develop the respective Web Services. 

6. Usage of the Software Station 

In this section, we take a closer look at the different steps in which the administrator, the developer, 

and the user are involved while using the Software Station. 

At first, the administrator compiles a list of software components that are released for the user and 

the deployment configuration document which configures the software components into modules and 

profiles. After that, he makes these two documents available for the component service through an 

integrated interface of the component service. The component service gets these documents, parses 

them, saves the result locally, and starts to monitor the update event from CVS server. 

A software developer compiles all of his program files into a single program library whose name is 

listed in the component list composed by the administrator earlier. After that the software component is 

checked in to the CVS server using a CVS client. The component service handles the new software 

component automatically and respectively. 

For a user, the initial work is to use the Initiator to install all the runtime environments and the 

Client Application on his device. Therefore, he visits our web page and executes the initiator directly 

from the internet. After the installation, he executes the Client Application, selects the installation 

mode and, if necessary, specifies also the profile provided by the administrator. After confirming his 

selection, the Client Application begins to download and install the selected software components 

without any intervention of the user. 

 In the lab course “Mobile Databases” of the summer semester 2003 [12], the Software Station has 

been successively applied for the deployment of various Java applications to the Pocket PC 2002. The 

evaluation shows that the requirements of the Software Station are met. 

7. Conclusion 

In this paper, we have discussed the problems which occur during the lifecycle of mobile 

applications from the software engineering point of view. Because of the characteristics of mobiles 

devices, it is difficult to develop and deploy software for mobile device. In order to resolve this 



problem, we have suggested a system that automates parts of the development process and the 

deployment process. We use a central software component repository and deliver software component 

through a web service to the Client Application on the mobile device. Furthermore, the available 

technologies for mobile devices have been compared and we have shared our experiences of applying 

them in our project. Lastly, the usage of the system is explained from the administrator, developer, and 

user’s point of view. 

References 

[1] Koenig-Ries, B., Klein, M.: Information services to support e-learning in ad-hoc networks. In: First 

International Workshop on Wireless Information Systems (WIS2002). (2002) 13–24 

[2] Klein, M., Koenig-Ries, B., Obreiter, P.: Service rings – a semantical overlay for service discovery 

in ad hoc networks. In. The Sixth International Workshop on Network-Based Information Systems 

(NBIS2003), Workshop at DEXA 2003, Prague, Czech Republic. (2003) 

[3] Klein, M., Koenig-Ries, B., Obreiter, P.: Lanes – a lightweight overlay for service discovery in 

mobile ad hoc network. In. 3rd Workshop on Applications and Services in Wireless Networks 

(ASWN2003). Berne, Swiss.(2003) 

[4] IPD, University of Karlsruhe, Germany: DIANE Project, http://www.ipd.uka.de/DIANE 

[5] WebServices.org: http://webservices.org 

[6] Sun Microsystems, Inc.: Personal JavaTM Technology White Paper, 

http://java.sun.com/products/personaljava/ 

[7] MSDN, Microsoft: Development Tools for Mobile and Embedded Applications,  

http://msdn.microsoft.com/library/en-us/dnppcgen/html/mobdevtools.asp  

[8] MSDN, Microsoft: Microsoft .NET Compact Framework Overview,  

http://msdn.microsoft.com/vstudio/device/compactfx.aspx  

 [9] Microsoft: Pocket PC 2002 SDK

http://www.microsoft.com/mobile/developer/downloads/ppcsdk2002.asp 

[10] CVSNT: http://www.cvsnt.com 

[11] Ian Sommerville: Software Engineering (6.th edition), Addison Wesley. (2002) 

[12] Koenig-Ries, B., Klein, M.: Auf der Jagd nach mobilen Informationen - Erfahrungsbericht zum 

Feldversuch des Praktikums "Mobile Datenbanken". 2nd Workshop of the GI-Arbeitskreis 

"Mobile Datenbanken und Informationssysteme": "Persistence, Scalability, Transactions -database 

mechanisms for mobile applications", Karlsruhe, Germany, April 10-11, 2003 


